forked from asmith26/h-DQN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_architectures.py
170 lines (153 loc) · 6.8 KB
/
search_architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import random
import csv
import os
import numpy as np
from collections import namedtuple
from envs.mdp import StochasticMDPEnv
from agent.hDQN import hDQN
from keras.layers import Dense, Activation
from keras.optimizers import SGD, RMSprop
def one_hot(state):
vector = np.zeros(6)
vector[state-1] = 1.0
return np.expand_dims(vector, axis=0)
def run_architecture(meta_layers, meta_inits, meta_nodes, meta_activations,
meta_loss, meta_optimizer, layers, inits, nodes, activations, loss,
optimizer, n_samples, meta_n_samples, gamma, meta_epsilon, k_episodes=12):
ActorExperience = namedtuple("ActorExperience",
["state", "goal", "action", "reward", "next_state"])
MetaExperience = namedtuple("MetaExperience",
["state", "goal", "reward", "next_state"])
env = StochasticMDPEnv()
agent = hDQN(meta_layers=meta_layers, meta_inits=meta_inits,
meta_nodes=meta_nodes, meta_activations=meta_activations,
meta_loss=meta_loss, meta_optimizer=meta_optimizer,
layers=layers, inits=inits, nodes=nodes, activations=activations,
meta_n_samples=meta_n_samples, gamma=gamma, meta_epsilon=meta_epsilon)
#agent = hDQN()
visits = np.zeros((k_episodes, 6))
cumulative_regret = 0
for episode_thousand in range(k_episodes):
agent.meta_epsilon = agent.meta_epsilon/2.0
print("\nNew meta-epsilon: %.4f" % agent.meta_epsilon, end="")
for episode in range(1000):
print("\n\n### EPISODE %d ###" % (episode_thousand*1000 + episode), end="")
state = env.reset()
visits[episode_thousand][state-1] += 1
done = False
while not done:
goal = agent.select_goal(one_hot(state))
agent.goal_selected[goal-1] += 1
print("\nNew Goal: %d\nState-Actions: " % goal)
total_external_reward = 0
goal_reached = False
while not done and not goal_reached:
action = agent.select_move(one_hot(state), one_hot(goal))
print((state,action), end="; ")
next_state, external_reward, done = env.step(action)
visits[episode_thousand][next_state-1] += 1
intrinsic_reward = agent.criticize(goal, next_state)
goal_reached = next_state == goal
if goal_reached:
agent.goal_success[goal-1] += 1
print("Goal reached!!", end=" ")
if next_state == 6:
print("S6 reached!!", end=" ")
exp = ActorExperience(one_hot(state), one_hot(goal), action,
intrinsic_reward, one_hot(next_state))
agent.store(exp, meta=False)
agent.update(meta=False)
agent.update(meta=True)
total_external_reward += external_reward
state = next_state
exp = MetaExperience(one_hot(state), one_hot(goal),
total_external_reward, one_hot(next_state))
agent.store(exp, meta=True)
regret = 1.00 - total_external_reward
print("\nREGRET: ", regret)
cumulative_regret += regret
print("CUMULATIVE REGRET: ", cumulative_regret)
if (episode % 100 == 99):
print("")
print(visits/1000, end="")
return cumulative_regret, visits/1000
def run_once():
# Choose k_episodes
k_episodes = 12
# Choose number of layers
n_meta_layers = random.randint(3, 20)
n_layers = random.randint(3, 20)
print("Number of meta_layers: %d" % n_meta_layers)
print("Number of layers: %d" % n_layers)
# Choose layer types
meta_layers = [Dense] * n_meta_layers
layers = [Dense] * n_layers
# Choose activation functions
meta_act = random.choice(['relu', 'softmax'])
act = random.choice(['relu', 'softmax'])
print("meta_act: %s" % meta_act)
print("act: %s" % act)
# Choose number of nodes
meta_nodes = [6]
meta_n_hidden_nodes = random.randint(6, 20)
if n_meta_layers > 2:
meta_nodes += [meta_n_hidden_nodes for _ in range(n_meta_layers-2)]
meta_nodes += [6]
nodes = [12]
n_hidden_nodes = random.randint(6, 20)
if n_layers > 2:
nodes += [n_hidden_nodes for _ in range(n_layers-2)]
nodes += [2]
print("meta_nodes: ", meta_nodes)
print("nodes: ", nodes)
# Choose loss
meta_loss = "mse"
loss = "mse"
# Choose inits
meta_inits = ['lecun_uniform'] * n_meta_layers
inits = ['lecun_uniform'] * n_layers
# Choose activations
meta_activations = [meta_act] * n_meta_layers
activations = [act] * n_layers
# Choose optimizers
meta_optimizer = SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)
optimizer = SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)
# Choose n_samples
n_samples = random.randint(1,1000)
meta_n_samples = random.randint(1,1000)
print("n_samples: ", n_samples)
print("meta_n_samples: ", meta_n_samples)
# Choose gamma
gamma = random.random()
print("gamma: ", gamma)
# Choose meta_epsilon
meta_epsilon = float(random.randint(1,10)/2)
print("meta_epsilon: ", meta_epsilon)
# Run architecture
regret, visits = run_architecture(meta_layers, meta_inits, meta_nodes, meta_activations,
meta_loss, meta_optimizer, layers, inits, nodes, activations, loss,
optimizer, n_samples, meta_n_samples, gamma, meta_epsilon, k_episodes)
output_path = "data/raw/raw_data.csv"
if not os.path.isfile(output_path):
header = ['n_meta_layers', 'n_layers', 'meta_act', 'act',
'meta_n_hidden_nodes', 'n_hidden_nodes', 'meta_loss', 'loss',
'meta_inits', 'inits', 'meta_activations', 'activations',
'meta_optimizer', 'optimizer', 'n_samples', 'meta_n_samples',
'gamma', 'meta_epsilon', 'regret']
header += ['visits[%d][%d]' % (i+1, j+1) for i in range(k_episodes) for j in range(6)]
with open(output_path, "a") as f:
writer = csv.writer(f)
writer.writerow(header)
with open(output_path, "a") as f:
writer = csv.writer(f)
lst = [n_meta_layers, n_layers, meta_act, act, meta_n_hidden_nodes,
n_hidden_nodes, meta_loss, loss, meta_inits[0], inits[0],
meta_activations[0], activations[0], meta_optimizer, optimizer,
n_samples, meta_n_samples, gamma, meta_epsilon, regret]
lst += [visits[i][j] for i in range(k_episodes) for j in range(6)]
writer.writerow(lst)
def main():
for _ in range(100):
run_once()
if __name__ == "__main__":
main()