forked from IPL-UV/kNDVI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkndvi.js
31 lines (28 loc) · 1.31 KB
/
kndvi.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// Javacript for GEE
// kNDVI using the RBF kernel.
// nir and red are near-infrared and red bands, respectively.
// The example here assumes the values of these bands are *reflectances*.
// For instace, for MODIS you must divide the raw values by 10000.
// See the image collection documentation for specific instructions.
// We present two implementations which are equivalent:
// 1. Using the definition of the RBF kernel k(nir,red)=exp(-(nir-red)^2/(2*sigma^2)) in the kNDVI=(1-k(nir,red))/(1+k(nir,red))
// 2. which is equivalent to kNDVI = tanh((nir-red)^2/(2*sigma)^2)
// Both obtain the same result, use the one you prefer!
var addKNDVI_RBF = function(image) {
// Compute (nir-red)^2
var D2 = nir.subtract(red).pow(2);
// Fix or estimate a reasonable sigma value, e.g. sigma = 0.15
var sigma = ee.Number(0.15);
// Compute kernel (k) and kNDVI
var k = D2.divide(sigma.pow(2).multiply(2)).multiply(-1).exp();
var kndvi = ee.Image.constant(1).subtract(k)
.divide(ee.Image.constant(1).add(k));
return image.addBands(kndvi.select([0], ['kndvi']));
}
var addKNDVI_tanh = function(image) {
// Compute (nir-red)^2
var D2 = nir.subtract(red).pow(2);
var sigma = ee.Number(0.15);
var kndvi = D2.divide(sigma.multiply(2.0).pow(2)).tanh();
return image.addBands(kndvi.select([0], ['kndvi']));
}