-
Notifications
You must be signed in to change notification settings - Fork 0
/
cuda_test.go
55 lines (51 loc) · 1.3 KB
/
cuda_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package gotorch_test
import (
"testing"
"github.com/stretchr/testify/assert"
torch "github.com/wangkuiyi/gotorch"
)
func getDefaultDevice() torch.Device {
var device torch.Device
if torch.IsCUDAAvailable() {
device = torch.NewDevice("cuda")
} else {
device = torch.NewDevice("cpu")
}
return device
}
func TestCUDAStreamPanics(t *testing.T) {
a := assert.New(t)
device := getDefaultDevice()
if torch.IsCUDAAvailable() {
a.NotPanics(func() {
torch.GetCurrentCUDAStream(device)
})
} else {
a.Panics(func() {
torch.GetCurrentCUDAStream(device)
})
a.Panics(func() {
torch.NewCUDAStream(device)
})
}
}
func TestMultiCUDAStream(t *testing.T) {
if !torch.IsCUDAAvailable() {
t.Skip("skip TestMultiCUDAStream which only run on CUDA device")
}
a := assert.New(t)
device := getDefaultDevice()
currStream := torch.GetCurrentCUDAStream(device)
defer torch.SetCurrentCUDAStream(currStream)
// create a new CUDA stream
stream := torch.NewCUDAStream(device)
// switch to the new CUDA stream
torch.SetCurrentCUDAStream(stream)
// copy Tensor from host to device async
input := torch.RandN([]int64{100, 200}, true).PinMemory()
input.CUDA(device, true /**nonBlocking=true**/)
// wait until all tasks completed
stream.Synchronize()
// make sure all tasks completed
a.True(stream.Query())
}