-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathratel_optimizer.py
1181 lines (952 loc) · 54.1 KB
/
ratel_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
from typing import List
from torch.nn import Parameter
from torch import Tensor
from see_mem import see_memory_usage
from logger import logger
from nvtx import nvtx_wrap
from typing import Deque, Dict, Tuple
import itertools
from debug import debug_param2name_id_shape
from ratel_init import *
from math import sqrt
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
import torch.multiprocessing as mp
from nvme_ds.pipelined_optimizer_swapper import PipelinedOptimizerSwapper
from nvme_ds.partitioned_optimizer_swapper import PartitionedOptimizerSwapper
bef_event = torch.cuda.Event()
class SB_optimizer(object):
def __init__(self,
init_optimizer,
is_mp,
is_nvme,
is_grad_async,
is_nvme_async,
is_nvme_rearrange,
config,
mp_list = [],
sub_group_size=700000000,
release_grad_bucket_size=5000000,
contiguous_gradients=True):
def json_object_hook(d):
return namedtuple('X', d.keys())(*d.values())
with open(config) as f:
ds_config = json.load(f, object_hook=json_object_hook)
self.offload_optimizer_config = ds_config.zero_config.offload_optimizer
self.offload_param_config = ds_config.zero_config.offload_param
self.aio_config = ds_config.aio_config
self.optimizer = init_optimizer
self.release_grad_bucket_size = int(release_grad_bucket_size)
self.dtype = self.optimizer.param_groups[0]['params'][0].dtype
self.is_nvme_rearrange = is_nvme_rearrange
self.test_group = 0
# 返回的数据结构[{'params':[]}]
self.init_param_groups = self._get_parameter_groups()
# 0--False | 1--True
self.is_mp = is_mp
self.is_nvme = is_nvme
self.is_nvme_pipe = 1
self.swap_optimizer = self.is_nvme
self.is_nvme_async = is_nvme_async
self.offload_optimizer_fast_init = 1
self.mp_list = mp_list
if is_grad_async:
self.reduce_and_partition_stream = torch.cuda.Stream()
else:
self.reduce_and_partition_stream = torch.cuda.default_stream()
self.loss_scale = 4096
self.clip_grad = 0
self.device = 'cpu'
self.flatten = _flatten_dense_tensors
self.unflatten = _unflatten_dense_tensors
self.offload_optimizer = True
self.offload_optimizer_pin_memory = True
self.sub_group_size = sub_group_size
self.contiguous_gradients = contiguous_gradients
self.inf_or_nan_tracker: Tensor = torch.zeros(1,
dtype=torch.bool,
device='cuda:0',
requires_grad=False)
if self.offload_optimizer:
self.norm_for_param_grads = {}
self.local_overflow = False
self.fp16_origin_param_groups = []
self.fp16_manage_param_groups = []
self.sub_group_to_group_id = {}
# 参数按sub_group,对应于flat tensor的新的view
self.fp16_param_groups_flat = []
self.fp16_param_groups_flat_numel = []
self.fp32_param_groups_flat = []
#defragmented pinned memory
self.param_groups_fp16_flat_cpu_memory = []
self.params_in_ipg_bucket = []
self.next_swappable_fp32_partitioned_groups = []
# self.params_in_nvme_and_cpu = False
self.offload_param = True
self.nvme = False
# 给origin的fp16参数做一个list,管理的fp16实际参数数据做一个list
# 创建一个大的flat tenor管理数据, 组织到fp16_param_groups_flat
self._create_fp16_partitions_with_defragmentation(self.init_param_groups)
self.num_fp16_subgroups = len(self.fp16_param_groups_flat)
if self.is_nvme:
self._configure_tensor_swapping(self.offload_optimizer_config, self.aio_config)
# origin参数地址 -> origin参数ID
self.param_id = {}
# origin参数ID -> origin参数本身
self.param_dict = {}
count = 0
for i, params_group in enumerate(self.fp16_origin_param_groups):
for param in params_group:
unique_id = id(param)
self.param_id[unique_id] = count
self.param_dict[count] = param
count = count + 1
# 创建fp32的参数副本,从fp16_param_groups_flat扩展到fp32_param_groups_flat
# 初始化fp32_param_groups_flat的梯度,执行一次optimizer step,初始化优化器状态
# 初始化fp16的参数梯度,保存在__param_id_to_grad_partition,用参数id访问
self._setup_for_real_optimizer()
# origin参数id -> 梯度position [group_id, offset, numel]
self.grad_position = {}
# 组织grad的position
self.set_grad_positions()
# 获取完整参数,并在参数的grad_fn之后挂上hook,用于释放梯度
self.create_reduce_and_remove_grad_hooks()
self.bf_i = len(self.fp32_param_groups_flat) - 1
@nvtx_wrap
def zero_grad(self, set_to_none=False):
"""
Zero FP16 parameter grads.
"""
# FP32 grad should never exist.
# For speed, set model fp16 grad to None by default
for group in self.fp16_origin_param_groups:
for p in group:
if set_to_none:
p.grad = None
else:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
def set_grad_positions(self):
for i, group in enumerate(self.fp16_origin_param_groups):
current_offset = 0
for param in group:
param_id = self.get_param_id(param)
num_elements = param.manage.ds_numel
self.grad_position[param_id] = [int(i), int(current_offset), int(num_elements)]
#print(f"param id {param_id} i:{i}, manage {num_elements} numel {param.numel()}")
current_offset += num_elements
see_memory_usage(f"After Set Grad positions")
def _get_parameter_groups(self):
param_groups = []
for param_group in self.optimizer.param_groups:
params = {"params": [p for p in param_group["params"] if p.requires_grad]}
param_groups.append(params)
return param_groups
def _create_fp16_partitions_with_defragmentation(self, init_param_groups):
# 数据结构为([])
param_groups: List[List[Parameter]] = tuple(self._create_fp16_sub_groups(param_group["params"]) for param_group in init_param_groups)
# bookkeeping related to param groups
for param_group_idx, param_group in enumerate(param_groups):
for sub_group in param_group:
sub_group_idx = len(self.fp16_origin_param_groups)
# fp16的原始参数组,和manage后的参数组
self.fp16_origin_param_groups.append(sub_group)
self.fp16_manage_param_groups.append([param.manage for param in sub_group])
# 将每个sub_group对应到参数组ID,通常只有一个参数组(0)
self.sub_group_to_group_id[sub_group_idx] = param_group_idx
# 记录每个sub group中参数总数
self.fp16_param_groups_flat_numel.append(sum(param.manage.ds_numel for param in sub_group))
# 根据实际param的大小创建pin住的CPU memory,返回到param_groups_fp16_flat_cpu_memory
# 考虑nvme的场景,会根据max_in_cpu来控制cpu pin住的memory(max_in_cpu or all_param)
# 是一维的empty创建的flat tensor
self._create_param_groups_fp16_flat_cpu_memory()
for param_group_idx, param_group in enumerate(param_groups):
flat_offset = 0
for i, sub_group in enumerate(param_group):
total_elements = sum(p.manage.ds_numel for p in sub_group)
#Flat buffer may not be available for parameters that reside in NVME
#
# print(param_group_idx)
# print(flat_offset + total_elements, ' ', self.param_groups_fp16_flat_cpu_memory[param_group_idx].numel())
if not self.is_nvme or flat_offset + total_elements <= self.param_groups_fp16_flat_cpu_memory[param_group_idx].numel():
fp16_partitioned_group_flat = self.param_groups_fp16_flat_cpu_memory[param_group_idx].narrow(0, flat_offset, total_elements)
elif self.is_nvme:
fp16_partitioned_group_flat = None
else:
assert False, "Either params are in nvme, or they are in CPU memory. This code path should not be triggered. Please see you max_params_in_cpu and params_in_nvme configs"
self.fp16_param_groups_flat.append(fp16_partitioned_group_flat)
flat_offset += total_elements
# 给如果fp16_partitioned_group_flat不是none 对flat tensor进行初始化
self._move_to_flat_buffer(sub_group,
fp16_partitioned_group_flat,
avoid_copy=not self.offload_param)
# 如果max_in_cpu不够存所有参数
should_create_fp16_flat_reuse_buffer = any(flattened_partition_group is None
for flattened_partition_group in self.fp16_param_groups_flat)
if should_create_fp16_flat_reuse_buffer and self.is_nvme:
# print('has none')
max_partition_numel, largest_partition_numel = 0, None
for sub_group in self.fp16_origin_param_groups:
total_elements = sum(t.manage.ds_numel for t in sub_group)
if total_elements > max_partition_numel:
largest_partition_numel = [t.ds_numel for t in sub_group]
max_partition_numel = total_elements
assert len(largest_partition_numel) > 0, f'Unexpected that largest partition is empty'
self.fp16_origin_param_groups[0][0].nvme_swapper.reserve_partitioned_swap_space(largest_partition_numel)
def _create_fp16_sub_groups(self, params_group):
"""根据sub_group_size, 将参数分配到sub group中
Args:
params_group (list): 初始化参数数组
"""
all_params = sum([param.manage.ds_numel for param in params_group])
sub_group_size = self.sub_group_size
if sub_group_size is None or sub_group_size >= all_params:
return [params_group]
sub_groups = []
sub_group = []
local_sub_group_size = 0
for param in params_group:
sub_group.append(param)
local_sub_group_size += param.manage.ds_numel
# print(param.manage.ds_numel)
if local_sub_group_size >= sub_group_size or id(param) == id(params_group[-1]):
# print('---------------------', sub_group)
sub_groups.append(sub_group)
sub_group = []
local_sub_group_size = 0
return sub_groups
def _create_param_groups_fp16_flat_cpu_memory(self):
aggregate_params_count = 0
for j, param_group in enumerate(self.init_param_groups):
params_in_group = sum([p.manage.ds_numel for p in param_group['params']])
flat_buffer_size = params_in_group
if self.is_nvme and \
aggregate_params_count + params_in_group > self.offload_param_config.max_in_cpu:
flat_buffer_size = max(0, self.offload_param_config.max_in_cpu - aggregate_params_count)
aggregate_params_count += params_in_group
if flat_buffer_size > 0:
self.param_groups_fp16_flat_cpu_memory.append(torch.empty(int(flat_buffer_size), dtype=self.dtype).pin_memory())
else:
self.param_groups_fp16_flat_cpu_memory.append(torch.empty(1, dtype=self.dtype))
def _configure_tensor_swapping(self, offload_optimizer_config, aio_config):
nvme_swap_folder = os.path.join(offload_optimizer_config.nvme_path, 'zero_stage_3')
os.makedirs(nvme_swap_folder, exist_ok=True)
swapper_type = PipelinedOptimizerSwapper if self.is_nvme_pipe else PartitionedOptimizerSwapper
self.optimizer_swapper = swapper_type(swap_config=offload_optimizer_config,
aio_config=aio_config,
base_folder=nvme_swap_folder,
optimizer=self.optimizer,
largest_numel=max(self.fp16_param_groups_flat_numel),
device=self.device,
dtype=torch.float32,
timers=None)
def _move_to_flat_buffer(self, param_list, flat_buffer, avoid_copy=False):
if flat_buffer is None:
# this dst buffer is on NVMe, so skip this
return
start = 0
for param in param_list:
src = param.manage
dest = flat_buffer.narrow(0, start, src.ds_numel)
start = start + src.ds_numel
'''if the parameter was initialized in nvme then bring it to the destination buffer directly'''
if self.is_nvme:
if src.nvme_status == PartitionedParamStatus.NOT_AVAILABLE:
# print('swap_into_buffer')
param.nvme_swapper.swap_into_buffer(param, dest)
src.data = dest.data
else:
assert src.nvme_status == PartitionedParamStatus.AVAILABLE, "Partitioned Param must be available here"
if not avoid_copy:
dest.data.copy_(src.data)
src.data = dest.data
param.manage.final_location = 'not-nvme'
else:
if not avoid_copy:
dest.data.copy_(src.data)
src.data = dest.data
def create_reduce_and_remove_grad_hooks(self):
print(f'[Begin] Create gradient reduction hooks')
self.grad_accs = []
for i, param_group in enumerate(self.fp16_origin_param_groups):
for param in param_group:
if param.requires_grad:
# print(param)
# print(f"param grad fn {param.expand_as(param).grad_fn}")
# print(f'next_functions {param.expand_as(param).grad_fn.next_functions[0][0]}')
# param.all_gather()
handle = param.all_gather_coalesced([param])
handle.wait()
# print(param)
def wrapper(param, i):
param_tmp = param.expand_as(param)
grad_acc = param_tmp.grad_fn.next_functions[0][0]
def reduce_partition_and_remove_grads(*notneeded):
self.reduce_ready_partitions_and_remove_grads(param, i)
grad_acc.register_hook(reduce_partition_and_remove_grads)
self.grad_accs.append(grad_acc)
wrapper(param, i)
# Partition the parameter after creating the hook
param.partition()
print(f'[End] Create gradient reduction hooks')
@nvtx_wrap
def reduce_ready_partitions_and_remove_grads(self, param, i):
# print(f"Backward {debug_param2name_id_shape(param)} -------------------------- param grad fn {param.expand_as(param).grad_fn}")
self.reduce_independent_p_g_buckets_and_remove_grads(param, i)
@property
def elements_in_ipg_bucket(self):
return sum(p.ds_numel for p in self.params_in_ipg_bucket)
def report_ipg_memory_usage(self, tag, param_elems):
elem_count = self.elements_in_ipg_bucket + param_elems
percent_of_bucket_size = (100.0 * elem_count) // self.release_grad_bucket_size
# see_memory_usage(
# f"{tag}: elems in_bucket {self.elements_in_ipg_bucket} param {param_elems} max_percent {percent_of_bucket_size}")
def get_param_id(self, param):
unique_id = id(param)
return self.param_id[unique_id]
@nvtx_wrap
def independent_gradient_partition_epilogue(self):
self.report_ipg_memory_usage(f"In ipg_epilogue before reduce_ipg_grads", 0)
self.__reduce_and_partition_ipg_grads()
self.report_ipg_memory_usage(f"In ipg_epilogue after reduce_ipg_grads", 0)
self.reduce_and_partition_stream.synchronize()
def reduce_independent_p_g_buckets_and_remove_grads(self, param, i):
if self.elements_in_ipg_bucket > 0 and self.elements_in_ipg_bucket + param.ds_numel > self.release_grad_bucket_size:
self.report_ipg_memory_usage("In ipg_remove_grads before reduce_ipg_grads", param.ds_numel)
self.__reduce_and_partition_ipg_grads()
self.__add_grad_to_ipg_bucket(param)
@nvtx_wrap
@torch.no_grad()
def __add_grad_to_ipg_bucket(self, param: Parameter) -> None:
self.reduce_and_partition_stream.wait_stream(torch.cuda.default_stream())
if self.contiguous_gradients and self.elements_in_ipg_bucket + param.grad.numel() < self.release_grad_bucket_size:
# move the gradient to a contiguous buffer
with torch.cuda.stream(self.reduce_and_partition_stream):
# move the parameter's gradient to the contiguous flat buffer
# 发生在GPU上
new_grad_tensor = self.__ipg_bucket_flat_buffer.narrow(0, self.elements_in_ipg_bucket,
param.grad.numel()).view_as(param.grad)
new_grad_tensor.copy_(param.grad, non_blocking=True)
# print(torch.cuda.current_stream())
param.grad.record_stream(torch.cuda.current_stream())
param.grad.data = new_grad_tensor
self.params_in_ipg_bucket.append(param)
def __avg_scatter_grads(self, params_to_reduce: List[Parameter]) -> List[Tensor]:
"""average gradients and scatter partitions across ranks"""
full_grads_for_rank = [p.grad for p in params_to_reduce]
return full_grads_for_rank
def __reduce_and_partition_ipg_grads(self, safe_mode: bool = False) -> None:
if not self.params_in_ipg_bucket:
return
for param in self.params_in_ipg_bucket:
if param.grad.numel() != param.ds_numel:
raise RuntimeError(f"{param.grad.numel()} != {param.ds_numel} Cannot reduce scatter "
f"gradients whose size is not same as the params")
self.params_in_ipg_bucket.sort(key=lambda p: p.sb_id)
assert len(set(p.sb_id for p in self.params_in_ipg_bucket)) == len(self.params_in_ipg_bucket)
# while self.param_reduce_events and self.param_reduce_events[0].query():
# self.param_reduce_events.popleft()
# if len(self.param_reduce_events) > self.max_param_reduce_events:
# self.param_reduce_events.popleft().synchronize()
with torch.cuda.stream(self.reduce_and_partition_stream):
# if safe_mode:
# assert_ints_same_as_other_ranks([p.sb_id for p in self.params_in_ipg_bucket])
grad_partitions = self.__avg_scatter_grads(self.params_in_ipg_bucket)
self.partition_grads(self.params_in_ipg_bucket, grad_partitions)
with torch.cuda.stream(self.reduce_and_partition_stream):
self.params_in_ipg_bucket.clear()
# event = get_accelerator().Event()
# event.record()
# self.param_reduce_events.append(event)
@nvtx_wrap
def _constant_buffered_norm2(self, input, buffer_size=250000000):
norm = None
for part in input.view(-1).split(buffer_size):
if norm is None:
norm = part.data.double().norm(2)**2.0
else:
norm += part.data.double().norm(2)**2.0
return norm**0.5
@nvtx_wrap
def partition_grads(self, params_to_release: List[Parameter], grad_partitions: List[Tensor]) -> None:
offload_fp32_gradients = {}
offload_fp32_offsets = {}
buffers = []
global bef_event
for param, grad_partition in zip(params_to_release, grad_partitions):
with torch.cuda.stream(self.reduce_and_partition_stream):
# grad_buffer = torch.empty_like(grad_partition.view(-1), requires_grad=True)
grad_buffer = torch.empty_like(grad_partition.view(-1))
grad_buffer.copy_(grad_partition.view(-1).detach())
@nvtx_wrap
def check_inf_or_nan():
if hasattr(self.inf_or_nan_tracker, "logical_or_"):
self.inf_or_nan_tracker.logical_or_(torch.isinf(grad_buffer).any())
self.inf_or_nan_tracker.logical_or_(torch.isnan(grad_buffer).any())
else:
# logical_or_ not available in older versions of pytorch
self.inf_or_nan_tracker += torch.isinf(grad_buffer).any()
self.inf_or_nan_tracker += torch.isnan(grad_buffer).any()
self.inf_or_nan_tracker = self.inf_or_nan_tracker > 0
check_inf_or_nan()
# offload the gradient partition if applicable
if self.offload_optimizer:
now_event = torch.cuda.Event(interprocess=True)
with torch.cuda.stream(self.reduce_and_partition_stream):
i, dest_offset, _ = self.grad_position[self.get_param_id(param)]
# print(i)
self.norm_for_param_grads[self.get_param_id(param)] = self._constant_buffered_norm2(grad_buffer)
if self._swappable_optimizer_subgroup(i) and self.is_nvme and not self.is_nvme_async:
if not i in offload_fp32_gradients.keys():
offload_fp32_gradients[i] = []
offload_fp32_offsets[i] = []
offload_fp32_gradients[i].append(grad_buffer.float())
offload_fp32_offsets[i].append(dest_offset)
# print('not copy here')
else:
# print(self.fp32_param_groups_flat[i].grad.is_pinned())
fp32_grad_tensor = self.fp32_param_groups_flat[i].grad.narrow(
0, dest_offset, grad_buffer.numel()).pin_memory()
fp32_grad_tensor.copy_(grad_buffer, non_blocking=True)
now_event.record(stream=self.reduce_and_partition_stream)
@nvtx_wrap
def test_single():
self.mp_list[0].put(self.fp32_param_groups_flat[self.bf_i])
self.mp_list[1].put(self.fp32_param_groups_flat[self.bf_i].grad)
# print(self.optimizer.state[self.fp32_param_groups_flat[self.bf_i]])
self.mp_list[3].put(self.optimizer.state[self.fp32_param_groups_flat[self.bf_i]]['step'])
self.mp_list[4].put(self.optimizer.state[self.fp32_param_groups_flat[self.bf_i]]['exp_avg'])
self.mp_list[5].put(self.optimizer.state[self.fp32_param_groups_flat[self.bf_i]]['exp_avg_sq'])
self.mp_list[6].put(self.bf_i)
self.mp_list[2].put(1)
print('main process put single')
# print(grad_buffer.size())
# print('dest_offset', dest_offset)
# print(dest_offset + grad_buffer.numel())
if self.bf_i != i:
# test_single()
if self.is_nvme_async:
self.single_step(self.bf_i, now_event)
pass
# torch.cuda.synchronize()
# import time
# time.sleep(0.5)
# if self.bf_i == 1 and i == 1:
# self.bf_i = 0
# self.independent_gradient_partition_epilogue()
# print('self.bf_i:', self.bf_i, 'i:', i)
self.test_group = 0
# elif i == 1 and dest_offset + grad_buffer.numel() == 5242880:
# if self.is_nvme_async:
# self.single_step(self.bf_i, now_event)
# pass
# # torch.cuda.synchronize()
# # import time
# # time.sleep(0.5)
# # if self.bf_i == 1 and i == 1:
# # self.bf_i = 0
# # self.independent_gradient_partition_epilogue()
# print('self.bf_i:', self.bf_i, 'i:', i)
# self.test_group = 0
if i == 0 and dest_offset == 0:
if self.is_nvme_async:
self.single_step(i, now_event)
pass
# print('self.bf_i:', self.bf_i, 'i:', i)
else:
self.test_group += self.elements_in_ipg_bucket
bef_event = now_event
if i == 0 and dest_offset == 0:
self.bf_i = len(self.fp32_param_groups_flat) - 1
else:
self.bf_i = i
# free the gradient
with torch.cuda.stream(self.reduce_and_partition_stream):
param.grad.record_stream(torch.cuda.current_stream())
param.grad = None
# print(f'---------------------{param.sb_shape}---------------------')
# print(fp32_grad_tensor)
@nvtx_wrap
def test_swap_out_grad():
if self.offload_optimizer and self.swap_optimizer and self.is_nvme and not self.is_nvme_async:
for i in offload_fp32_gradients.keys():
self.optimizer_swapper.swap_out_gradients(parameter=self.fp32_param_groups_flat[i],
gradient_offsets=offload_fp32_offsets[i],
gradient_tensors=offload_fp32_gradients[i])
test_swap_out_grad()
return buffers
def _setup_for_real_optimizer(self):
see_memory_usage("Before creating fp32 partitions", force=True)
self._create_fp32_partitions()
see_memory_usage("After creating fp32 partitions", force=True)
# # To support pipelined optimizer swapping
self._create_next_swappable_fp32_groups()
see_memory_usage("Before initializing optimizer states", force=True)
self.initialize_optimizer_states()
see_memory_usage("After initializing optimizer states", force=True)
logger.info(f"optimizer state initialized")
# IPG
if self.contiguous_gradients:
self.__ipg_bucket_flat_buffer: Tensor = torch.empty(self.release_grad_bucket_size,
dtype=self.dtype,
device='cuda:0')
# grad_partitions_flat_buffer = None
# self.__param_id_to_grad_partition: Dict[int, Tensor] = {}
# all_params = list(itertools.chain.from_iterable(self.fp16_origin_param_groups))
# grad_partitions_flat_buffer: Tensor = torch.zeros(sum(p.manage.ds_numel for p in all_params),
# dtype=self.dtype,
# device=self.device)
# if self.offload_optimizer_pin_memory:
# grad_partitions_flat_buffer = grad_partitions_flat_buffer.pin_memory()
# offset = 0
# for param in all_params:
# self.__param_id_to_grad_partition[param.sb_id] = grad_partitions_flat_buffer.narrow(
# 0, offset, param.manage.ds_numel)
# offset += param.manage.ds_numel
def _get_sub_group_partitions(self, sub_group_id):
sub_group_partitions = []
for param, manage_param in zip(self.fp16_origin_param_groups[sub_group_id],
self.fp16_manage_param_groups[sub_group_id]):
if manage_param.nvme_status == PartitionedParamStatus.NOT_AVAILABLE:
swap_path = param.nvme_swapper.get_path(param, True)
sub_group_partitions.append((manage_param, param.partition_numel(), swap_path))
else:
sub_group_partitions.append((manage_param, manage_param.ds_numel, None))
# for i in sub_group_partitions:
# print(i[1])
return sub_group_partitions
# def _swap_in_sub_group_to_flat_buffer(self, flat_buffer, sub_group_id):
# offset = 0
# elements_in_sub_group = sum([t.ds_numel for t in self.fp16_param_groups_flat[sub_group_id]])
# assert (flat_buffer.numel() == elements_in_sub_group)
# for param, partitioned_param in zip(self.fp16_groups[sub_group_id],
# self.fp16_param_groups_flat[sub_group_id]):
# dest = flat_buffer.narrow(0, offset, partitioned_param.ds_numel)
# if partitioned_param.status == PartitionedParamStatus.NOT_AVAILABLE:
# # print_rank_0(
# # f"Swapping in {param.ds_id} with elements {param.ds_numel} and partition {param.partition_numel()}"
# # )
# param.nvme_swapper.swap_in([param], async_op=False)
# dest.data.copy_(partitioned_param.data)
# param.nvme_swapper.remove_partition_and_release_buffers([param])
# # print_rank_0(f"Swapping in {param.ds_id} done")
# else:
# dest.data.copy_(partitioned_param.data)
# offset += partitioned_param.ds_numel
def _create_fp32_partitions(self):
cpu_memory_usage = 0
cpu_memory_sub_groups = 0
nvme_memory_usage = 0
GIGA_BYTES = (1024**3)
num_swappable_partitions = 0
num_swap_from_nvme_partitions = 0
num_swap_from_cpu_partitions = 0
swap_from_nvme_memory_usage = 0
swap_from_cpu_memory_usage = 0
swappable_fp32_tensors = []
swappable_fp16_src_tensors = []
nvme_fp16_partitions_info = []
nvme_fp16_num_elems = []
nvme_fp32_dest_tensors = []
fp32_element_size = torch.tensor([], dtype=torch.float32).element_size()
# for i, tensor in enumerate(self.fp16_param_groups_flat):
# print(self._swappable_optimizer_subgroup(i), self.fp16_param_groups_flat_numel[i])
for i, tensor in enumerate(self.fp16_param_groups_flat):
num_elements = self.fp16_param_groups_flat_numel[i]
# a partition of the fp32 master weights that will be updated by this process
# print(self._swappable_optimizer_subgroup(i))
if self._swappable_optimizer_subgroup(i) and self.is_nvme:
self.fp32_param_groups_flat.append(torch.Tensor())
nvme_memory_usage += (fp32_element_size * num_elements)
num_swappable_partitions += 1
if self.is_nvme and tensor is None:
num_swap_from_nvme_partitions += 1
swap_from_nvme_memory_usage += (fp32_element_size * num_elements)
if self.offload_optimizer_fast_init:
# 获取到一个tuple,(manage参数, 元素个数,swap的path)
sub_group_partitions = self._get_sub_group_partitions(i)
nvme_fp16_partitions_info.append(sub_group_partitions)
nvme_fp16_num_elems.append(num_elements)
nvme_fp32_dest_tensors.append(self.fp32_param_groups_flat[i])
# else:
# unpinned_fp32_buffer = torch.empty(num_elements, device=self.device, dtype=torch.float)
# self._swap_in_sub_group_to_flat_buffer(unpinned_fp32_buffer, i)
# self.optimizer_swapper.initialize_parameters(parameters=[self.fp32_param_groups_flat[i]],
# src_tensors=[unpinned_fp32_buffer])
else:
num_swap_from_cpu_partitions += 1
swap_from_cpu_memory_usage += (fp32_element_size * num_elements)
swappable_fp32_tensors.append(self.fp32_param_groups_flat[i])
swappable_fp16_src_tensors.append(self.fp16_param_groups_flat[i])
else:
cpu_memory_usage += (fp32_element_size * num_elements)
cpu_memory_sub_groups += 1
if self.is_nvme and tensor is None:
unpinned_fp32_buffer = torch.empty(num_elements, device=self.device, dtype=torch.float)
self._swap_in_sub_group_to_flat_buffer(unpinned_fp32_buffer, i)
self.fp32_param_groups_flat.append(unpinned_fp32_buffer)
else:
self.fp32_param_groups_flat.append(self.fp16_param_groups_flat[i].to(self.device).clone().float().detach())
self.fp32_param_groups_flat[i].requires_grad = True # keep this in case internal optimizer uses it
if len(swappable_fp32_tensors) > 0 and self.is_nvme:
# print('init 1')
self.optimizer_swapper.initialize_parameters(parameters=swappable_fp32_tensors,
src_tensors=swappable_fp16_src_tensors)
if len(nvme_fp32_dest_tensors) > 0 and self.is_nvme:
# print('init 2')
fp16_pinned_buffers = self.fp16_origin_param_groups[0][0].nvme_swapper.reserve_available_buffers()
assert len(fp16_pinned_buffers) > 0
self.optimizer_swapper.initialize_from_swapped_fp16_params(fp16_partitions_info=nvme_fp16_partitions_info,
fp16_num_elems=nvme_fp16_num_elems,
fp16_pinned_buffers=fp16_pinned_buffers,
fp32_parameters=nvme_fp32_dest_tensors)
self.fp16_origin_param_groups[0][0].nvme_swapper.release_reserved_buffers()
cpu_memory_gigabytes = cpu_memory_usage / GIGA_BYTES
# print(f'In-Memory FP32 Partitions: count={cpu_memory_sub_groups} size={cpu_memory_gigabytes:5.2f} GB')
# Clear for on-the-fly population before the optimizer step
for param_group in self.optimizer.param_groups:
param_group['params'] = []
def _create_next_swappable_fp32_groups(self):
reverse_order_indices = [i for i in range(len(self.fp32_param_groups_flat))]
reverse_order_indices.reverse()
next_group = None
for i in reverse_order_indices:
self.next_swappable_fp32_partitioned_groups.append(next_group)
if self._swappable_optimizer_subgroup(i):
next_group = self.fp32_param_groups_flat[i]
self.next_swappable_fp32_partitioned_groups.reverse()
def _swappable_optimizer_subgroup(self, sub_group_id):
if not self.swap_optimizer:
return False
return self.optimizer_swapper.swappable_tensor(None,
numel=self.fp16_param_groups_flat_numel[sub_group_id])
@nvtx_wrap
def _optimizer_states_and_gradient_swap_in(self, sub_group_id):
param_length = self.fp16_param_groups_flat_numel[sub_group_id]
fp32_param_id = id(self.fp32_param_groups_flat[sub_group_id])
assert self._swappable_optimizer_subgroup(sub_group_id), \
f'Parameter {fp32_param_id} of numel={param_length} is not swappable'
# print('!!!!!!!!!! swap_in ', sub_group_id)
see_memory_usage(f'pre-step Before swapping in optimizer tensors {sub_group_id}', force=False)
self.optimizer_swapper.swap_in_optimizer_state(
parameter=self.fp32_param_groups_flat[sub_group_id],
# async_parameter=self.next_swappable_fp32_partitioned_groups[sub_group_id])
async_parameter=None)
see_memory_usage(f'pre-step After swapping in optimizer tensors {sub_group_id}', force=False)
@nvtx_wrap
def _optimizer_states_and_gradient_swap_in_new(self, sub_group_id, is_first):
param_length = self.fp16_param_groups_flat_numel[sub_group_id]
fp32_param_id = id(self.fp32_param_groups_flat[sub_group_id])
assert self._swappable_optimizer_subgroup(sub_group_id), \
f'Parameter {fp32_param_id} of numel={param_length} is not swappable'
# print('!!!!!!!!!!swap in', sub_group_id)
see_memory_usage(f'pre-step Before swapping in optimizer tensors {sub_group_id}', force=False)
# print('bef swap_in_optimizer_state_new', self.fp32_param_groups_flat[sub_group_id].grad.is_pinned())
self.optimizer_swapper.swap_in_optimizer_state_new(
parameter=self.fp32_param_groups_flat[sub_group_id],
async_parameter=self.next_swappable_fp32_partitioned_groups[sub_group_id],
is_first=is_first
)
# print('aft swap_in_optimizer_state_new', self.fp32_param_groups_flat[sub_group_id].grad.is_pinned())
see_memory_usage(f'pre-step After swapping in optimizer tensors {sub_group_id}', force=False)
def _partitioned_params_swap_out(self, i):
offset = 0
fp32_param = self.fp32_param_groups_flat[i]
assert fp32_param is not None, \
f'fp32 parameters of sub_group {i} is None'
@nvtx_wrap
def test():
pass
swap_fp16_params = []
swap_fp32_params = []
for param, manage_param in zip(self.fp16_origin_param_groups[i], self.fp16_manage_param_groups[i]):
src = fp32_param.narrow(0, offset, manage_param.ds_numel)
if manage_param.nvme_status == PartitionedParamStatus.AVAILABLE:
test()
manage_param.data.copy_(src.data, non_blocking = True)
test()
else:
swap_fp32_params.append(src)
swap_fp16_params.append(param)
offset += manage_param.ds_numel
if len(swap_fp16_params):
swap_fp16_params[0].nvme_swapper.swap_out_partitioned_params(dst_fp16_params=swap_fp16_params,
src_fp32_params=swap_fp32_params)
def _optimizer_states_and_gradient_swap_out(self, sub_group_id):
param_length = self.fp16_param_groups_flat_numel[sub_group_id]
fp32_param_id = id(self.fp32_param_groups_flat[sub_group_id])
assert self._swappable_optimizer_subgroup(sub_group_id), \
f'Parameter {fp32_param_id} of numel={param_length} is not swappable'
see_memory_usage(f'post-step Before swapping out optimizer tensors {sub_group_id}', force=False)
self.optimizer_swapper.swap_out_optimizer_state(
parameter=self.fp32_param_groups_flat[sub_group_id],
async_swap=self.next_swappable_fp32_partitioned_groups[sub_group_id] is not None)
see_memory_usage(f'post-step After swapping out optimizer tensors {sub_group_id}', force=False)
# get rid of the fp32 gradients. Not needed anymore
if not self.is_nvme_async:
self.fp32_param_groups_flat[sub_group_id].grad = None
def initialize_optimizer_states(self):
num_subgroups = len(self.fp16_origin_param_groups)
largest_numel = max([sum([p.ds_numel for p in psg]) for psg in self.fp16_manage_param_groups])
gradient_dtype = self.fp32_param_groups_flat[0].dtype
gradient_buffer = torch.zeros(int(largest_numel), dtype=gradient_dtype, device=self.device, pin_memory=True)
for i, group in enumerate(self.fp16_origin_param_groups):
swappable_optimizer_subgroup = self._swappable_optimizer_subgroup(i)
swappable_param_subgroup = self.fp16_param_groups_flat[i] is None
num_elements = int(self.fp16_param_groups_flat_numel[i])
see_memory_usage(
f'[Begin] Initialize optimizer states {i} / {num_subgroups} subgroups, num_elems: {num_elements}')
# for p in [self.fp32_param_groups_flat[i]]:
# print('run single step')
# state = self.optimizer.state[p]
# if state:
# print('bef ini swap in param state_m', state['exp_avg'].size())
# print('bef ini swap in param state_v', state['exp_avg_sq'].size())
# print('bef ini swap in param param', p.size())
# if p.grad:
# print('bef ini swap in param grad', p.grad.size())
if swappable_optimizer_subgroup and self.is_nvme:
self._optimizer_states_and_gradient_swap_in(i)
# if swappable_optimizer_subgroup:
# self._optimizer_states_and_gradient_swap_in(i, timer_names)
# if True:
if self.offload_optimizer and not swappable_optimizer_subgroup:
subgroup_gradient_buffer = torch.zeros(num_elements, dtype=gradient_dtype, device=self.device)
if self.offload_optimizer_pin_memory:
subgroup_gradient_buffer = subgroup_gradient_buffer.pin_memory()
self.fp32_param_groups_flat[i].grad = subgroup_gradient_buffer
print('!!!!!!!!!!!')
else:
self.fp32_param_groups_flat[i].grad = gradient_buffer.narrow(0, 0, num_elements).pin_memory()
print('@@@@@@@@@')
# Initialize the optimizer states with the flattended fp32 partition.
@nvtx_wrap
def test_put_fp32():
self.fp32_param_groups_flat[i].share_memory_()
self.fp32_param_groups_flat[i].grad.share_memory_()
# self.mp_list[0].put(self.fp32_param_groups_flat[i])
# self.mp_list[1].put(self.fp32_param_groups_flat[i].grad)
if self.is_mp and False:
test_put_fp32()
self._optimizer_step(i)
fp32_param = self.fp32_param_groups_flat[i]
state = self.optimizer.state[fp32_param]
if state and self.is_mp and False:
# state['step'].share_memory_()
@nvtx_wrap
def test_put_state():
state['exp_avg'].share_memory_()
state['exp_avg_sq'].share_memory_()
test_put_state()
# print("state['exp_avg'].is_shared()", state['exp_avg'].is_shared())
# print("state['exp_avg_sq'].is_shared()", state['exp_avg_sq'].is_shared())
# print(f"step = {state['step']}\nexp_avg_size = {state['exp_avg'].size()}\nexp_avg_sq_size = {state['exp_avg_sq'].size()}")
if swappable_param_subgroup and self.is_nvme:
self._partitioned_params_swap_out(i)
if swappable_optimizer_subgroup and self.is_nvme:
self._optimizer_states_and_gradient_swap_out(i)
# print(state['exp_avg'].is_pinned(), state['exp_avg_sq'].is_pinned())
see_memory_usage('1')
print(state['exp_avg'].size(), state['exp_avg_sq'].size())
state['exp_avg'].data = torch.Tensor()
state['exp_avg_sq'].data = torch.Tensor()
print(state['exp_avg'].size(), state['exp_avg_sq'].size())
see_memory_usage('2')
see_memory_usage(
f'[End] Initialize optimizer states {i} / {num_subgroups} subgroups, num_elems: {num_elements}')
if not self.offload_optimizer:
for group in self.fp32_param_groups_flat:
# print('group.grad = None')
group.grad = None
# for p in [self.fp32_param_groups_flat[i]]:
# print('run single step')
# state = self.optimizer.state[p]
# if state:
# print('aft reset state_m', state['exp_avg'].size())
# print('aft reset state_v', state['exp_avg_sq'].size())
# print('aft reset param', p.size())
# if not p.grad is None:
# print('aft reset grad', p.grad.size())
# Reset steps
return
@nvtx_wrap
def _optimizer_step(self, sub_group_id):
param_group_id = self.sub_group_to_group_id[sub_group_id]
fp32_param = self.fp32_param_groups_flat[sub_group_id]
self.optimizer.param_groups[param_group_id]['params'] = [fp32_param]
# if state:
# # state['step'].share_memory_()
# @nvtx_wrap
# def test_put_state():
# state['exp_avg'].share_memory_()
# state['exp_avg_sq'].share_memory_()
# test_put_state()
# print("state['exp_avg'].is_shared()", state['exp_avg'].is_shared())
# print("state['exp_avg_sq'].is_shared()", state['exp_avg_sq'].is_shared())
# print(f"step = {state['step']}\nexp_avg_size = {state['exp_avg'].size()}\nexp_avg_sq_size = {state['exp_avg_sq'].size()}")
self.optimizer.step()
# see_memory_usage('BEF release')
self.optimizer.param_groups[param_group_id]['params'] = []
# see_memory_usage('AFT release')
def complete_grad_norm_calculation_for_cpu_offload(self, params):
total_norm = 0.0
norm_type = 2.0
for p in params:
param_id = self.get_param_id(p)
if param_id in self.norm_for_param_grads.keys():
param_norm = self.norm_for_param_grads[param_id]
total_norm += param_norm.item()**2
# Sum across all model parallel GPUs.
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
total_norm = total_norm_cuda[0].item()**(1. / norm_type)
if total_norm == float('inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
def _get_norm_groups(self):
norm_groups = []
for i, group in enumerate(self.fp16_origin_param_groups):
if self.offload_optimizer:
norm_groups.append(self.complete_grad_norm_calculation_for_cpu_offload(self.fp16_origin_param_groups[i]))
return norm_groups
def get_global_norm(self, norm_list):
""" Compute total from a list of norms
"""
total_norm = 0.0
for norm in norm_list:
total_norm += norm**2.0
return sqrt(total_norm)
@nvtx_wrap