-
Notifications
You must be signed in to change notification settings - Fork 0
/
BLAKE2b.cpp
330 lines (305 loc) · 10.2 KB
/
BLAKE2b.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "BLAKE2b.h"
#include "Crypto.h"
#include "utility/EndianUtil.h"
#include "utility/RotateUtil.h"
#include "utility/ProgMemUtil.h"
#include <string.h>
/**
* \class BLAKE2b BLAKE2b.h <BLAKE2b.h>
* \brief BLAKE2b hash algorithm.
*
* BLAKE2b is a variation on the ChaCha stream cipher, designed for hashing,
* with a 512-bit hash output. It is intended as a high performance
* replacement for SHA512 for when speed is critical but exact SHA512
* compatibility is not.
*
* This class supports two types of keyed hash. The BLAKE2 keyed hash and
* traditional HMAC. The BLAKE2 keyed hash is recommended unless there is
* some higher-level application need to be compatible with the HMAC
* construction. The keyed hash is computed as follows:
*
* \code
* BLAKE2b blake;
* blake.reset(key, sizeof(key), outputLength);
* blake.update(data1, sizeof(data1));
* blake.update(data2, sizeof(data2));
* ...
* blake.update(dataN, sizeof(dataN));
* blake.finalize(hash, outputLength);
* \endcode
*
* The HMAC is computed as follows (the output length is always 64):
*
* \code
* BLAKE2b blake;
* blake.resetHMAC(key, sizeof(key));
* blake.update(data1, sizeof(data1));
* blake.update(data2, sizeof(data2));
* ...
* blake.update(dataN, sizeof(dataN));
* blake.finalizeHMAC(key, sizeof(key), hash, 32);
* \endcode
*
* References: https://blake2.net/,
* <a href="http://tools.ietf.org/html/rfc7693">RFC 7693</a>
*
* \sa BLAKE2s, SHA512, SHA3_512
*/
/**
* \brief Constructs a BLAKE2b hash object.
*/
BLAKE2b::BLAKE2b()
{
reset();
}
/**
* \brief Destroys this BLAKE2b hash object after clearing
* sensitive information.
*/
BLAKE2b::~BLAKE2b()
{
clean(state);
}
size_t BLAKE2b::hashSize() const
{
return 64;
}
size_t BLAKE2b::blockSize() const
{
return 128;
}
// Initialization vectors for BLAKE2b.
#define BLAKE2b_IV0 0x6a09e667f3bcc908ULL
#define BLAKE2b_IV1 0xbb67ae8584caa73bULL
#define BLAKE2b_IV2 0x3c6ef372fe94f82bULL
#define BLAKE2b_IV3 0xa54ff53a5f1d36f1ULL
#define BLAKE2b_IV4 0x510e527fade682d1ULL
#define BLAKE2b_IV5 0x9b05688c2b3e6c1fULL
#define BLAKE2b_IV6 0x1f83d9abfb41bd6bULL
#define BLAKE2b_IV7 0x5be0cd19137e2179ULL
void BLAKE2b::reset()
{
state.h[0] = BLAKE2b_IV0 ^ 0x01010040; // Default output length of 64.
state.h[1] = BLAKE2b_IV1;
state.h[2] = BLAKE2b_IV2;
state.h[3] = BLAKE2b_IV3;
state.h[4] = BLAKE2b_IV4;
state.h[5] = BLAKE2b_IV5;
state.h[6] = BLAKE2b_IV6;
state.h[7] = BLAKE2b_IV7;
state.chunkSize = 0;
state.lengthLow = 0;
state.lengthHigh = 0;
}
/**
* \brief Resets the hash ready for a new hashing process with a specified
* output length.
*
* \param outputLength The output length to use for the final hash in bytes,
* between 1 and 64.
*/
void BLAKE2b::reset(uint8_t outputLength)
{
if (outputLength < 1)
outputLength = 1;
else if (outputLength > 64)
outputLength = 64;
state.h[0] = BLAKE2b_IV0 ^ 0x01010000 ^ outputLength;
state.h[1] = BLAKE2b_IV1;
state.h[2] = BLAKE2b_IV2;
state.h[3] = BLAKE2b_IV3;
state.h[4] = BLAKE2b_IV4;
state.h[5] = BLAKE2b_IV5;
state.h[6] = BLAKE2b_IV6;
state.h[7] = BLAKE2b_IV7;
state.chunkSize = 0;
state.lengthLow = 0;
state.lengthHigh = 0;
}
/**
* \brief Resets the hash ready for a new hashing process with a specified
* key and output length.
*
* \param key Points to the key.
* \param keyLen The length of the key in bytes, between 0 and 64.
* \param outputLength The output length to use for the final hash in bytes,
* between 1 and 64.
*
* If \a keyLen is greater than 64, then the \a key will be truncated to
* the first 64 bytes.
*/
void BLAKE2b::reset(const void *key, size_t keyLen, uint8_t outputLength)
{
if (keyLen > 64)
keyLen = 64;
if (outputLength < 1)
outputLength = 1;
else if (outputLength > 64)
outputLength = 64;
state.h[0] = BLAKE2b_IV0 ^ 0x01010000 ^ (keyLen << 8) ^ outputLength;
state.h[1] = BLAKE2b_IV1;
state.h[2] = BLAKE2b_IV2;
state.h[3] = BLAKE2b_IV3;
state.h[4] = BLAKE2b_IV4;
state.h[5] = BLAKE2b_IV5;
state.h[6] = BLAKE2b_IV6;
state.h[7] = BLAKE2b_IV7;
if (keyLen > 0) {
// Set the first block to the key and pad with zeroes.
memcpy(state.m, key, keyLen);
memset(((uint8_t *)state.m) + keyLen, 0, 128 - keyLen);
state.chunkSize = 128;
state.lengthLow = 128;
} else {
// No key. The first data block is the first hashed block.
state.chunkSize = 0;
state.lengthLow = 0;
}
state.lengthHigh = 0;
}
void BLAKE2b::update(const void *data, size_t len)
{
// Break the input up into 1024-bit chunks and process each in turn.
const uint8_t *d = (const uint8_t *)data;
while (len > 0) {
if (state.chunkSize == 128) {
// Previous chunk was full and we know that it wasn't the
// last chunk, so we can process it now with f0 set to zero.
processChunk(0);
state.chunkSize = 0;
}
uint8_t size = 128 - state.chunkSize;
if (size > len)
size = len;
memcpy(((uint8_t *)state.m) + state.chunkSize, d, size);
state.chunkSize += size;
uint64_t temp = state.lengthLow;
state.lengthLow += size;
if (state.lengthLow < temp)
++state.lengthHigh;
len -= size;
d += size;
}
}
void BLAKE2b::finalize(void *hash, size_t len)
{
// Pad the last chunk and hash it with f0 set to all-ones.
memset(((uint8_t *)state.m) + state.chunkSize, 0, 128 - state.chunkSize);
processChunk(0xFFFFFFFFFFFFFFFFULL);
// Convert the hash into little-endian in the message buffer.
for (uint8_t posn = 0; posn < 8; ++posn)
state.m[posn] = htole64(state.h[posn]);
// Copy the hash to the caller's return buffer.
if (len > 64)
len = 64;
memcpy(hash, state.m, len);
}
void BLAKE2b::clear()
{
clean(state);
reset();
}
void BLAKE2b::resetHMAC(const void *key, size_t keyLen)
{
formatHMACKey(state.m, key, keyLen, 0x36);
state.lengthLow += 128;
processChunk(0);
}
void BLAKE2b::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen)
{
uint8_t temp[64];
finalize(temp, sizeof(temp));
formatHMACKey(state.m, key, keyLen, 0x5C);
state.lengthLow += 128;
processChunk(0);
update(temp, sizeof(temp));
finalize(hash, hashLen);
clean(temp);
}
// Permutation on the message input state for BLAKE2b.
static const uint8_t sigma[12][16] PROGMEM = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
};
// Perform a BLAKE2b quarter round operation.
#define quarterRound(a, b, c, d, i) \
do { \
uint64_t _b = (b); \
uint64_t _a = (a) + _b + state.m[pgm_read_byte(&(sigma[index][2 * (i)]))]; \
uint64_t _d = rightRotate32_64((d) ^ _a); \
uint64_t _c = (c) + _d; \
_b = rightRotate24_64(_b ^ _c); \
_a += _b + state.m[pgm_read_byte(&(sigma[index][2 * (i) + 1]))]; \
(d) = _d = rightRotate16_64(_d ^ _a); \
_c += _d; \
(a) = _a; \
(b) = rightRotate63_64(_b ^ _c); \
(c) = _c; \
} while (0)
void BLAKE2b::processChunk(uint64_t f0)
{
uint8_t index;
uint64_t v[16];
// Byte-swap the message buffer into little-endian if necessary.
#if !defined(CRYPTO_LITTLE_ENDIAN)
for (index = 0; index < 16; ++index)
state.m[index] = le64toh(state.m[index]);
#endif
// Format the block to be hashed.
memcpy(v, state.h, sizeof(state.h));
v[8] = BLAKE2b_IV0;
v[9] = BLAKE2b_IV1;
v[10] = BLAKE2b_IV2;
v[11] = BLAKE2b_IV3;
v[12] = BLAKE2b_IV4 ^ state.lengthLow;
v[13] = BLAKE2b_IV5 ^ state.lengthHigh;
v[14] = BLAKE2b_IV6 ^ f0;
v[15] = BLAKE2b_IV7;
// Perform the 12 BLAKE2b rounds.
for (index = 0; index < 12; ++index) {
// Column round.
quarterRound(v[0], v[4], v[8], v[12], 0);
quarterRound(v[1], v[5], v[9], v[13], 1);
quarterRound(v[2], v[6], v[10], v[14], 2);
quarterRound(v[3], v[7], v[11], v[15], 3);
// Diagonal round.
quarterRound(v[0], v[5], v[10], v[15], 4);
quarterRound(v[1], v[6], v[11], v[12], 5);
quarterRound(v[2], v[7], v[8], v[13], 6);
quarterRound(v[3], v[4], v[9], v[14], 7);
}
// Combine the new and old hash values.
for (index = 0; index < 8; ++index)
state.h[index] ^= (v[index] ^ v[index + 8]);
}