This repository has been archived by the owner on Oct 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 212
/
optimization.py
893 lines (783 loc) · 31.7 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
import math
import numbers
from enum import Enum
from flash.core.serve.dag.task import flatten, get, get_dependencies, ishashable, istask, reverse_dict, subs, toposort
from flash.core.serve.dag.utils import key_split
from flash.core.serve.dag.utils_test import add, inc, mul
def cull(dsk, keys):
"""Return new task graph with only the tasks required to calculate keys.
In other words, remove unnecessary tasks from task graph.
``keys`` may be a single key or list of keys.
Examples
--------
>>> d = {'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)}
>>> dsk, dependencies = cull(d, 'out') # doctest: +SKIP
>>> dsk # doctest: +SKIP
{'x': 1, 'out': (add, 'x', 10)}
>>> dependencies # doctest: +SKIP
{'x': set(), 'out': set(['x'])}
Returns
-------
dsk: culled graph
dependencies: Dict mapping {key: [deps]}. Useful side effect to accelerate
other optimizations, notably fuse.
"""
if not isinstance(keys, (list, set)):
keys = [keys]
seen = set()
dependencies = dict()
out = {}
work = list(set(flatten(keys)))
while work:
new_work = []
for k in work:
dependencies_k = get_dependencies(dsk, k, as_list=True) # fuse needs lists
out[k] = dsk[k]
dependencies[k] = dependencies_k
for d in dependencies_k:
if d not in seen:
seen.add(d)
new_work.append(d)
work = new_work
return out, dependencies
def default_fused_linear_keys_renamer(keys):
"""Create new keys for fused tasks"""
typ = type(keys[0])
if typ is str:
names = [key_split(x) for x in keys[:0:-1]]
names.append(keys[0])
return "-".join(names)
elif typ is tuple and len(keys[0]) > 0 and isinstance(keys[0][0], str):
names = [key_split(x) for x in keys[:0:-1]]
names.append(keys[0][0])
return ("-".join(names), ) + keys[0][1:]
else:
return None
def fuse_linear(dsk, keys=None, dependencies=None, rename_keys=True):
"""Return new dask graph with linear sequence of tasks fused together.
If specified, the keys in ``keys`` keyword argument are *not* fused.
Supply ``dependencies`` from output of ``cull`` if available to avoid
recomputing dependencies.
**This function is mostly superseded by ``fuse``**
Parameters
----------
dsk: dict
keys: list
dependencies: dict, optional
{key: [list-of-keys]}. Must be a list to provide count of each key
This optional input often comes from ``cull``
rename_keys: bool or func, optional
Whether to rename fused keys with ``default_fused_linear_keys_renamer``
or not. Renaming fused keys can keep the graph more understandable
and comprehensive, but it comes at the cost of additional processing.
If False, then the top-most key will be used. For advanced usage, a
func is also accepted, ``new_key = rename_keys(fused_key_list)``.
Examples
--------
>>> d = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')}
>>> dsk, dependencies = fuse(d)
>>> dsk # doctest: +SKIP
{'a-b-c': (inc, (inc, 1)), 'c': 'a-b-c'}
>>> dsk, dependencies = fuse(d, rename_keys=False)
>>> dsk # doctest: +SKIP
{'c': (inc, (inc, 1))}
>>> dsk, dependencies = fuse(d, keys=['b'], rename_keys=False)
>>> dsk # doctest: +SKIP
{'b': (inc, 1), 'c': (inc, 'b')}
Returns
-------
dsk: output graph with keys fused
dependencies: dict mapping dependencies after fusion. Useful side effect
to accelerate other downstream optimizations.
"""
if keys is not None and not isinstance(keys, set):
if not isinstance(keys, list):
keys = [keys]
keys = set(flatten(keys))
if dependencies is None:
dependencies = {k: get_dependencies(dsk, k, as_list=True) for k in dsk}
# locate all members of linear chains
child2parent = {}
unfusible = set()
for parent in dsk:
deps = dependencies[parent]
has_many_children = len(deps) > 1
for child in deps:
if keys is not None and child in keys:
unfusible.add(child)
elif child in child2parent:
del child2parent[child]
unfusible.add(child)
elif has_many_children:
unfusible.add(child)
elif child not in unfusible:
child2parent[child] = parent
# construct the chains from ancestor to descendant
chains = []
parent2child = dict(map(reversed, child2parent.items()))
while child2parent:
child, parent = child2parent.popitem()
chain = [child, parent]
while parent in child2parent:
parent = child2parent.pop(parent)
del parent2child[parent]
chain.append(parent)
chain.reverse()
while child in parent2child:
child = parent2child.pop(child)
del child2parent[child]
chain.append(child)
chains.append(chain)
dependencies = {k: set(v) for k, v in dependencies.items()}
if rename_keys is True:
key_renamer = default_fused_linear_keys_renamer
elif rename_keys is False:
key_renamer = None
else:
key_renamer = rename_keys
# create a new dask with fused chains
rv = {}
fused = set()
aliases = set()
is_renamed = False
for chain in chains:
if key_renamer is not None:
new_key = key_renamer(chain)
is_renamed = new_key is not None and new_key not in dsk and new_key not in rv
child = chain.pop()
val = dsk[child]
while chain:
parent = chain.pop()
dependencies[parent].update(dependencies.pop(child))
dependencies[parent].remove(child)
val = subs(dsk[parent], child, val)
fused.add(child)
child = parent
fused.add(child)
if is_renamed:
rv[new_key] = val
rv[child] = new_key
dependencies[new_key] = dependencies[child]
dependencies[child] = {new_key}
aliases.add(child)
else:
rv[child] = val
for key, val in dsk.items():
if key not in fused:
rv[key] = val
if aliases:
for key, deps in dependencies.items():
for old_key in deps & aliases:
new_key = rv[old_key]
deps.remove(old_key)
deps.add(new_key)
rv[key] = subs(rv[key], old_key, new_key)
if keys is not None:
for key in aliases - keys:
del rv[key]
del dependencies[key]
return rv, dependencies
def _flat_set(x):
if x is None:
return set()
elif isinstance(x, set):
return x
elif not isinstance(x, (list, set)):
x = [x]
return set(x)
def inline(dsk, keys=None, inline_constants=True, dependencies=None):
"""Return new dask with the given keys inlined with their values.
Inlines all constants if ``inline_constants`` keyword is True. Note that
the constant keys will remain in the graph, to remove them follow
``inline`` with ``cull``.
Examples
--------
>>> d = {'x': 1, 'y': (inc, 'x'), 'z': (add, 'x', 'y')}
>>> inline(d) # doctest: +SKIP
{'x': 1, 'y': (inc, 1), 'z': (add, 1, 'y')}
>>> inline(d, keys='y') # doctest: +SKIP
{'x': 1, 'y': (inc, 1), 'z': (add, 1, (inc, 1))}
>>> inline(d, keys='y', inline_constants=False) # doctest: +SKIP
{'x': 1, 'y': (inc, 1), 'z': (add, 'x', (inc, 'x'))}
"""
if dependencies and isinstance(next(iter(dependencies.values())), list):
dependencies = {k: set(v) for k, v in dependencies.items()}
keys = _flat_set(keys)
if dependencies is None:
dependencies = {k: get_dependencies(dsk, k) for k in dsk}
if inline_constants:
keys.update(
k for k, v in dsk.items() if (ishashable(v) and v in dsk) or (not dependencies[k] and not istask(v))
)
# Keys may depend on other keys, so determine replace order with toposort.
# The values stored in `keysubs` do not include other keys.
replaceorder = toposort(dict((k, dsk[k]) for k in keys if k in dsk), dependencies=dependencies)
keysubs = {}
for key in replaceorder:
val = dsk[key]
for dep in keys & dependencies[key]:
if dep in keysubs:
replace = keysubs[dep]
else:
replace = dsk[dep]
val = subs(val, dep, replace)
keysubs[key] = val
# Make new dask with substitutions
dsk2 = keysubs.copy()
for key, val in dsk.items():
if key not in dsk2:
for item in keys & dependencies[key]:
val = subs(val, item, keysubs[item])
dsk2[key] = val
return dsk2
def inline_functions(dsk, output, fast_functions=None, inline_constants=False, dependencies=None):
"""Inline cheap functions into larger operations
Examples
--------
>>> double = lambda x: x*2 # doctest: +SKIP
>>> dsk = {'out': (add, 'i', 'd'), # doctest: +SKIP
... 'i': (inc, 'x'),
... 'd': (double, 'y'),
... 'x': 1, 'y': 1}
>>> inline_functions(dsk, [], [inc]) # doctest: +SKIP
{'out': (add, (inc, 'x'), 'd'),
'd': (double, 'y'),
'x': 1, 'y': 1}
Protect output keys. In the example below ``i`` is not inlined because it
is marked as an output key.
>>> inline_functions(dsk, ['i', 'out'], [inc, double]) # doctest: +SKIP
{'out': (add, 'i', (double, 'y')),
'i': (inc, 'x'),
'x': 1, 'y': 1}
"""
if not fast_functions:
return dsk
output = set(output)
fast_functions = set(fast_functions)
if dependencies is None:
dependencies = {k: get_dependencies(dsk, k) for k in dsk}
dependents = reverse_dict(dependencies)
def inlinable(v):
try:
return functions_of(v).issubset(fast_functions)
except TypeError:
return False
keys = [k for k, v in dsk.items() if istask(v) and dependents[k] and k not in output and inlinable(v)]
if keys:
dsk = inline(dsk, keys, inline_constants=inline_constants, dependencies=dependencies)
for k in keys:
del dsk[k]
return dsk
def unwrap_partial(func):
while hasattr(func, "func"):
func = func.func
return func
def functions_of(task):
"""Set of functions contained within nested task
Examples
--------
>>> task = (add, (mul, 1, 2), (inc, 3)) # doctest: +SKIP
>>> functions_of(task) # doctest: +SKIP
set([add, mul, inc])
"""
funcs = set()
work = [task]
sequence_types = {list, tuple}
while work:
new_work = []
for task in work:
if type(task) in sequence_types:
if istask(task):
funcs.add(unwrap_partial(task[0]))
new_work.extend(task[1:])
else:
new_work.extend(task)
work = new_work
return funcs
def default_fused_keys_renamer(keys, max_fused_key_length=120):
"""Create new keys for ``fuse`` tasks.
The optional parameter `max_fused_key_length` is used to limit the maximum
string length for each renamed key. If this parameter is set to `None`,
there is no limit.
"""
it = reversed(keys)
first_key = next(it)
typ = type(first_key)
if max_fused_key_length: # Take into account size of hash suffix
max_fused_key_length -= 5
def _enforce_max_key_limit(key_name):
if max_fused_key_length and len(key_name) > max_fused_key_length:
name_hash = f"{hash(key_name):x}"[:4]
key_name = f"{key_name[:max_fused_key_length]}-{name_hash}"
return key_name
if typ is str:
first_name = key_split(first_key)
names = {key_split(k) for k in it}
names.discard(first_name)
names = sorted(names)
names.append(first_key)
concatenated_name = "-".join(names)
return _enforce_max_key_limit(concatenated_name)
elif typ is tuple and len(first_key) > 0 and isinstance(first_key[0], str):
first_name = key_split(first_key)
names = {key_split(k) for k in it}
names.discard(first_name)
names = sorted(names)
names.append(first_key[0])
concatenated_name = "-".join(names)
return (_enforce_max_key_limit(concatenated_name), ) + first_key[1:]
# PEP-484 compliant singleton constant
# https://www.python.org/dev/peps/pep-0484/#support-for-singleton-types-in-unions
class Default(Enum):
token = 0
def __repr__(self) -> str:
return "<default>"
_default = Default.token
def fuse(
dsk,
keys=None,
dependencies=None,
ave_width=None,
max_width=None,
max_height=None,
max_depth_new_edges=None,
rename_keys=True,
fuse_subgraphs=False,
):
"""Fuse tasks that form reductions; more advanced than ``fuse_linear``
This trades parallelism opportunities for faster scheduling by making tasks
less granular. It can replace ``fuse_linear`` in optimization passes.
This optimization applies to all reductions--tasks that have at most one
dependent--so it may be viewed as fusing "multiple input, single output"
groups of tasks into a single task. There are many parameters to fine
tune the behavior, which are described below. ``ave_width`` is the
natural parameter with which to compare parallelism to granularity, so
it should always be specified. Reasonable values for other parameters
will be determined using ``ave_width`` if necessary.
Parameters
----------
dsk: dict
dask graph
keys: list or set, optional
Keys that must remain in the returned dask graph
dependencies: dict, optional
{key: [list-of-keys]}. Must be a list to provide count of each key
This optional input often comes from ``cull``
ave_width: float (default 1)
Upper limit for ``width = num_nodes / height``, a good measure of
parallelizability.
max_width: int (default infinite)
Don't fuse if total width is greater than this. Set to ``None``
to dynamically adjust to ``1.5 + ave_width * log(ave_width + 1)``
max_height: int or None (default None)
Don't fuse more than this many levels. Set to None to dynamically
adjust to ``1.5 + ave_width * log(ave_width + 1)``.
max_depth_new_edges: int or None (default None)
Don't fuse if new dependencies are added after this many levels.
Set to None to dynamically adjust to ``ave_width * 1.5``
rename_keys: bool or func, optional (default True)
Whether to rename the fused keys with ``default_fused_keys_renamer``
or not. Renaming fused keys can keep the graph more understandable
and comprehensive, but it comes at the cost of additional processing.
If False, then the top-most key will be used. For advanced usage, a
function to create the new name is also accepted.
fuse_subgraphs : bool, optional (default False)
Whether to fuse multiple tasks into ``SubgraphCallable`` objects.
Set to None to let the default optimizer of individual dask collections decide.
If no collection-specific default exists, defaults to False.
Returns
-------
dsk
output graph with keys fused
dependencies
dict mapping dependencies after fusion. Useful side effect to accelerate other
downstream optimizations.
"""
if keys is not None and not isinstance(keys, set):
if not isinstance(keys, list):
keys = [keys]
keys = set(flatten(keys))
if ave_width is None:
ave_width = 1
if max_height is None:
max_height = 1.5 + (ave_width * math.log(ave_width + 1))
if max_depth_new_edges is None:
max_depth_new_edges = ave_width * 1.5
if max_width is None:
max_width = 1.5 + ave_width * math.log(ave_width + 1)
if not ave_width or not max_height:
return dsk, dependencies
if rename_keys is True:
key_renamer = default_fused_keys_renamer
elif rename_keys is False:
key_renamer = None
elif not callable(rename_keys):
raise TypeError("rename_keys must be a boolean or callable")
else:
key_renamer = rename_keys
rename_keys = key_renamer is not None
if dependencies is None:
deps = {k: get_dependencies(dsk, k, as_list=True) for k in dsk}
else:
deps = dict(dependencies)
rdeps = {}
for k, vals in deps.items():
for v in vals:
if v not in rdeps:
rdeps[v] = [k]
else:
rdeps[v].append(k)
deps[k] = set(vals)
reducible = {k for k, vals in rdeps.items() if len(vals) == 1}
if keys:
reducible -= keys
for k, v in dsk.items():
if type(v) is not tuple and not isinstance(v, (numbers.Number, str)):
reducible.discard(k)
if not reducible and (not fuse_subgraphs or all(len(set(v)) != 1 for v in rdeps.values())):
# Quick return if there's nothing to do. Only progress if there's tasks
# fusible by the main `fuse`, or by `fuse_subgraphs` if enabled.
return dsk, deps
rv = dsk.copy()
fused_trees = {}
# These are the stacks we use to store data as we traverse the graph
info_stack = []
children_stack = []
# For speed
deps_pop = deps.pop
reducible_add = reducible.add
reducible_pop = reducible.pop
reducible_remove = reducible.remove
fused_trees_pop = fused_trees.pop
info_stack_append = info_stack.append
info_stack_pop = info_stack.pop
children_stack_append = children_stack.append
children_stack_extend = children_stack.extend
children_stack_pop = children_stack.pop
while reducible:
parent = reducible_pop()
reducible_add(parent)
while parent in reducible:
# Go to the top
parent = rdeps[parent][0]
children_stack_append(parent)
children_stack_extend(reducible & deps[parent])
while True:
child = children_stack[-1]
if child != parent:
children = reducible & deps[child]
while children:
# Depth-first search
children_stack_extend(children)
parent = child
child = children_stack[-1]
children = reducible & deps[child]
children_stack_pop()
# This is a leaf node in the reduction region
# key, task, fused_keys, height, width, number of nodes, fudge, set of edges
info_stack_append((
child,
rv[child],
[child] if rename_keys else None,
1,
1,
1,
0,
deps[child] - reducible,
))
else:
children_stack_pop()
# Calculate metrics and fuse as appropriate
deps_parent = deps[parent]
edges = deps_parent - reducible
children = deps_parent - edges
num_children = len(children)
if num_children == 1:
(
child_key,
child_task,
child_keys,
height,
width,
num_nodes,
fudge,
children_edges,
) = info_stack_pop()
num_children_edges = len(children_edges)
if fudge > num_children_edges - 1 >= 0:
fudge = num_children_edges - 1
edges |= children_edges
no_new_edges = len(edges) == num_children_edges
if not no_new_edges:
fudge += 1
# Sanity check; don't go too deep if new levels introduce new edge dependencies
if ((num_nodes + fudge) / height <= ave_width and (no_new_edges or height < max_depth_new_edges)):
# Perform substitutions as we go
val = subs(dsk[parent], child_key, child_task)
deps_parent.remove(child_key)
deps_parent |= deps_pop(child_key)
del rv[child_key]
reducible_remove(child_key)
if rename_keys:
child_keys.append(parent)
fused_trees[parent] = child_keys
fused_trees_pop(child_key, None)
if children_stack:
if no_new_edges:
# Linear fuse
info_stack_append((
parent,
val,
child_keys,
height,
width,
num_nodes,
fudge,
edges,
))
else:
info_stack_append((
parent,
val,
child_keys,
height + 1,
width,
num_nodes + 1,
fudge,
edges,
))
else:
rv[parent] = val
break
else:
rv[child_key] = child_task
reducible_remove(child_key)
if children_stack:
# Allow the parent to be fused, but only under strict circumstances.
# Ensure that linear chains may still be fused.
if fudge > int(ave_width - 1):
fudge = int(ave_width - 1)
# This task *implicitly* depends on `edges`
info_stack_append((
parent,
rv[parent],
[parent] if rename_keys else None,
1,
width,
1,
fudge,
edges,
))
else:
break
else:
child_keys = []
height = 1
width = 0
num_single_nodes = 0
num_nodes = 0
fudge = 0
children_edges = set()
max_num_edges = 0
children_info = info_stack[-num_children:]
del info_stack[-num_children:]
for (
cur_key,
cur_task,
cur_keys,
cur_height,
cur_width,
cur_num_nodes,
cur_fudge,
cur_edges,
) in children_info:
if cur_height == 1:
num_single_nodes += 1
elif cur_height > height:
height = cur_height
width += cur_width
num_nodes += cur_num_nodes
fudge += cur_fudge
if len(cur_edges) > max_num_edges:
max_num_edges = len(cur_edges)
children_edges |= cur_edges
# Fudge factor to account for possible parallelism with the boundaries
num_children_edges = len(children_edges)
fudge += min(num_children - 1, max(0, num_children_edges - max_num_edges))
if fudge > num_children_edges - 1 >= 0:
fudge = num_children_edges - 1
edges |= children_edges
no_new_edges = len(edges) == num_children_edges
if not no_new_edges:
fudge += 1
# Sanity check; don't go too deep if new levels introduce new edge dependencies
if ((num_nodes + fudge) / height <= ave_width and num_single_nodes <= ave_width
and width <= max_width and height <= max_height # noqa E129
and (no_new_edges or height < max_depth_new_edges)): # noqa E129
# Perform substitutions as we go
val = dsk[parent]
children_deps = set()
for child_info in children_info:
cur_child = child_info[0]
val = subs(val, cur_child, child_info[1])
del rv[cur_child]
children_deps |= deps_pop(cur_child)
reducible_remove(cur_child)
if rename_keys:
fused_trees_pop(cur_child, None)
child_keys.extend(child_info[2])
deps_parent -= children
deps_parent |= children_deps
if rename_keys:
child_keys.append(parent)
fused_trees[parent] = child_keys
if children_stack:
info_stack_append((
parent,
val,
child_keys,
height + 1,
width,
num_nodes + 1,
fudge,
edges,
))
else:
rv[parent] = val
break
else:
for child_info in children_info:
rv[child_info[0]] = child_info[1]
reducible_remove(child_info[0])
if children_stack:
# Allow the parent to be fused, but only under strict circumstances.
# Ensure that linear chains may still be fused.
if width > max_width:
width = max_width
if fudge > int(ave_width - 1):
fudge = int(ave_width - 1)
# key, task, height, width, number of nodes, fudge, set of edges
# This task *implicitly* depends on `edges`
info_stack_append((
parent,
rv[parent],
[parent] if rename_keys else None,
1,
width,
1,
fudge,
edges,
))
else:
break
# Traverse upwards
parent = rdeps[parent][0]
if fuse_subgraphs:
_inplace_fuse_subgraphs(rv, keys, deps, fused_trees, rename_keys)
if key_renamer:
for root_key, fused_keys in fused_trees.items():
alias = key_renamer(fused_keys)
if alias is not None and alias not in rv:
rv[alias] = rv[root_key]
rv[root_key] = alias
deps[alias] = deps[root_key]
deps[root_key] = {alias}
return rv, deps
def _inplace_fuse_subgraphs(dsk, keys, dependencies, fused_trees, rename_keys):
"""Subroutine of fuse.Mutates dsk, depenencies, and fused_trees inplace"""
# locate all members of linear chains
child2parent = {}
unfusible = set()
for parent in dsk:
deps = dependencies[parent]
has_many_children = len(deps) > 1
for child in deps:
if keys is not None and child in keys:
unfusible.add(child)
elif child in child2parent:
del child2parent[child]
unfusible.add(child)
elif has_many_children:
unfusible.add(child)
elif child not in unfusible:
child2parent[child] = parent
# construct the chains from ancestor to descendant
chains = []
parent2child = {v: k for k, v in child2parent.items()}
while child2parent:
child, parent = child2parent.popitem()
chain = [child, parent]
while parent in child2parent:
parent = child2parent.pop(parent)
del parent2child[parent]
chain.append(parent)
chain.reverse()
while child in parent2child:
child = parent2child.pop(child)
del child2parent[child]
chain.append(child)
# Skip chains with < 2 executable tasks
ntasks = 0
for key in chain:
ntasks += istask(dsk[key])
if ntasks > 1:
chains.append(chain)
break
# Mutate dsk fusing chains into subgraphs
for chain in chains:
subgraph = {k: dsk[k] for k in chain}
outkey = chain[0]
# Update dependencies and graph
inkeys_set = dependencies[outkey] = dependencies[chain[-1]]
for k in chain[1:]:
del dependencies[k]
del dsk[k]
# Create new task
inkeys = tuple(inkeys_set)
dsk[outkey] = (SubgraphCallable(subgraph, outkey, inkeys), ) + inkeys
# Mutate `fused_trees` if key renaming is needed (renaming done in fuse)
if rename_keys:
chain2 = []
for k in chain:
subchain = fused_trees.pop(k, False)
if subchain:
chain2.extend(subchain)
else:
chain2.append(k)
fused_trees[outkey] = chain2
class SubgraphCallable:
"""Create a callable object from a dask graph.
Parameters
----------
dsk : dict
A dask graph
outkey : hashable
The output key from the graph
inkeys : list
A list of keys to be used as arguments to the callable.
name : str, optional
The name to use for the function.
"""
__slots__ = ("dsk", "outkey", "inkeys", "name")
def __init__(self, dsk, outkey, inkeys, name="subgraph_callable"):
self.dsk = dsk
self.outkey = outkey
self.inkeys = inkeys
self.name = name
def __repr__(self):
return self.name
def __eq__(self, other):
return (
type(self) is type(other) and self.name == other.name and self.outkey == other.outkey
and set(self.inkeys) == set(other.inkeys)
)
def __ne__(self, other):
return not (self == other)
def __call__(self, *args):
if not len(args) == len(self.inkeys):
raise ValueError("Expected %d args, got %d" % (len(self.inkeys), len(args)))
return get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
def __reduce__(self):
return (SubgraphCallable, (self.dsk, self.outkey, self.inkeys, self.name))
def __hash__(self):
return hash(tuple((self.outkey, tuple(self.inkeys), self.name)))