-
Notifications
You must be signed in to change notification settings - Fork 0
/
camera.js
320 lines (270 loc) · 10 KB
/
camera.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
Google LLC. initially published the source code
in two Github repositories
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-examples/tree/master/webcam-transfer-learning
and licensed the code under the Apache License, Version 2.0.
MONTREAL.AI modified the code to make it suitable for a new use.
The modifications to the code are the differences between
the original code above-referenced and the code herein.
Thank You to the TensorFlow.js team and contributors.
*/
/**
* @license
* Copyright 2018 MONTREAL.AI. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licnses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
// import dat from 'dat.gui';
// import Stats from 'stats.js';
// import * as posenet from '@tensorflow-models/posenet';
// import { drawKeypoints, drawSkeleton } from './demo_util';
const videoWidth = 335;
const videoHeight = 280;
const stats = new Stats();
function isAndroid() {
return /Android/i.test(navigator.userAgent);
}
function isiOS() {
return /iPhone|iPad|iPod/i.test(navigator.userAgent);
}
function isMobile() {
return isAndroid() || isiOS();
}
/**
* Loads a the camera to be used in the demo
*
*/
async function setupCamera() {
if (!navigator.mediaDevices || !navigator.mediaDevices.getUserMedia) {
throw 'Browser API navigator.mediaDevices.getUserMedia not available';
}
const video = document.getElementById('video');
video.width = videoWidth;
video.height = videoHeight;
const mobile = isMobile();
const stream = await navigator.mediaDevices.getUserMedia({
'audio': false,
'video': {
facingMode: 'user',
width: mobile ? undefined : videoWidth,
height: mobile ? undefined: videoHeight}
});
video.srcObject = stream;
return new Promise(resolve => {
video.onloadedmetadata = () => {
resolve(video);
};
});
}
async function loadVideo() {
const video = await setupCamera();
video.play();
return video;
}
const guiState = {
algorithm: 'single-pose',
input: {
mobileNetArchitecture: isMobile() ? '0.50' : '1.01',
outputStride: 16,
imageScaleFactor: 0.5,
},
singlePoseDetection: {
minPoseConfidence: 0.1,
minPartConfidence: 0.5,
},
multiPoseDetection: {
maxPoseDetections: 2,
minPoseConfidence: 0.1,
minPartConfidence: 0.3,
nmsRadius: 20.0,
},
output: {
showVideo: true,
showSkeleton: true,
showPoints: true,
},
net: null,
};
/**
* Sets up dat.gui controller on the top-right of the window
*/
function setupGui(cameras, net) {
guiState.net = net;
if (cameras.length > 0) {
guiState.camera = cameras[0].deviceId;
}
const cameraOptions = cameras.reduce((result, { label, deviceId }) => {
result[label] = deviceId;
return result;
}, {});
const gui = new dat.GUI({ width: 300 });
// The single-pose algorithm is faster and simpler but requires only one person to be
// in the frame or results will be innaccurate. Multi-pose works for more than 1 person
const algorithmController = gui.add(
guiState, 'algorithm', ['single-pose', 'multi-pose']);
// The input parameters have the most effect on accuracy and speed of the network
let input = gui.addFolder('Input');
// Architecture: there are a few PoseNet models varying in size and accuracy. 1.01
// is the largest, but will be the slowest. 0.50 is the fastest, but least accurate.
const architectureController =
input.add(guiState.input, 'mobileNetArchitecture', ['1.01', '1.00', '0.75', '0.50']);
// Output stride: Internally, this parameter affects the height and width of the layers
// in the neural network. The lower the value of the output stride the higher the accuracy
// but slower the speed, the higher the value the faster the speed but lower the accuracy.
input.add(guiState.input, 'outputStride', [8, 16, 32]);
// Image scale factor: What to scale the image by before feeding it through the network.
input.add(guiState.input, 'imageScaleFactor').min(0.2).max(1.0);
input.open();
// Pose confidence: the overall confidence in the estimation of a person's
// pose (i.e. a person detected in a frame)
// Min part confidence: the confidence that a particular estimated keypoint
// position is accurate (i.e. the elbow's position)
let single = gui.addFolder('Single Pose Detection');
single.add(guiState.singlePoseDetection, 'minPoseConfidence', 0.0, 1.0);
single.add(guiState.singlePoseDetection, 'minPartConfidence', 0.0, 1.0);
single.open();
let multi = gui.addFolder('Multi Pose Detection');
multi.add(
guiState.multiPoseDetection, 'maxPoseDetections').min(1).max(20).step(1);
multi.add(guiState.multiPoseDetection, 'minPoseConfidence', 0.0, 1.0);
multi.add(guiState.multiPoseDetection, 'minPartConfidence', 0.0, 1.0);
// nms Radius: controls the minimum distance between poses that are returned
// defaults to 20, which is probably fine for most use cases
multi.add(guiState.multiPoseDetection, 'nmsRadius').min(0.0).max(40.0);
let output = gui.addFolder('Output');
output.add(guiState.output, 'showVideo');
output.add(guiState.output, 'showSkeleton');
output.add(guiState.output, 'showPoints');
output.open();
architectureController.onChange(function (architecture) {
guiState.changeToArchitecture = architecture;
});
algorithmController.onChange(function (value) {
switch (guiState.algorithm) {
case 'single-pose':
multi.close();
single.open();
break;
case 'multi-pose':
single.close();
multi.open();
break;
}
});
}
/**
* Sets up a frames per second panel on the top-left of the window
*/
function setupFPS() {
stats.showPanel(0); // 0: fps, 1: ms, 2: mb, 3+: custom
document.body.appendChild(stats.dom);
}
/**
* Feeds an image to posenet to estimate poses - this is where the magic happens.
* This function loops with a requestAnimationFrame method.
*/
function detectPoseInRealTime(video, net) {
const canvas = document.getElementById('output');
const ctx = canvas.getContext('2d');
const flipHorizontal = true; // since images are being fed from a webcam
canvas.width = videoWidth;
canvas.height = videoHeight;
async function poseDetectionFrame() {
if (guiState.changeToArchitecture) {
// Important to purge variables and free up GPU memory
guiState.net.dispose();
// Load the PoseNet model weights for either the 0.50, 0.75, 1.00, or 1.01 version
guiState.net = await posenet.load(Number(guiState.changeToArchitecture));
guiState.changeToArchitecture = null;
}
// Begin monitoring code for frames per second
stats.begin();
// Scale an image down to a certain factor. Too large of an image will slow down
// the GPU
const imageScaleFactor = guiState.input.imageScaleFactor;
const outputStride = Number(guiState.input.outputStride);
let poses = [];
let minPoseConfidence;
let minPartConfidence;
switch (guiState.algorithm) {
case 'single-pose':
const pose = await guiState.net.estimateSinglePose(video, imageScaleFactor, flipHorizontal, outputStride);
poses.push(pose);
minPoseConfidence = Number(
guiState.singlePoseDetection.minPoseConfidence);
minPartConfidence = Number(
guiState.singlePoseDetection.minPartConfidence);
break;
case 'multi-pose':
poses = await guiState.net.estimateMultiplePoses(video, imageScaleFactor, flipHorizontal, outputStride,
guiState.multiPoseDetection.maxPoseDetections,
guiState.multiPoseDetection.minPartConfidence,
guiState.multiPoseDetection.nmsRadius);
minPoseConfidence = Number(guiState.multiPoseDetection.minPoseConfidence);
minPartConfidence = Number(guiState.multiPoseDetection.minPartConfidence);
break;
}
ctx.clearRect(0, 0, videoWidth, videoHeight);
if (guiState.output.showVideo) {
ctx.save();
ctx.scale(-1, 1);
ctx.translate(-videoWidth, 0);
ctx.drawImage(video, 0, 0, videoWidth, videoHeight);
ctx.restore();
}
// For each pose (i.e. person) detected in an image, loop through the poses
// and draw the resulting skeleton and keypoints if over certain confidence
// scores
poses.forEach(({ score, keypoints }) => {
if (score >= minPoseConfidence) {
if (guiState.output.showPoints) {
drawKeypoints(keypoints, minPartConfidence, ctx);
}
if (guiState.output.showSkeleton) {
drawSkeleton(keypoints, minPartConfidence, ctx);
}
}
});
// End monitoring code for frames per second
stats.end();
requestAnimationFrame(poseDetectionFrame);
}
poseDetectionFrame();
}
/**
* Kicks off the demo by loading the posenet model, finding and loading available
* camera devices, and setting off the detectPoseInRealTime function.
*/
async function bindPage() {
// Load the PoseNet model weights for version 0.50
const net = await posenet.load(0.50);
document.getElementById('loading').style.display = 'none';
document.getElementById('main').style.display = 'block';
let video;
try {
video = await loadVideo();
} catch(e) {
let info = document.getElementById('info');
info.textContent = "this browser does not support video capture, or this device does not have a camera";
info.style.display = 'block';
throw e;
}
setupGui([], net);
setupFPS();
detectPoseInRealTime(video, net);
}
navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia;
bindPage(); // kick off the demo