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Abstract 

We present a practical method for estimating the probability distribution of a travel demand 
forecast.  Given a forecast of any variable of interest, such as revenue or ridership, the approach 
identifies independent sources of uncertainty, estimates a probability distribution of each source, 
estimates the sensitivity of the variable to each source, and then combines the effects.  A case 
study is presented in which the probability distribution of a revenue forecast is developed for a 
new transit system. 

Introduction 

Travel demand forecasts are inherently uncertain because of assumptions about uncertain future 
events and errors in the forecasting procedure.  Any forecast of expected outcome has a 
potentially large variance and may also be biased.  In many cases, information about the 
probability distribution of possible outcomes is valuable, sometimes far more so than the 
expected outcome.  In the case presented here, for example, the developer of a new public 
transportation facility needed to understand the lower tail of the distribution of possible revenue 
outcomes, in order to deal with the possibility that revenues might fall substantially short of 
expectations. 

This paper presents a practical method for estimating the probability distribution of a travel 
demand forecast.  Given a forecast of any variable of interest, such as revenue or ridership, the 
approach identifies independent sources of uncertainty, estimates a probability distribution of 
each source, estimates the sensitivity of the variable to each source, and then combines the 

 



effects.  We present the method in the next section.  This is followed by the case study and a 
discussion of errors that can occur when the method is used. 

Estimation Method 

Starting with the predicted value, r(p), of a variable of interest, r, such as revenue or ridership, we 
first identify a vector of variables, x = (x1,...,xk,...xK), that induce error in the prediction.  The 
error variables come from assumptions about uncertain future events, as well as limitations of the 
forecasting method, such as imperfect data, incorrectly specified models, and faulty procedures.  
For example, if the forecast depends on economic growth assumptions, one variable in the vector 
might be the assumed GDP.  The error variables define a K-dimensional space of possible 
outcomes, each point being paired with a corresponding value of r.  The accuracy of the method 
depends on including all sources of error and defining the error variables so that they are 
mutually independent. 

Using x, we carve the space into a finite set of regions for which we can estimate the outcome of 
the variable of interest and its probability.  For each dimension k  we identify a small set of 
discrete outcomes , 1,...,kn

kk kx n = N , to which we can assign all the probability of xk’s  possible 
outcomes, using reasoning and empirical evidence to approximate its true distribution, yielding 
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For each scenario s, r takes the unknown value r(s), which is assumed to approximate r for all 
points in the unidentified region surrounding s that has probability p(s), with the regions together 
spanning the space of all possible outcomes. 

To estimate the outcome r(s) for each region we assume that r depends on x according to a 

constant elasticity model, , where 1( )
r
keK

kkr α
=

= ∏ α  does not depend on x, and  is the 
elasticity of r with respect to x
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k .  In the constant elasticity model, when xk changes by n%, r 
changes by %.  By dividing this model for the scenario outcome rr

kne (s) by the same model for 
the original forecast outcome r(p) , and rearranging terms, we get 
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We can thus estimate r(s) by estimating the elasticity of each variable in x separately, which we 
do by combining empirical tests with judgment. 

Together, all pairs r(s) and p(s) provide an estimated discrete approximation of r’s probability 
distribution function. 

Case study background 

The authors estimated probability distributions of model-based revenue and ridership forecasts 
made by a transportation consulting firm for a new public transit subsystem in a major Asian 
city.  The analysis relied upon interviews, site inspections, written descriptions of the transit 
system and forecasting model, and model forecasts produced by the consultant, including a 
battery of special test runs requested for this analysis. 

The consultant’s forecasting procedure consists of several basic components operating in 
sequence.   

1. Assumptions are made about economic growth, changes in the transportation system, 
population, and number of households and employment.  Model estimates made in 
subsequent steps depend on these assumptions. 

2. Trip generation and distribution models estimate the total number of trips (total demand) 
made in a typical weekday. 

3. Mode choice models estimate the proportion of the trips made by each of several modes, with 
the main modes defined as private and public, and with public sub-modes including standard 
and upmarket.  The new transit service is classified as upmarket. 

4. For each mode a network assignment procedure identifies the paths taken for all the mode’s 
trips, resulting in flow estimates for each link and node in the network, including those 
representing the new transit service’s line segments and stations.  It is in the network model 
that choices between the new service and competing upmarket public mode alternatives are 
modeled. 

5. The modeled network flows are adjusted using judgment to take into consideration 
anticipated effects which are not modeled, and the results are re-scaled to estimate peak 
period effects (for capacity analysis) and full-year effects (for revenue analysis). 

Sources of uncertainty and bias 

After studying the available information, the authors attempted to identify all potential sources of 
bias and uncertainty in the forecasts.  Sixteen separate sources were identified within four major 
categories.  In arriving at the list of 16 sources, some related sources were combined since the 
method of estimating the probability distribution assumes independence among sources.  Here is 
a brief description of each identified source. 
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Factors affecting total demand prediction 

1. Economic growth and related changes in income and employment.  The model system is 
calibrated to match observed 1995 conditions, and its demand forecasts for a given year 
depend on the assumed growth rate from 1996 onward.  Therefore, the forecasts are subject 
to uncertainty and bias in the growth estimates from all years back to 1996. 

2. Total demand model errors.  The models are built on four key assumptions:  (1) The 
distribution of vehicle ownership, given average income, is stable over time; (2) the 
distribution of household size, given average household size, is stable over time, (3) 
household trip generation is constant with respect to household size and vehicle ownership, 
and (4) a 1995 roadside survey, though not a probability sample, is a reliable measure of the 
incidence of non-home-based and home-based trips for purposes other than work or school. 

Model errors and uncertainty affecting mode choice and network model prediction 

3. Network model sensitivity to congestion, and inaccurate main mode choice model composite 
generalized time.  (a) The highway link performance functions may produce extremely large 
highway travel times under jam density conditions and cause the mode choice models to 
overreact to highway traffic congestion.  (b) If generalized time for other modes changes 
relative to generalized time for the new transit service, then for some origin-destination pairs 
the path switches from 0% to 100% for the new service or vice versa.  (c) The probability-
weighted sub-mode generalized time used in the main mode choice model can cause counter-
intuitive mode choice behavior. 

4. Model error in elasticity of demand for the new service with respect to vehicle ownership.  
We expect the income elasticity of ridership on the new service to be negative.  Even though 
ridership on the new upmarket service should increase relative to other public transit, this 
should be overshadowed by the shift from transit to private modes as income and auto 
ownership increase.  In contrast to this reasoning, the consultant’s model predicts an increase 
in ridership when vehicle ownership levels increase. 

5. Transit captivity.  The assumed transit captivity rates lack an empirical basis, and many 
different combinations of captivity rates and mode bias constants would have satisfied the 
consultant’s calibration criteria, yielding substantially different overall relative sensitivities 
of mode share to travel time and cost.   

6. Values of time.  The distribution, mode choice and assignment models assume values of time 
based on 1995 measurements and an assumed stable relationship over time between income 
and value of time.  The model predictions are sensitive to the assumed value of time because 
the new transit service is much faster and more expensive than the current downmarket sub-
modes. 

7. Relative values of wait time, walk time and in-vehicle time.  The model assumes walk and 
wait time are twice as onerous as in-vehicle time.  Although walk and wait time are generally 
more onerous than in-vehicle time, a range of factors, as small as 1.25 or less and as large as 
3 or more can occur, depending on the circumstances and exact definitions. 
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8. Factors affecting attractiveness relative to other upmarket modes.  The assumed boarding and 
transfer penalties are biased in favor of the new service; stairclimbing and crowding is likely 
to occur in some of the busiest stations, with an effect not incurred by existing services 
because of physical  layout; differences in comfort, reliability, image and convenience are 
unaccounted for and may be substantial; public operators threatened by the new service may 
respond competitively; and forecasts do not account for the future opening of other planned 
transit services. 

9. Errors in the measurement of network times and costs.  The revenue and ridership predictions 
depend on the accurate estimation of travel times and costs for all mode and path alternatives, 
and the accurate calibration of the model so that its predictions match actual experience for 
the model’s base year.  Travel times were calibrated by matching predicted travel times with 
observed travel times on 30 selected routes.  Mode volumes were calibrated by matching 
predicted mode-specific volumes crossing screenlines.  The model was carefully calibrated, 
but it did not perfectly match prediction with reality, the measurement of ‘reality’ involved 
estimation and assumptions, and the number of calibrated counts was very small. 

Competitive and operating factors affecting mode choice and network model prediction 

10. Operating speeds and headways.  The forecasts are based on unrealistically optimistic 
headways and operating speed assumptions that don’t account for trainset down-time or 
suboptimal dwell times. 

11. Roadway improvements.  The competing travel times for private mode and other transit 
services may improve more than was assumed.  

12. Feeder systems and fare coordination.  The forecasts ignore anticipated addition of feeder 
service and fare coordination for the new service. 

Factors affecting adjustments to model predictions 

13. Induced resident demand.  Model forecasts are arbitrarily adjusted upward by approximately 
10% to account for the “release of suppressed demand”.  In principle, this is a valid 
adjustment, but its size has a large degree of uncertainty and, in our judgment, is biased 
upward. 

14. Induced tourist demand.  Similarly, 50,000 trips per day are added to the model forecasts to 
account for tourist demand over and above the modeled tourist demand.   

15. Annualization factor.  The consultants use a factor of 350 to annualize the estimated weekday 
demand, arguing that the rate for mass transit systems in Southeast Asia are generally in the 
range of 340 to 355.  Uncertainty and bias in this factor propagate into annual revenue 
forecasts. 

16. Ridership lost to startup time lag.  The forecasts ignore the expected gradual build-up of 
patronage following opening of the new transit service, tied to delay in traveler response and 
achievement of expected service levels. 
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Unconsidered potential sources of uncertainty and bias 

Despite the authors’ efforts to comprehensively account for sources of uncertainty and bias, a 
few important potential sources were ignored.  First, the pricing scheme and fare levels were not 
finalized at the time of the study, and some pricing flexibility is allowed over time.  Second, 
unexpected variation in the spatial distribution of demand could activate capacity constraints.  
Third, errors in inflation assumptions introduce uncertainty in the forecasts.  The estimated 
probability distributions that follow do not account for uncertainty and bias caused by these 
specific factors. 

Estimating Probability Distributions of Revenue and Ridership 

After an error variable was identified for each potential source of bias and uncertainty, revenue 
and ridership probability distributions were developed for each forecast year in three steps.  First, 
the forecasting model was used to estimate demand elasticity for each error variable.  Second, an 
approximate discrete probability distribution was estimated for each error variable and forecast 
year, using the best available information.  Third, equations (1) and (2) were used to estimate the 
combined effect of the 16 error variables.  Steps 1 and 2 are described below for 2001 for four of 
the 16 error variables, one from each category.  This is followed by a figure illustrating the 
independent 2001 distributions (step 2) for all 16 error variables and another figure showing the 
2001 estimated revenue distribution (step 3). 

Total demand model error (error source 2) 

In addition to uncertainty of economic growth forecasts, identified as source 1, uncertainty exists 
in the model’s prediction of total demand, given the economic forecasts.  That is, even if the 
economic forecasts are correct, the model can still predict the wrong total demand, because of 
errors in the model’s specification of how total demand depends on the economic factors.  The 
total demand models are built on four key assumptions:  (1) The distribution of vehicle 
ownership, given average income, is stable over time; (2) The distribution of household size, 
given average household size, is stable over time, (3) household trip generation is constant with 
respect to household size and vehicle ownership, and (4) the 1995 roadside survey, though not a 
probability sample, is a more reliable measure than the household interview of the incidence of 
non-home-based and home-based trips for purposes other than work or school. 

Of these assumptions, the one about auto ownership is most suspect.  We have anecdotal 
evidence that, in recent years, income has concentrated in the top income quintiles.  If this trend 
has occurred since 1995, then vehicle ownership may have declined relative to average income.  
On the other hand, if the cost of vehicle ownership rises (or falls) relative to the cost of living, 
then auto ownership will probably fall (or rise) relative to income.  Assumptions (2) through (4) 
also introduce error, but again we have no strong evidence of systematic bias, and here the 
variance they introduce is probably small. 

Ridership and revenue elasticities with respect to total demand were estimated using the 
consultant’s model forecasts for 2001 under two different total demand assumptions.  An 
examination of these and other model forecasts, in light of the identified weaknesses in the 
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models, indicated that the modeled elasticities were probably overestimated, so we discounted 
the raw elasticity estimates by 10%.  The elasticity estimation results are in Table 1. 

Table 1:  Elasticity estimates for error source 2 

Daily demand case 1 case 2 % change modeled 
elasticity 

discounted 
elasticity 

( ) 2
re

Assumed Total 
(million trips) 

17.05 18.16 6.51   

Modeled Ridership 
(million passengers) 

.641 .591 8.46 1.30 1.17 

Modeled Revenue 
(monetary units) 

18.0 19.6 8.89 1.37 1.23 

 

To estimate the distribution of the total demand model error, we assume a symmetric bell-shaped 
distribution with a standard error of approximately 5% for 2001, and approximate it with three 
probability mass points.  Applying the elasticities and probabilities, we calculate ridership and 
revenue probabilities and expectation, given uncertainty in the total demand attributable to total 
demand model error. 

Table 2:  Year 2001 ridership and revenue distribution, considering uncertainty in consultant’s estimate of 
total demand attributable to model errors (source 2) 

Total demand, relative to consultant’s estimate,
(uncertainty attributable to model errors) 

( ( ) ( )
2 2/s px x ) 

Probability 
( ( )

2( )sp x ) 
2001 Daily 
Ridership  

(000’s) 

2001 Daily 
Revenue 

(Monetary 
units) 

.9 (i.e., total demand is only 90% as large as the 
consultants estimate) 

.1 566 17.2 

1.0 .8 641 19.6 
1.1 .1 716 22.0 
Expected Values  641 19.6 

 

Values of time (error source 6) 

In the model system, given the predicted number of trips produced at and attracted to each 
geographic zone, the model assumes values of time in distributing the trips among zone pairs 
and, for each pair, estimating each mode’s share of trips and predicting the trip route.  The model 
predictions are sensitive to the assumed value of time because the new transit service is much 
faster and more expensive than the current down-market service.  The consultant estimated the 
1995 values of time as 25% of average household hourly income, as calculated from a 1995 
home interview survey.  Future year values are indexed to average income with changes 
resulting from the assumed economic growth, so errors in income forecasts cause errors in 
assumed value of time.  Although error source 1 accounts for this, there are additional sources of 
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error in the value of time estimates.  These include measurement error in 1995 and changes over 
time in the relationship between income and value of time. 

Using model forecasts, as we did for error source 2, we calculate ridership and revenue 
elasticities ( ) of  .69 and .76, respectively. 6

re

We judge that values of time could range between 10% and 40% of income, and we have no 
evidence of bias. so we use a discrete approximation of a triangular distribution, in which the 
peak occurs at the consultant’s estimate of .25.  Applying the elasticities and probabilities, we 
calculate ridership and revenue probabilities and expectation, given uncertainty in the values of 
time. 

Table 3:  Year 2001 ridership and revenue distribution, considering uncertainty in values of time (source 6) 

Possible values of time,  
relative to consultant’s estimates 

( ( ) ( )
6 6/s px x ) 

Probability 
( ( )

6( )sp x ) 
2001 Daily 
Ridership 

(000’s) 

2001 Daily 
Revenue 

(Monetary 
units) 

.17/.25 (i.e., VOT is 17% of income instead of 25%) .22 436 14.8 
   1 .56 641 19.6 
.33/.25 (i.e., VOT is 33% of income instead of 25%) .22 783 24.4 
Expected Values  641 19.6 

 

Operating speeds and headways (error source 10) 

Headways and operating speed are two of the most important service attributes affecting 
demand.  The consultant’s forecasts assume operating speeds of 35kph with 2 minute headways, 
systemwide, through all hours of operation.  However, we expect lower service levels than this. 
The main reason is that the fleet size, which can increase only with a 2-year lead time, places a 
strict limit on achievable headways at a given operating speed.  If two contractually required 
spare trainsets are kept on hand, and the rest of the fleet operates at 35 kph, average headways 
are between 2.65 and 2.8 minutes.  If dwell times increase by 15 seconds, then speeds drop by 
2.5 kph and headways increase by .2 minutes.  The loss of one train would increase headways by 
.13 minute. 

We estimate a one-sided probability distribution, approximated by a three outcome discrete 
distribution with a high probability of levels below but near the planned operating conditions, 
and low probabilities of actually achieving the estimates or falling far below the performance 
targets.  From model elasticity tests of changes in speed and headway, we calculate ridership 
and revenue elasticities ( ) of  .74 and .78, respectively, measured with respect to the speed 
changes.  Applying the elasticities and probabilities, we calculate ridership and revenue 
probabilities and expectation, given uncertainty in the operating speeds and headways. 

10
re
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Table 4:  Year 2001 ridership and revenue distribution, considering the possibility of not meeting assumed 
speeds and headways. 

Possible operating speeds ( ( )
10

sx ) and headways Probability 
( ( )

10( )sp x ) 
2001 Daily 
Ridership 

(000’s) 

2001 Daily 
Revenue 

(Monetary 
units) 

29.75 kph and 3.5 minute headways 
(speeds 15% slower than assumed) 

.1 570 17.3 

33.25 kph and 2.5 minute headways 
(avg. 5% slower than assumed) 

.8 617 18.8 

35 kph and 2 minute headways (as assumed) .1 641 19.6 
Expected Values  615 18.7 

 

Induced resident demand (error source 13) 

The consultant modified their modeled ridership forecasts upward by 9% each year through 2005 
and 12.5% thereafter to account for the release of suppressed demand.  In principle, this is a valid 
adjustment, since it is widely believed that the total demand for travel increases when the time 
and/or cost of travel goes down, and the total demand model does not take this into account.  
However, there is no evidence substantiating the choices of 9 and 12.5 percent.  The assumption 
of suppressed demand has a large degree of uncertainty and, in our judgment, is biased upward. 

We use the information at hand and judgment to estimate a probability distribution of the 
consultant’s multiplier.  First, we choose the interquartile range and, assuming a uniform 
distribution within it, we mass its 50% probability at its midpoint.  We then identify worst and 
best cases and, for each, mass 25% of the probability one third of the way between the 
interquartile threshold and the extreme.  Row 2 of Table 5 shows the assumed demand factors for 
the interquartile range, worst case and best case, as well as the factors for the 3 mass points.  
Since these factors act on the modeled forecast, we translate them into factors that act on the 
consultant’s final forecast, since it includes several post-model adjustments. These factors are 
shown in row 3 of Table 5 and in Table 6 where, along with the probabilities of each mass point, 
they are used to estimate the distribution of ridership and revenue.  Since the resulting multipliers 
act directly on the consultant’s final forecast, we use elasticity of 1 in applying equation (2) for 
this error source. 

9 



Table 5:  2001 Uncertainty and potential bias attributed to consultant’s estimates of induced resident demand 

 Worst 
case 

Lower 
mass 
point 

Lower 
quartile 
thresh-

old 

Central 
mass 
point 

Upper 
quartile 
thresh-

old 

Upper 
mass 
point 

Best 
case 

Demand with resident induced 
demand, as a proportion of the 
modeled demand  

1.01 1.02 1.025 1.05 1.075 1.10 1.15 

Demand with resident induced 
demand, as a proportion of the 
consultant’s forecast 

 0.941  0.966  1.008  

 

Table 6:  Distribution of 2001 demand attributed to uncertainty and bias in consultant’s estimates of induced 
resident demand 

Demand multiplier 
( ( ) ( )

13 13/s px x ) 
Probability 
( ( )

13( )sp x ) 
2001 Daily 
Ridership 

(000’s) 

2001 Daily 
Revenue 

(Monetary 
units) 

.941 .25 603 18.4 

.966 .5 619 18.9 
1.008 .25 646 19.8 
Expected Values  622 19.0 

 

Estimated 2001 revenue distribution 

Figure 1 plots marginal probability masses for each of the error sources for year 2001 revenue, 
developed directly from the above estimates for four of the 16 error sources, and estimates 
similarly made for the other 12 sources.  The figure is useful for visualizing the relative 
importance of the sources in causing bias and uncertainty. 

The estimation of discrete approximations of the marginal probability distributions resulted in 3 factors with 
2 mass points, 12 factors with 3 mass points and one factor with 4 mass points.  The set S therefore includes 

 scenarios.   3 12 12 3 4 17,006,112=

Table 7 shows the values used to calculate probability and revenue of the most pessimistic 
scenario, drawn from above for four of the error sources, and from similar estimates made for the 
remaining 12 sources.  Using these estimates in equation (1) yields the probability of the 
pessimistic scenario, p(s) = 1.434*10-12 .  Using them in equation (2) with the consultant’s 
revenue estimate of 6870 monetary units yields the pessimistic revenue estimate, rs = 1324 
monetary units.  Making this calculation for all the scenarios yields an estimated cumulative 
distribution function, which is shown in Figure 2.  In the case study, the developer was most 
interested in the 10th percentile of the CDF; that is, they wanted a conservative revenue 
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projection, with only a 10% chance of realizing less than the projected revenue.  The analysis 
provided a 10th percentile revenue estimate of 3624 monetary units. 
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Note:  Bubbles on a row represent the source’s probability mass points.  Each bubble’s horizontal location corresponds to its revenue estimate 
and its area corresponds to its probability.  6.86 is the consultant’s revenue estimate. 

Figure 1:  Estimated 2001 Revenue Probability Masses for Each Error Source 
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Table 7:  Values used to calculate the probability and revenue of the most pessimistic scenario 

Source 
index 
( ) k

Elasticity
 ( ) r

ke
Ratio of 

factor values
( ( ) ( )/s p

k kx x ) 

Marginal 
probability
( ( )( )s

kp x ) 

1 1.4 .92 .3 
2 1.23 .9 .1 
3 1 1 .334 
4 1 1.007 .333 
5 0.48 .9 .05 
6 0.76 .68 .22 
7 -0.1 .625 .25 
8 1 .806 .25 
9 0.42 .9 .1 
10 0.78 .85 .1 
11 1.58 .95 .1 
12 1 1 .4 
13 1 .941 .25 
14 1 .935 .25 
15 1 .924 .25 
16 1 .7 .1 

 

0.00

0.25

0.50

0.75

1.00

R
Prob(Revenue < R) 0.000 0.005 0.020 0.068 0.151 0.272 0.380 0.519 0.650 0.761 0.831 0.897 0.941 0.967 0.981 0.991 0.996 0.998 0.999

2000 2500 2900 3400 3900 4400 4800 5300 5800 6300 6700 7200 7700 8200 8600 9100 9600 1010 1050

 
Figure 2:  Estimated cumulative distribution function of 2001 revenue 

12 



The effects of errors in the estimation of the probability distribution 

The method used here to estimate the distribution of a variable of interest by quantifying sources 
of error is itself subject to error, especially of four major types.  First, an important source of 
error might be missed.  Second, the sources of error might be correlated, violating a basic 
assumption of the method.  Third, the estimated elasticity for one or more error sources might be 
wrong.  Finally, the probability distribution of an error source variable might be incorrect.  We 
illustrate each of these potential problems for the case study. 

The effect of missing an error source 

If a source of error is missed then the variance of the probability distribution will be 
underestimated.  The direction of bias will be opposite the bias caused by the missing error 
source. Figure 3 shows the estimated distribution when error source 13, related to induced 
demand, is missing from the calculation. 

0.00

0.25

0.50

0.75

1.00

1400 2400 3400 4400 5400 6400 7400 8400 9400

2001 Revenue (Monetary Units)

Error Source 13 Missing

Base Case

 

Figure 3:  2001 revenue CDF with and without error source 13 missing 

The effect of correlation among error sources 

If two sources of error are treated as independent but the errors they induce are actually 
positively correlated, then the variance of the probability distribution will be underestimated.  
Conversely, if they are negatively correlated, then the variance will be overestimated.  We 
checked the effect of maximum positive correlation between sources 13 (induced resident 
demand) and 14 (induced tourist demand) by combining the two factors and assuming that their 
worst case, middle and best case scenarios coincide.  Likewise, we checked the effect of negative 
correlation by combining them and assuming that 13’s best case occurs with 14’s worst case, and 
vice versa.  Although the expected effect occurred, in this case it was so small that differences in 
the CDF graphs were not visually apparent, so no figure is provided. 
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The effect of incorrect elasticity estimates 

If magnitude of the elasticity of the measure of interest with respect to an error variable is 
underestimated, then the variance of the probability distribution will also be underestimated, and 
vice versa.  The effect on bias depends on the error source’s distribution.  Figure 4 shows the 
error distribution if the elasticity of revenue with respect to error variable 10 is 100% larger (1.56 
instead of .78). 

0.00

0.25

0.50

0.75

1.00

1200 2200 3200 4200 5200 6200 7200 8200 9200
2001 Revenue (monetary units)

Double elasticity for error source 10

Base Case

 

Figure 4:  2001 revenue CDF with doubled elasticity for error source 10 

The effect of an incorrect error variable probability distribution  

If the variance of an error variable is underestimated then the variance of the variable of interest 
will also be underestimated, and vice versa.  If an error variable’s estimated distribution 
incorrectly estimates bias, this will also bias the distribution of the variable of interest.  Figure 5 
shows the revised distribution if the distributions for error sources 13 and 14 are more 
pessimistic.  In the pessimistic scenario, the lowest revenue mass points for errors 13 and 14 
have probability of .75, the middle mass points have probability .2 and the highest have 
probability .05, instead of .25, .;75 and .25, respectively. 
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Figure 5:  2001 revenue CDF with pessimistic distributions for errors 13 and 14 

Combined effects 

If multiple errors occur in the estimation of error sources the combined effect can be larger than 
individual effects.  Figure 6 presents the lowest and highest revenue combinations of the 
individual effects examined above.  In the lowest combination, error source 13 is assumed to be 
present and positively correlated with error source 14.  Error source 10 is doubled from the base 
case, and the pessimistic probability distributions of error sources 13 and 14 are assumed.  The 
highest revenue case is like the base case, except error source 13 is assumed to be absent. 
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Figure 6:  2001 revenue CDF with lowest and highest revenue combinations from examples 

Although the cited examples do not span the range of possible errors encountered in using the 
presented method, they illustrate the fact that the distribution is an estimate, and is itself subject 
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to error.  The consequences can be significant.  Table 8 shows the 10th percentile for all the 
above examples of errors that might occur in the application of the method.  The 10th percentile 
ranges from 91% to 103% of the originally estimated 10th percentile. 

Table 8:  10th percentile of the estimated 2001 revenue distribution for various cases of errors in application 
of the presented method 

Case 10th 
percentile 
(Monetary 

Units) 

10th percentile as a 
proportion of 
original 10th 
percentile estimate 

Lowest case 3294 .91 
Double elasticity for error source 10 3441 .95 
Pessimistic distributions of errors 13 and 14 3481 .96 
Positive error correlation of sources 13 and 14 3606 1.00 
Original 10th percentile estimate 3624 1.00 
Negative error correlation of sources 13 and 14 3629 1.00 
Highest case (missing error source 13) 3738 1.03 

Conclusions 

We have demonstrated a practical procedure for using information about sources of uncertainty 
and bias in a travel demand forecast, or any other forecast, to estimate its probability distribution.  
This can be useful when information about the distribution, beyond the expected value, is 
needed.  The procedure produces an estimated probability distribution that, like the original 
estimate, is subject to error that should not be ignored. 
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