-
Notifications
You must be signed in to change notification settings - Fork 0
/
publications.html
228 lines (201 loc) · 11 KB
/
publications.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
<meta name="author" content="wrathematics" />
<meta name="robots" content="all" />
<meta name="MSSmartTagsPreventParsing" content="true" />
<meta name="description" content="pbdR - Programming with Big Data in R" />
<meta name="keywords" content="pbdR,R,Big Data,pbdMPI,pbdSLAP,pbdBASE,pbdDMAT,pbdDEMO,pbdNCDF4,pbdPROF,Statistical Computing,Parallel Computing" />
<meta charset='utf-8' />
<meta http-equiv="X-UA-Compatible" content="chrome=1" />
<meta name="description" content="Rbigdata.github.io : " />
<title>pbdR - Programming with Big Data in R</title>
<!-- google botnet -->
<script src="ui/js/botnet.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="ui/css/bootstrap.min.css" media="screen">
<link rel="stylesheet" href="ui/css/custom.css" media="screen">
</head>
<body>
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a href="index.html" class="navbar-brand">
<font color="#38761D">p</font><font color="#990000">b</font><font color="#BF9000">d</font><font color="#8698C0">R</font>
</a>
</div>
<div id="navbar" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li><a href="index.html">About</a></li>
<li><a href="packages.html">Packages</a></li>
<li class="active"><a href="publications.html">Publications</a></li>
</ul>
</div><!--/.nav-collapse -->
</div>
</nav>
<xmp theme="" style="display:none;">
## Talks
#### Invited
1. [High Performance Statistical Computing with R](https://www.czso.cz/documents/10180/167607761/32019722q4_471-472_vozar_information.pdf),
ROBUST 2022 International Statistical Conference, June 12, 2022, Volyne, Czechia.
1. Harnessing the Power of Supercomputers for R Workflows,
[SIAM Conference on Computational Science and
Engineering](https://www.siam.org/conferences/cm/conference/cse21),
March 1-5, 2021, Virtual
[pdfbutton](https://cemse.kaust.edu.sa/sites/default/files/2021-03/SIAM_CSE_pbdR.pdf)
1. [Advanced Statistics Meets Machine Learning III
Workshop](https://indico.fnal.gov/event/22030/overview), Argonne
National Laboratory, November 13-15, 2019, Chicago, IL
[pdfbutton](tutorials/SML-Cosmo2019/SML-Cosmo-III_Final.pdf)
1. [ISI2019 62nd World Statistics Congress](http://www.isi2019.org/),
August 18-23, 2019, Kuala Lumpur, Malaysia
[pdfbutton](tutorials/wsc2019/Ostrouchov_62WSC2019.pdf)
1. [Joint Statistical Meetings](http://ww2.amstat.org/meetings/jsm/2018/),
July 28 - August 2, 2018, Vancouver, British Columbia, Canada
[pdfbutton](https://github.com/RBigData/R_JSM2018/blob/master/presentation/main.pdf)
1. [Intel HPC Developer Conference](https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html),
November 11-12, 2017, Denver, Colorado, USA
[pdfbutton](tutorials/IntelDevCon/IDevCon_pbdR_2017.pdf)
[<font color="#8698C0">*People's Choice Award in High Productivity Languages Track*</font>](https://www.intel.com/content/www/us/en/events/hpcdevcon/awards.html)
1. [Intel HPC Developer Conference](http://www.intel.com/content/www/us/en/events/hpcdevcon/technical-sessions.html),
November 12-13, 2016, Salt Lake City, Utah, USA
1. University of Waterloo, Department of Statistics and Actuarial
Science Seminar, June 2, 2016, Waterloo, Ontario, Canada
1. [44th Annual Meeting of the Statistical Society of
Canada](http://ssc.ca/en/meetings/2016-annual-meeting), May 29 - June
1, 2016, St. Catharines, Ontario, Canada
1. University of Memphis, Department of Mathematical Sciences
Colloquium, December 4, 2016, Memphis, Tennessee, USA
1. [ISM HPCCON 2015 / ISM HPC on R
Workshop](http://ura3.c.ism.ac.jp/hpccon/), Oct. 9-12, 2015, Tokyo,
Japan [pdfbutton](tutorials/ism2015/pbdr_ISM_HPCCON.pdf)
1. [Spring Research
Conference](http://www.cvent.com/events/2015-spring-research-conference/agenda-b7b5867fe2f6400bba4542da092df210.aspx),
May 20-22, 2015, Cincinnati, Ohio, USA
1. [Workshop on Distributed Computing in
R](http://www.hpl.hp.com/research/systems-research/R-workshop),
January 26-27, 2015, Palo Alto, California, USA
1. Faculty of Mathematics and Physics, Charles University, January 16,
2015, Praha, Czechia
1. [HPTCDL - First Workshop for High Performance Technical Computing in
Dynamic Languages](http://hptcdl.github.io/2014.html), Keynote, Nov.
17, 2014, New Orleans, Louisiana, USA
1. [BioC 2014](http://www.bioconductor.org/help/course-materials/2014/BioC2014/developer-day/), Developer
Day Keynote, Jul. 30, 2014, Boston, Massachusetts, USA
1. Institute of Statistical Mathematics, Feb. 17, 2014, Tokyo, Japan
1. University of Tennessee booth at SC13, Nov. 19 2013, Denver,
Colorado, USA
1. 59th World Statistics Congress, Aug. 25-30 2013, Hong Kong, China
1. WSC Satellite meeting of the IASC, Aug. 22-23 2013, Seoul, Korea
1. Joint Statistical Meetings 2013, Aug. 3-8 2013, Montreal, Quebec,
Canada
1. SIAM Conference on Computational Science and Engineering, Feb.
25-Mar. 1, 2013, Boston, Massachusetts, USA
#### Contributed
1. "Parallel Statistical Computing with R: An Illustration on Two
Architectures", [ISI2017 61st World Statistics
Congress](http://www.isi2017.org/), July 16-21, 2017, Marrakech,
Morocco [pdfbutton](https://arxiv.org/abs/1709.01195)
1. "Introducing a New Client/Server Framework for Big Data Analytics with
the R Language", *XSEDE16*, July 17-21 2016,
Miami, Florida, USA
1. "Interactive Terabytes with pbdR", *R User Conference*, June 27-30 2016,
Stanford University, Stanford, California, USA
[ghbutton](https://github.com/snoweye/user2016.demo)
1. "Elevating R to Supercomputers", *Knoxville R Users Group*, November 1
2013, Knoxville, Tennessee, USA
1. "Elevating R to Supercomputers", *R User Conference*, July 10-12 2013,
Albacete, Spain
1. "Tight Coupling of R and Distributed Linear Algebra for High-Level
Programming with Big Data", *Petascale Data Analytics: Challenges and
Opportunities Workshop*, *SC12*, November 12 2012, Salt Lake City,
Utah, USA
## Tutorials
1. [OLCF/CADES/ALCF/NERSC Workshop](https://github.com/RBigData/R4HPC),
August 17 & 19, 2022, Oak Ridge National Lab, USA
1. [Joint Statistical
Meetings](http://ww2.amstat.org/meetings/jsm/2017), August
1, 2017, Baltimore, MD, USA [htmlbutton](tutorials/jsm2017)
1. [Intel HPC Developer
Conference](http://www.intel.com/content/www/us/en/events/hpcdevcon/technical-sessions.html),
November 12-13, 2016, Salt Lake City, Utah, USA
1. [IT4Innovations National Supercomputing
Center](http://prace.it4i.cz/en/RforHPC-10-2016), October 6-7,
2016, Technical University Ostrava, Czechia
1. King Mongkut's University of Technology Thonburi (KMUTT), August
8-11, 2016, Bangkok, Thailand
1. [ISI2015 60th World Statistics Congress](http://www.isi2015.org/),
July 26-31 (Short Courses July 23-25), 2015, Rio de Janeiro,
Brazil
1. [XSEDE @ Vanderbilt
University](https://www.xsede.org/web/xup/course-calendar/-/training-user/class/423/session/746),
June 11, 2015, Nashville, Tennessee, USA
1. [NIMBioS/NICS/XSEDE](http://www.nimbios.org/tutorials/TT_RforHPC),
February 27, 2015, Knoxville, Tennessee, USA
1. [PRACE Winter School
2015](https://events.prace-ri.eu/event/330/session/5/), January
12-15, Technical University Ostrava, Czechia
1. SC14, November 17, 2014, New Orleans, Louisiana, USA
1. UseR! 2014, June 30, 2014, Los Angeles, California, USA
1. National Institute for Mathematical and Biological Synthesis, April
6-8 2014, Knoxville, Tennessee, USA
1. Institute of Statistical Mathematics, Feb. 17-18, 2014, Tokyo, Japan
1. SC13, November 18, 2013, Denver, Colorado, USA
1. XSEDE13, Jul. 22, 2013, San Diego, California, USA
1. UseR! 2013, Jul. 9, 2013, Albacete, Spain
1. OLCF Workshop, June 17, 2013, Oak Ridge National Lab, USA
1. NICS Spring Training Tutorial, Mar. 26, 2013, University Tennessee,
Knoxville, USA
## Publications
1. D. Schmidt, W.-C. Chen, M. A. Matheson, and
G. Ostrouchov. Programming with BIG Data in R: Scaling Analytics from
One to Thousands of Nodes. *Big Data Research* 2016.
[doi: 2016.10.002](http://dx.doi.org/10.1016/j.bdr.2016.10.002).
1. D. Schmidt, W.-C. Chen, and G. Ostrouchov.
Introducing a New Client/Server Framework for Big Data Analytics
with the R Language.
*Proceedings of the XSEDE16 Conference on Diversity, Big Data,
and Science at Scale*, 2016, 38:1-38:9.
1. G. Ostrouchov, D. Schmidt, W.-C. Chen, and P. Patel. Combining R
with scalable libraries to get the best of both for big data.
*International Association for Statistical Computing Satellite
Conference for the 59th ISI World Statistics Congress*, August 2013.
1. D. Schmidt, G. Ostrouchov, W.-C. Chen, and P. Patel. Tight
Coupling of R and Distributed Linear Algebra for
High-Level Programming with Big Data, *High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:*,
811-815.
1. G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel.
Programming with Big Data in R. *6th Extremely Large
Databases Conference (XLDB)*, Stanford, CA, USA, September 2012.
<!-- links below are broken: -->
<!-- ## HPSC pbdR Tutorials -->
<!-- Our sister site, [High Performance Statistical Computing -->
<!-- (HPSC)](http://thirteen-01.stat.iastate.edu/snoweye/hpsc/), has some -->
<!-- excellent, real world tutorials using the well-known Iris data set. This -->
<!-- is a small data set, and is not meant to be a demonstration of pbdR's -->
<!-- scaling prowess. Instead, this is a way to see how you might take a -->
<!-- serial code and move it over to using our pbdR tools. -->
<!-- The current tutorials available are: -->
<!-- - [Clustering](http://thirteen-01.stat.iastate.edu/snoweye/pbdr/?item=tutorial) -->
<!-- - [Bootstrapping](http://thirteen-01.stat.iastate.edu/snoweye/pbdr/?item=tutorial2) -->
<!-- Currently the Iris tutorial above is used in the "Introducing R" -->
<!-- tutorial slides. -->
## Google Summer of Code Projects
* [2014 - Profiling Tools for Parallel Computing with
R](http://rwiki.sciviews.org/doku.php?id=developers:projects:gsoc2014:pbdprof)
* [2013 - Profiling Tools for Parallel Computing with
R](http://rwiki.sciviews.org/doku.php?id=developers:projects:gsoc2013:mpiprofiler)
</xmp>
<script src="ui/strapdown/strapdown.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
<script src="http://netdna.bootstrapcdn.com/bootstrap/3.1.1/js/bootstrap.min.js"></script>
<script src="./ui/js/buttons.js"></script>
</html>