-
Notifications
You must be signed in to change notification settings - Fork 139
/
multi_class_custom_feval.py
134 lines (111 loc) · 4.27 KB
/
multi_class_custom_feval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!usr/bin/env python
#-*- coding:utf-8 _*-
"""
@version: python3.6
@author: QLMX
@contact: wenruichn@gmail.com
@time: 2019-07-31 22:00
公众号:AI成长社
知乎:https://www.zhihu.com/people/qlmx-61/columns
"""
import pandas as pd
import numpy as np
import lightgbm as lgb
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import KFold
import matplotlib.pyplot as plt
import seaborn as sns
import gc
## load data
train_data = pd.read_csv('../../data/train.csv')
test_data = pd.read_csv('../../data/test.csv')
num_round = 1000
## category feature one_hot
test_data['label'] = -1
data = pd.concat([train_data, test_data])
cate_feature = ['gender', 'cell_province', 'id_province', 'id_city', 'rate', 'term']
for item in cate_feature:
data[item] = LabelEncoder().fit_transform(data[item])
train = data[data['label'] != -1]
test = data[data['label'] == -1]
#Clean up the memory
del data, train_data, test_data
gc.collect()
## get train feature
del_feature = ['auditing_date', 'due_date', 'label']
features = [i for i in train.columns if i not in del_feature]
train_x = train[features]
train_y = train['label'].astype(int).values
test = test[features]
params = {'num_leaves': 60,
'min_data_in_leaf': 30,
'objective': 'multiclass',
'num_class': 33,
'max_depth': -1,
'learning_rate': 0.03,
"min_sum_hessian_in_leaf": 6,
"boosting": "gbdt",
"feature_fraction": 0.9,
"bagging_freq": 1,
"bagging_fraction": 0.8,
"bagging_seed": 11,