-
Notifications
You must be signed in to change notification settings - Fork 83
/
eval_pose_estimation.py
executable file
·274 lines (231 loc) · 12.8 KB
/
eval_pose_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from pathlib import Path
import argparse
import numpy as np
import torch
from tqdm import tqdm
import os
import json
from admin.stats import merge_dictionaries
import admin.settings as ws_settings
from utils_flow.img_processing_utils import pad_to_same_shape
from model_selection import select_model
from validation.utils import matches_from_flow
from models.inference_utils import estimate_mask
from utils_flow.flow_and_mapping_operations import convert_flow_to_mapping
from validation.utils import (compute_pose_error, compute_epipolar_error,
estimate_pose, pose_auc, read_image,
rotate_intrinsics, rotate_pose_inplane,
scale_intrinsics)
from validation.test_parser import define_model_parser, boolean_string
torch.set_grad_enabled(False)
def main(args, settings):
min_size = args.minSize
save_dir = os.path.join(args.save_dir, 'mask_for_pose_est_' + args.mask_type_for_pose_estimation)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if args.network_type == 'PDCNet' and ('d' not in args.multi_stage_type.lower()):
# add sub-possibility with mask threshold of internal multi-stage alignment
save_dir = os.path.join(save_dir, 'mask_for_multi_stage_align_' + args.mask_type)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_dict = {}
for pre_trained_model_type in args.pre_trained_models:
print(pre_trained_model_type)
network, estimate_uncertainty = select_model(
args.model, pre_trained_model_type, args, args.optim_iter, local_optim_iter,
path_to_pre_trained_models=args.path_to_pre_trained_models)
pbar = tqdm(enumerate(pairs), total=len(pairs))
pose_errors = []
percentage_of_correct_points = []
output = {}
run_time = 0
for i, pair in pbar:
name0, name1 = pair[:2]
# If a rotation integer is provided (e.g. from EXIF data), use it:
if len(pair) >= 5:
rot0, rot1 = int(pair[2]), int(pair[3])
else:
rot0, rot1 = 0, 0
# Load the image pair.
# scales here is ratio between new load_size and old load_size
# for now we resize keeping aspect ratio
image0, scales0 = read_image(
input_dir / name0, device, rot0, resize_float=False, min_size=min_size, resize=args.resize)
image1, scales1 = read_image(
input_dir / name1, device, rot1, resize_float=False, min_size=min_size, resize=args.resize)
if image0 is None or image1 is None:
print('Problem reading image pair: {} {}'.format(
input_dir/name0, input_dir/name1))
exit(1)
Ish, Isw, _ = image0.shape
Ith, Itw, _ = image1.shape
Is_numpy, It_numpy = pad_to_same_shape(image0, image1)
Is = torch.Tensor(Is_numpy).permute(2, 0, 1).unsqueeze(0)
It = torch.Tensor(It_numpy).permute(2, 0, 1).unsqueeze(0)
if args.estimate_at_quarter_reso:
size_of_flow_padded = (It_numpy.shape[0] // 4, It_numpy.shape[1] // 4)
size_of_flow = (Ith // 4, Itw // 4)
size_of_source = (Ish // 4, Isw // 4)
# scaling first in horizontal direction, then vertical
scaling = 4.0
scaling_for_keypoints = np.float32([Ith, Itw])[::-1] / np.float32(size_of_flow)[::-1]
else:
size_of_flow_padded = It_numpy.shape[:2]
size_of_flow = image1.shape[:2]
size_of_source = (Ish, Isw)
scaling = 1.0
scaling_for_keypoints = 1.0
mask_padded = torch.ones(size_of_flow_padded).unsqueeze(0).byte().to(device)
mask_padded = mask_padded.bool() if float(torch.__version__[:3]) >= 1.1 else mask_padded.byte()
# scaling defines the final outputted shape by the network.
if not estimate_uncertainty:
flow_estimated_padded = network.estimate_flow(Is, It, scaling=1.0/scaling)
else:
flow_estimated_padded, uncertainty_est_padded = network.estimate_flow_and_confidence_map(Is, It,
scaling=1.0/scaling)
if 'warping_mask' in list(uncertainty_est_padded.keys()):
# get mask from internal multi stage alignment, if it took place
mask_padded = uncertainty_est_padded['warping_mask'] * mask_padded
# get the mask according to uncertainty estimation
mask_padded = estimate_mask(args.mask_type_for_pose_estimation, uncertainty_est_padded) \
* mask_padded
# remove the padding
flow = flow_estimated_padded[:, :, :size_of_flow[0], :size_of_flow[1]]
mask = mask_padded[:, :size_of_flow[0], :size_of_flow[1]]
mapping_estimated = convert_flow_to_mapping(flow)
# remove point that lead to outside the source image
mask = mask & mapping_estimated[:, 0].ge(0) & mapping_estimated[:, 1].ge(0) & \
mapping_estimated[:, 0].le(size_of_source[1] - 1) & mapping_estimated[:, 1].le(size_of_source[0] - 1)
mkpts0, mkpts1 = matches_from_flow(flow, mask, scaling=scaling_for_keypoints)
# Estimate the pose and compute the pose error.
assert len(pair) == 38, 'Pair does not have ground truth info'
K0 = np.array(pair[4:13]).astype(float).reshape(3, 3)
K1 = np.array(pair[13:22]).astype(float).reshape(3, 3)
T_0to1 = np.array(pair[22:]).astype(float).reshape(4, 4)
# Scale the intrinsics to resized image.
K0 = scale_intrinsics(K0, scales0)
K1 = scale_intrinsics(K1, scales1)
# Update the intrinsics + extrinsics if EXIF rotation was found.
if rot0 != 0 or rot1 != 0:
print('pair {}, update intrinsic'.format(i))
cam0_T_w = np.eye(4)
cam1_T_w = T_0to1 # rotation from camera 0 to camera 1
if rot0 != 0:
K0 = rotate_intrinsics(K0, image0.shape, rot0)
cam0_T_w = rotate_pose_inplane(cam0_T_w, rot0)
if rot1 != 0:
K1 = rotate_intrinsics(K1, image1.shape, rot1)
cam1_T_w = rotate_pose_inplane(cam1_T_w, rot1)
cam1_T_cam0 = cam1_T_w @ np.linalg.inv(cam0_T_w)
T_0to1 = cam1_T_cam0 # rotation from camera 0 to camera 1, ie from source to target
epi_errs = compute_epipolar_error(mkpts0, mkpts1, T_0to1, K0, K1)
correct = epi_errs < 5e-4
num_correct = np.sum(correct)
precision = np.mean(correct) if len(correct) > 0 else 0
thresh = 1. # In pixels relative to resized image load_size.
ret = estimate_pose(mkpts0, mkpts1, K0, K1, ransac=args.ransac, thresh=thresh)
# estimates relative pose from camera 0/source to camera 1/target
# corresponds to Rotation from camera 0 to camera 1
if ret is None:
err_t, err_R = np.inf, np.inf
else:
R, t, inliers = ret
err_t, err_R = compute_pose_error(T_0to1, R, t)
# Write the evaluation results to disk.
out_eval = {'error_t': err_t,
'error_R': err_R,
'num_correct': num_correct,
'percentage_of_correct': precision,
'epipolar_errors': epi_errs}
pose_error = np.maximum(out_eval['error_t'], out_eval['error_R'])
pose_errors.append(pose_error)
percentage_of_correct_points.append(out_eval['percentage_of_correct'])
# compute the average !
thresholds = [5, 10, 20]
aucs = pose_auc(pose_errors, thresholds)
aucs = [100. * yy for yy in aucs]
print('Evaluation Results (mean over {} pairs):'.format(len(pairs)))
print('AUC@5\t AUC@10\t AUC@20\t')
print('{:.2f}\t {:.2f}\t {:.2f}\t '.format(aucs[0], aucs[1], aucs[2]))
Acc5 = np.sum(np.array(pose_errors) < 5.0) / float(len(pose_errors))
Acc10 = np.sum(np.array(pose_errors) < 10.0) / float(len(pose_errors))
Acc15 = np.sum(np.array(pose_errors) < 15.0) / float(len(pose_errors))
Acc20 = np.sum(np.array(pose_errors) < 20.0) / float(len(pose_errors))
mAP10 = np.mean([Acc5, Acc10])
mAP20 = np.mean([Acc5, Acc10, Acc15, Acc20])
print('mAP@5: {}'.format(Acc5))
print('mAP@10: {}'.format(mAP10))
print('mAP@20: {}'.format(mAP20))
output['AUC@5'] = aucs[0]
output['AUC@10'] = aucs[1]
output['AUC@20'] = aucs[2]
output['Acc@5'] = Acc5
output['Acc@10'] = Acc10
output['Acc@15'] = Acc15
output['Acc@20'] = Acc20
output['mAP@5'] = Acc5
output['mAP@10'] = mAP10
output['mAP@20'] = mAP20
output['percentage_of_correct'] = np.mean(percentage_of_correct_points)
output['run_time'] = run_time
save_dict[pre_trained_model_type] = output
name_to_save = args.model
if 'gocor' in args.model.lower() or 'PDCNet' in args.model:
name_save_metrics = 'metrics_{}_iter_{}_{}'.format(name_to_save, args.optim_iter, local_optim_iter)
else:
name_save_metrics = 'metrics_{}'.format(name_to_save)
path_file = '{}/{}.txt'.format(save_dir, name_save_metrics)
if os.path.exists(path_file):
with open(path_file, 'r') as outfile:
save_dict_existing = json.load(outfile)
save_dict = merge_dictionaries([save_dict_existing, save_dict])
with open(path_file, 'w') as outfile:
json.dump(save_dict, outfile, ensure_ascii=False, separators=(',', ':'))
print('written to file ')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Pose estimation',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, help='Dataset name', required=True)
define_model_parser(parser)
parser.add_argument('--pre_trained_models', nargs='+', required=True,
help='Names of the pre trained models')
parser.add_argument('--minSize', type=int, default=480,
help='Resize images so that the minimum load_size is this argument, '
'while keeping the original aspect ratio')
parser.add_argument('--resize', type=int, nargs='+', default=[640, 480],
help='Resize the input image before running inference. If two numbers, resize to the exact '
'dimensions, if one number, resize the max dimension, if -1, do not resize')
# estimation parameter
parser.add_argument('--estimate_at_quarter_reso', default=True, type=boolean_string,
help='estimate the relative pose from the flow field at quarter reso ? default is True')
parser.add_argument('--mask_type_for_pose_estimation', default='proba_interval_1_above_10', type=str,
help='mask type for pose_estimation from uncertainty prediction')
# ransac
parser.add_argument('--ransac', default=True, type=boolean_string,
help="using ransac to filter the outlier or not (default True )")
parser.add_argument('--ransac_thresh', type=float, default=1.0, help='threshold used for RANSAC')
parser.add_argument('--save_dir', type=str, default='evaluation/',
help='path to directory to save the results')
args = parser.parse_args()
local_optim_iter = int(args.local_optim_iter) if args.local_optim_iter else args.optim_iter
print(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('Running inference on device \"{}\"'.format(device))
# Create the output directories if they do not exist already.
settings = ws_settings.Settings()
if args.dataset == 'YFCC':
input_dir = Path(settings.env.yfcc)
input_pairs = 'assets/yfcc_test_pairs_with_gt_original.txt'
elif args.dataset == 'scannet':
input_dir = Path(settings.env.scannet_test)
input_pairs = 'assets/scannet_test_pairs_with_gt.txt'
else:
raise NotImplementedError
with open(input_pairs, 'r') as f:
pairs = [l.split() for l in f.readlines()]
if not all([len(p) == 38 for p in pairs]):
raise ValueError(
'All pairs should have ground truth info for evaluation.'
'File \"{}\" needs 38 valid entries per row'.format(args.input_pairs))
print('Looking for data in directory \"{}\"'.format(input_dir))
main(args, settings)