-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_minus_seq2seq_training.py
272 lines (232 loc) · 13.3 KB
/
run_minus_seq2seq_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import json
os.environ["WANDB_DISABLED"] = "true"
import sys
import logging
import transformers
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import nltk
import numpy as np
transformers.logging.set_verbosity_error()
from tqdm import tqdm
from transformers import (HfArgumentParser, EvalPrediction, DataCollatorForSeq2Seq, set_seed)
from torch.nn.utils.rnn import pad_sequence
from deepspeed.profiling.flops_profiler import get_model_profile
from datasets import load_metric
from models.model_args import ModelArguments
from utils.utils import *
from utils.minus_utils import efficiency_testing, input_constructor, compare_parameters
from utils.analysis_utils import gen_run_report
from trainer.trainer_seq2seq_minus import MinusSeq2SeqTrainer
from args import MinusTrainingArguments, Seq2SeqDataTrainingArguments
from loralib.layers import LoRALayer
from models import build_model
logFormatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s")
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
consoleHandler = logging.StreamHandler(sys.stdout)
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
def main():
parser = HfArgumentParser(
(ModelArguments, Seq2SeqDataTrainingArguments, MinusTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
os.makedirs(training_args.output_dir, exist_ok=True)
task_name = data_args.task_name
fileHandler = logging.FileHandler("{0}/{1}.log".format(training_args.output_dir, task_name))
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
logger.info("MiNUS training arguments: %s", str(training_args))
set_seed(training_args.seed)
torch.manual_seed(training_args.seed)
# save args
torch.save(data_args, os.path.join(
training_args.output_dir, "data_args.bin"))
torch.save(model_args, os.path.join(
training_args.output_dir, "model_args.bin"))
training_args.disable_tqdm = False
training_args.predict_with_generate=True
config, tokenizer, model = build_model(model_args, data_args, training_args)
train_dataset, eval_dataset, _, datasets = build_seq2seq_data(data_args, training_args, tokenizer)
if training_args.teacher_path is None:
teacher_model = None
else:
_, _, teacher_model = build_model(model_args, data_args, training_args, determined_model_path=training_args.teacher_path)
teacher_model.head_mask, teacher_model.intermediate_mask, teacher_model.hidden_mask = None, None, None
# if os.path.exists(model_args.model_name_or_path):
# if getattr(model, 'pruned_history', None) is not None:
# model.head_mask, model.intermediate_mask = None, None
# model.hidden_mask = None
# else:
# if os.path.exists(os.path.join(model_args.model_name_or_path, '../final_head_mask.pt')):
# model.head_mask = torch.load(os.path.join(model_args.model_name_or_path, '../final_head_mask.pt'))
# else:
# model.head_mask = None
# if os.path.exists(os.path.join(model_args.model_name_or_path, '../final_intermediate_mask.pt')):
# model.intermediate_mask = torch.load(os.path.join(model_args.model_name_or_path, '../final_intermediate_mask.pt'))
# else:
# model.intermediate_mask = None
# if os.path.exists(os.path.join(model_args.model_name_or_path, '../final_hidden_mask.pt')):
# model.hidden_mask = torch.load(os.path.join(model_args.model_name_or_path, '../final_hidden_mask.pt'))
# else:
# model.hidden_mask = None
# model.prune_model_with_masks()
if model.head_mask is None and model.intermediate_mask is None and model.hidden_mask is None and training_args.pruner_type != 'none':
model.reset_masks()
model = model.to(training_args.device)
if hasattr(model, 'head_mask') and hasattr(model, 'intermediate_mask'):
if isinstance(model.head_mask, torch.Tensor):
model.head_mask = model.head_mask.to(training_args.device)
elif isinstance(model.head_mask, list):
model.head_mask = [v.to(training_args.device) for v in model.head_mask]
if isinstance(model.intermediate_mask, torch.Tensor):
model.intermediate_mask = model.intermediate_mask.to(training_args.device)
elif isinstance(model.intermediate_mask, list):
model.intermediate_mask = [v.to(training_args.device) for v in model.intermediate_mask]
if hasattr(model, 'hidden_mask') and model.hidden_mask is not None:
model.hidden_mask = model.hidden_mask.to(training_args.device)
if 'wmt' in task_name:
metric = load_metric("sacrebleu")
gen_prefix = "eval"
def postprocess_text(preds, labels):
str_preds = [pred.strip() for pred in preds]
str_labels = [label.strip() for label in labels]
preds = [pred.strip() for pred in preds]
labels = [[label.strip()] for label in labels]
return preds, labels, str_preds, str_labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels, str_decoded_preds, str_decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
result = {"bleu": result["score"]}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
else:
metric = load_metric("rouge")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Rouge expects a newline after each sentence
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
# Add mean generated length
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
result["gen_len"] = np.mean(prediction_lens)
return {k: round(v, 4) for k, v in result.items()}
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
flops, macs, params = get_model_profile(
model,
kwargs={k: v.to(model.device) for k, v in input_constructor(training_args.per_device_eval_batch_size, data_args.max_input_length, tokenizer, output_seq_len=data_args.max_target_length).items()},
print_profile=True,
detailed=True,
output_file=os.path.join(training_args.output_dir, 'pretrain_deepspeed_profile.txt'),
)
torch.cuda.reset_peak_memory_stats()
training_args.task_name = data_args.task_name
trainer = MinusSeq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
teacher_model=teacher_model,
seq_len=data_args.max_input_length,
output_seq_len=data_args.max_target_length,
cls_task=False,
)
# Training
if training_args.do_train:
train_result = trainer.train()
metrics = train_result.metrics
metrics["train_samples"] = len(train_dataset)
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# trainer.save_param_allocation()
# trainer.save_allocation_history()
if model.head_mask is not None and (model.head_mask == 1).all():
model.head_mask = None
if model.intermediate_mask is not None and (model.intermediate_mask == 1).all():
model.intermediate_mask = None
if model.hidden_mask is not None and (model.hidden_mask == 1).all():
model.hidden_mask = None
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
_ = model.eval()
predictions = []
references = []
eval_dataloader = trainer.get_eval_dataloader(eval_dataset)
model = model.to('cuda')
with torch.no_grad():
for example in tqdm(eval_dataloader):
example = {k: v.to('cuda') for k, v in example.items()}
output_ids = model.generate(input_ids=example['input_ids'], attention_mask=example['attention_mask'], max_length=data_args.max_target_length)
predictions.extend(output_ids.cpu())
references.extend(example['labels'].cpu())
predictions = pad_sequence(predictions, batch_first=True, padding_value=tokenizer.pad_token_id)
references = pad_sequence(references, batch_first=True, padding_value=tokenizer.pad_token_id)
eval_pred = EvalPrediction(predictions=predictions, label_ids=references)
metrics = compute_metrics(eval_pred)
trainer.log_metrics('eval', metrics)
trainer.save_metrics('eval', metrics)
# TODO: merge LoRA layers after training for efficiency during efficiency & deepspeed profiler testing
model.eval()
efficiency_results = efficiency_testing(model, tokenizer, training_args.device)
for module in model.modules():
if isinstance(module, LoRALayer):
module.eval()
flops, macs, params = get_model_profile(
model,
kwargs={k: v.to(model.device) for k, v in input_constructor(training_args.per_device_eval_batch_size, data_args.max_input_length, tokenizer, output_seq_len=data_args.max_target_length).items()},
print_profile=True,
detailed=True,
output_file=os.path.join(training_args.output_dir, 'deepspeed_profile.txt'),
)
efficiency_results['model_flops'] = flops
efficiency_results['model_macs'] = macs
json.dump(efficiency_results, open(os.path.join(training_args.output_dir, 'efficiency_results.json'), 'w'), indent=4, sort_keys=True)
if not os.path.exists(model_args.model_name_or_path):
run_report = gen_run_report(training_args.output_dir)
run_report['train_runtime_per_epoch'] = run_report['train_runtime'] / training_args.num_train_epochs
json.dump(run_report, open(os.path.join(training_args.output_dir, 'run_report.json'), 'w'), indent=4, sort_keys=True)
if os.path.exists(os.path.join(training_args.output_dir, 'pre_pruning_model')):
model_args.model_name_or_path = os.path.join(training_args.output_dir, 'pre_pruning_model')
config, tokenizer, pre_pruning_model = build_model(model_args, data_args, training_args)
pre_pruning_model.head_mask = torch.load(os.path.join(training_args.output_dir, 'final_head_mask.pt'), map_location='cpu')
pre_pruning_model.intermediate_mask = torch.load(os.path.join(training_args.output_dir, 'final_intermediate_mask.pt'), map_location='cpu')
pre_pruning_model.hidden_mask = torch.load(os.path.join(training_args.output_dir, 'final_hidden_mask.pt'), map_location='cpu') if os.path.exists(os.path.join(training_args.output_dir, 'final_hidden_mask.pt')) else None
pre_pruning_model.hidden_mask = torch.load(os.path.join(training_args.output_dir, 'final_hidden_mask.pt'), map_location='cpu') if os.path.exists(os.path.join(training_args.output_dir, 'final_hidden_mask.pt')) else None
pre_pruning_model.prune_model_with_masks()
model = model.cpu()
same_param_num, same_vars = compare_parameters(model, pre_pruning_model)
logger.info(f"Num parameters not changed after pruning: {same_param_num}")
logger.info(f"Parameter variables not changed after pruning: {same_vars}")
if __name__ == '__main__':
main()