-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_noSAM.py
347 lines (267 loc) · 12.3 KB
/
train_noSAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import sys
from detectors import DETECTOR
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import os.path as osp
from log_utils import Logger
import torch.backends.cudnn as cudnn
from dataset.pair_dataset import pairDataset
from scipy.special import softmax
import csv
import argparse
from sklearn.metrics import confusion_matrix, roc_auc_score
parser = argparse.ArgumentParser("Example")
parser.add_argument('--lamda1', type=float, default=0.1,
help="alpha_i in bi-level-loss, (0.0~1.0)")
parser.add_argument('--lamda2', type=float, default=0.01,
help="alpha in bi-level-loss,(0.0~1.0)")
parser.add_argument('--lr', type=float, default=0.0005,
help="learning rate for training")
parser.add_argument('--batchsize', type=int, default=16, help="batch size")
parser.add_argument('--seed', type=int, default=5)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--dataname', type=str, default='ff++',
help='ff++, celebdf, dfd, dfdc')
parser.add_argument('--fake_datapath', type=str,
default='dataset/ff++/')
parser.add_argument('--real_datapath', type=str,
default='dataset/ff++/')
parser.add_argument("--continue_train", default=False, action='store_true')
parser.add_argument("--checkpoints", type=str, default='',
help="continue train model path")
parser.add_argument("--model", type=str, default='fair_df_detector',
help="detector name[fair_df_detector]")
args = parser.parse_args()
###### import data transform #######
from transform import fair_df_default_data_transforms as data_transforms
###### load data ######
face_dataset = {x: pairDataset(args.fake_datapath+'fake'+'{}.csv'.format(
x), args.real_datapath+'real'+'{}.csv'.format(
x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(
dataset=face_dataset[x], batch_size=args.batchsize, shuffle=True, num_workers=8, collate_fn=face_dataset[x].collate_fn) for x in ['train', 'val']}
dataset_sizes = {x: len(face_dataset[x]) for x in ['train', 'val']}
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# prepare the model (detector)
model_class = DETECTOR['fair_df_detector']
def classification_metrics(label, prediction):
auc = roc_auc_score(label, prediction)
CM = confusion_matrix(label, prediction >= 0.5)
TN = CM[0][0]
FN = CM[1][0]
TP = CM[1][1]
FP = CM[0][1]
FPR = FP/(FP+TN)
TPR = TP/(TP+FN)
return auc, TPR, FPR
##### calcuate ffpr score calculation during val ################
def cal_ffpr_score(preds, labels, intersec_label):
efpr_s = 0.0
logits_idx = (labels < 0.5)
if np.sum(logits_idx) > 0:
allg = np.sum(preds[logits_idx] == 1)/np.sum(logits_idx)
else:
allg = 0.0
print("no real data in this batch")
for j in list(np.unique(intersec_label)):
groupa = 0.0
groupb = np.sum(labels[intersec_label == j] < 0.5)
if groupb != 0:
groupa = np.sum(preds[(intersec_label == j) & (logits_idx)] == 1)
group = groupa/groupb
else:
group = 0.0
efpr_s += np.abs(group - allg)
return efpr_s
##### calcuate feo score during val#############
def cal_feo_score(preds, labels, intersec_label):
eo_score_r = 0.0
eo_score_f = 0.0
logits_idx_r = (labels < 0.5)
if np.sum(logits_idx_r) > 0:
allg_r = np.sum(preds[logits_idx_r] == 1)/np.sum(logits_idx_r)
else:
allg_r = 0.0
print("no real data in this batch")
for j in range(8):
groupa_r = 0.0
groupb_r = np.sum(labels[intersec_label == j] < 0.5)
if groupb_r != 0:
groupa_r = np.sum(
preds[(intersec_label == j) & (logits_idx_r)] == 1)
group_r = groupa_r/groupb_r
else:
group_r = 0.0
eo_score_r += np.abs(group_r - allg_r)
logits_idx_f = (labels >= 0.5)
if np.sum(logits_idx_f) > 0:
allg_f = np.sum(preds[logits_idx_f] == 1)/np.sum(logits_idx_f)
else:
allg_f = 0.0
print("no real data in this batch")
for j in range(8):
groupa_f = 0.0
groupb_f = np.sum(labels[intersec_label == j] >= 0.5)
if groupb_f != 0:
groupa_f = np.sum(
preds[(intersec_label == j) & (logits_idx_f)] == 1)
group_f = groupa_f/groupb_f
else:
group_f = 0.0
eo_score_f += np.abs(group_f - allg_f)
return (eo_score_r + eo_score_f)
###### calculate G_auc during val ##############
def auc_gap(preds, labels, intersec_label):
auc_all_sec = []
for j in list(np.unique(intersec_label)):
pred_section = preds[intersec_label == j]
labels_section = labels[intersec_label == j]
try:
auc_section, _, _ = classification_metrics(
labels_section, pred_section)
auc_all_sec.append(auc_section)
except:
continue
return max(auc_all_sec)-min(auc_all_sec)
# train and evaluation
def train(model, optimizer, scheduler, num_epochs, start_epoch):
for epoch in range(start_epoch, num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
phase = 'train'
model.train()
total_loss = 0.0
for idx, data_dict in enumerate(dataloaders[phase]):
imgs, labels, intersec_labels = data_dict['image'], data_dict[
'label'], data_dict['intersec_label']
if 'label_spe' in data_dict:
label_spe = data_dict['label_spe']
data_dict['label_spe'] = label_spe.to(device)
data_dict['image'], data_dict['label'], data_dict['intersec_label'] = imgs.to(
device), labels.to(device), intersec_labels.to(device),
with torch.set_grad_enabled(phase == 'train'):
preds = model(data_dict)
losses = model.get_losses(data_dict, preds)
losses = losses['overall']
optimizer.zero_grad()
losses.backward()
optimizer.step()
if idx % 50 == 0:
# compute training metric for each batch data
batch_metrics = model.get_train_metrics(data_dict, preds)
print('#{} batch_metric{}'.format(idx, batch_metrics))
total_loss += losses.item() * imgs.size(0)
epoch_loss = total_loss / dataset_sizes[phase]
print('Epoch: {} Loss: {:.4f}'.format(epoch, epoch_loss))
# update learning rate
if phase == 'train':
scheduler.step()
# evaluation
if (epoch+1) % 1 == 0:
savepath = './checkpoints/'+args.model+'/'+args.dataname+'_'+'/lamda1_' + \
str(args.lamda1)+'_lamda2_' + \
str(args.lamda2)+'_lr'+str(args.lr)
temp_model = savepath+"/"+args.model+str(epoch)+'.pth'
torch.save(model.state_dict(), temp_model)
print()
print('-' * 10)
phase = 'val'
model.eval()
running_corrects = 0
total = 0
pred_label_list = []
pred_probs_list = []
label_list = []
intersec_label_list = []
for idx, data_dict in enumerate(dataloaders[phase]):
imgs, labels, intersec_labels = data_dict['image'], data_dict['label'], data_dict['intersec_label']
# do not consider the specific label when testing
# fix the label to 0 and 1 only
labels = torch.where(data_dict['label'] != 0, 1, 0)
if 'label_spe' in data_dict:
data_dict.pop('label_spe') # remove the specific label
data_dict['image'], data_dict['label'], data_dict['intersec_label'] = imgs.to(
device), labels.to(device), intersec_labels.to(device)
with torch.set_grad_enabled(phase == 'train'):
preds = model(data_dict, inference=True)
_, preds_label = torch.max(preds['cls_fused'], 1)
pred_probs = torch.softmax(
preds['cls_fused'], dim=1)[:, 1]
total += data_dict['label'].size(0)
running_corrects += (preds_label ==
data_dict['label']).sum().item()
preds_label = preds_label.cpu().data.numpy().tolist()
pred_probs = pred_probs.cpu().data.numpy().tolist()
pred_label_list += preds_label
pred_probs_list += pred_probs
label_list += labels.cpu().data.numpy().tolist()
intersec_label_list += intersec_labels.cpu().data.numpy().tolist()
if idx % 50 == 0:
batch_metrics = model.get_test_metrics()
print('#{} batch_metric{{"acc": {}, "auc": {}, "eer": {}, "ap": {}}}'.format(idx,
batch_metrics['acc'],
batch_metrics['auc'],
batch_metrics['eer'],
batch_metrics['ap']))
pred_label_list = np.array(pred_label_list)
pred_probs_list = np.array(pred_probs_list)
label_list = np.array(label_list)
intersec_label_list = np.array(intersec_label_list)
ffpr_score = cal_ffpr_score(
pred_label_list, label_list, intersec_label_list)
epoch_acc = running_corrects / total
feo_score = cal_feo_score(
pred_label_list, label_list, intersec_label_list)
auc_maxgap = auc_gap(
pred_probs_list, label_list, intersec_label_list)
auc, TPR, FPR = classification_metrics(
label_list, pred_probs_list)
print('Epoch {} Acc: {:.4f} ffpr score: {:.4f} feo score: {} auc: {}, tpr: {}, fpr: {}'.format(
epoch, epoch_acc, ffpr_score, feo_score, auc, TPR, FPR))
with open(savepath+"/val_metrics.csv", 'a', newline='') as csvfile:
columnname = ['epoch', 'epoch_acc', 'efpr_score', 'feo_score',
'auc_gap_inter', 'AUC all', 'TPR all', 'FPR all']
writer = csv.DictWriter(csvfile, fieldnames=columnname)
writer.writerow({'epoch': str(epoch), 'epoch_acc': str(epoch_acc), 'efpr_score': str(ffpr_score), 'feo_score': str(
feo_score), 'auc_gap_inter': str(auc_maxgap), 'AUC all': str(auc), 'TPR all': str(TPR), 'FPR all': str(FPR)})
print()
print('-' * 10)
return model, epoch
def main():
torch.manual_seed(args.seed)
use_gpu = torch.cuda.is_available()
if args.use_cpu:
use_gpu = False
sys.stdout = Logger(osp.join('./checkpoints/'+args.model+'/'+args.dataname+'_'+'/lamda1_'+str(
args.lamda1)+'_lamda2_'+str(args.lamda2)+'_lr'+str(args.lr)+'/log_training.txt'))
if use_gpu:
print("Currently using GPU: {}".format(args.gpu))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU")
model = model_class()
model.to(device)
start_epoch = 0
if args.continue_train and args.checkpoints != '':
state_dict = torch.load(args.checkpoints)
model.load_state_dict(state_dict)
start_epoch = 15
print(start_epoch)
# optimize
params_to_update = model.parameters()
optimizer4nn = optim.SGD(params_to_update, lr=args.lr,
momentum=0.9, weight_decay=5e-03)
optimizer = optimizer4nn
print(params_to_update, optimizer)
exp_lr_scheduler = lr_scheduler.StepLR(
optimizer, step_size=60, gamma=0.9)
model, epoch = train(model, optimizer,
exp_lr_scheduler, num_epochs=100, start_epoch=start_epoch)
if epoch == 99:
print("training finished!")
exit()
if __name__ == '__main__':
main()