diff --git a/README.md b/README.md index 591a56f17b..001aa87fdd 100755 --- a/README.md +++ b/README.md @@ -46,45 +46,85 @@ the [contributing guide](CONTRIBUTING.md#building-with-gpu-support) for instructions on doing this. ## Simulating your first Qiskit circuit with Aer -Now that you have Aer installed, you can start simulating quantum circuits with noise. Here is a basic example: +Now that you have Aer installed, you can start simulating quantum circuits using primitives. Here is a basic example: ``` $ python ``` ```python -import qiskit +from qiskit import transpile +from qiskit.circuit.library import RealAmplitudes +from qiskit.quantum_info import SparsePauliOp from qiskit_aer import AerSimulator -from qiskit_ibm_runtime import QiskitRuntimeService - -# Generate 3-qubit GHZ state -circ = qiskit.QuantumCircuit(3) -circ.h(0) -circ.cx(0, 1) -circ.cx(1, 2) -circ.measure_all() - -# Construct an ideal simulator -aersim = AerSimulator() - -# Perform an ideal simulation -result_ideal = aersim.run(circ).result() -counts_ideal = result_ideal.get_counts(0) -print('Counts(ideal):', counts_ideal) -# Counts(ideal): {'000': 493, '111': 531} - -# Construct a simulator using a noise model -# from a real backend. -provider = QiskitRuntimeService() -backend = provider.get_backend("ibm_kyoto") -aersim_backend = AerSimulator.from_backend(backend) - -# Perform noisy simulation -result_noise = aersim_backend.run(circ).result() -counts_noise = result_noise.get_counts(0) - -print('Counts(noise):', counts_noise) -# Counts(noise): {'101': 16, '110': 48, '100': 7, '001': 31, '010': 7, '000': 464, '011': 15, '111': 436} + +sim = AerSimulator() +# -------------------------- +# Simulating using estimator +#--------------------------- +from qiskit_aer.primitives import EstimatorV2 + +psi1 = transpile(RealAmplitudes(num_qubits=2, reps=2), sim, optimization_level=0) +psi2 = transpile(RealAmplitudes(num_qubits=2, reps=3), sim, optimization_level=0) + +H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)]) +H2 = SparsePauliOp.from_list([("IZ", 1)]) +H3 = SparsePauliOp.from_list([("ZI", 1), ("ZZ", 1)]) + +theta1 = [0, 1, 1, 2, 3, 5] +theta2 = [0, 1, 1, 2, 3, 5, 8, 13] +theta3 = [1, 2, 3, 4, 5, 6] + +estimator = EstimatorV2() + +# calculate [ [, +# ], +# [] ] +job = estimator.run( + [ + (psi1, [H1, H3], [theta1, theta3]), + (psi2, H2, theta2) + ], + precision=0.01 +) +result = job.result() +print(f"expectation values : psi1 = {result[0].data.evs}, psi2 = {result[1].data.evs}") + +# -------------------------- +# Simulating using sampler +# -------------------------- +from qiskit_aer.primitives import SamplerV2 +from qiskit import QuantumCircuit + +# create a Bell circuit +bell = QuantumCircuit(2) +bell.h(0) +bell.cx(0, 1) +bell.measure_all() + +# create two parameterized circuits +pqc = RealAmplitudes(num_qubits=2, reps=2) +pqc.measure_all() +pqc = transpile(pqc, sim, optimization_level=0) +pqc2 = RealAmplitudes(num_qubits=2, reps=3) +pqc2.measure_all() +pqc2 = transpile(pqc2, sim, optimization_level=0) + +theta1 = [0, 1, 1, 2, 3, 5] +theta2 = [0, 1, 2, 3, 4, 5, 6, 7] + +# initialization of the sampler +sampler = SamplerV2() + +# collect 128 shots from the Bell circuit +job = sampler.run([bell], shots=128) +job_result = job.result() +print(f"counts for Bell circuit : {job_result[0].data.meas.get_counts()}") + +# run a sampler job on the parameterized circuits +job2 = sampler.run([(pqc, theta1), (pqc2, theta2)]) +job_result = job2.result() +print(f"counts for parameterized circuit : {job_result[0].data.meas.get_counts()}") ``` ## Contribution Guidelines