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ABSTRACT 

This paper presents an identification rule and insights for estimation of the class of error component logit kernel 
(EC) models—logit kernel (or mixed logit) models involving heteroscedasticity and subsets of alternatives with 
shared unobserved attributes.  EC includes analogs of nested logit (NL), cross-nested logit (CNL), paired 
combinatorial logit (PCL), heteroscedastic logit (HL), their combinations, and other generalized extreme value 
(GEV) forms.  The identification rule is necessary but not sufficient; however, it is simpler to use than the 
underlying necessary rank condition, and is adequate for complex model specifications.  A case study 
demonstrates the specification, identification and estimation (using maximum simulated likelihood (MSL) with 
shuffled Halton draws) of the type of model for which EC is useful—one with large choice set and a choice 
outcome consisting of two or more variables considered simultaneously.  It models a worker’s day activity 
pattern—the choice among 162 alternatives for completing the non-work portion of the day—with each 
alternative defining a configuration of optional tours and commute stops for maintenance and discretionary 
purposes.  The estimated EC is superior to a nested logit model, with significant covariance parameters for 
several overlapping subsets of the choice set.  The case study also demonstrates (a) the importance of testing for 
simulation error and using many draws in MSL simulation (in this case at least 1500 draws for each simulated 
probability), and (b) the pending practicality of estimating EC models for large multidimensional choice 
problems. 



Bowman, Logit kernel for large problems:  identification and estimation page 3 

Logit kernel (or mixed logit) models for large multidimensional choice problems:  
identification and estimation 

John L. Bowman, Ph. D., Research Affiliate, Massachusetts Institute of Technology, 5 Beals Street Apt. 3, 
Brookline, MA  02446, USA, voice: +1-617-232-3478, email: John_L_Bowman@alum.mit.edu, website: 
http://JBowman.net 
 
word count:  7221 + 9 tables = 9471  

ABSTRACT 

This paper presents an identification rule and insights for estimation of the class of error component logit kernel 
(EC) models—logit kernel (or mixed logit) models involving heteroscedasticity and subsets of alternatives with 
shared unobserved attributes.  EC includes analogs of nested logit (NL), cross-nested logit (CNL), paired 
combinatorial logit (PCL), heteroscedastic logit (HL), their combinations, and other generalized extreme value 
(GEV) forms.  The identification rule is necessary but not sufficient; however, it is simpler to use than the 
underlying necessary rank condition, and is adequate for complex model specifications.  A case study 
demonstrates the specification, identification and estimation (using maximum simulated likelihood (MSL) with 
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LARGE MULTIDIMENSIONAL CHOICE PROBLEMS AND THE  ERROR COMPONENT LOGIT 
KERNEL (EC) MODEL 

This paper provides an identification rule and insights for estimation of logit kernel (or mixed logit) models for 
large multidimensional choice problems.  These are problems with large choice sets in which the choice outcome 
consists of two or more variables considered simultaneously, each variable representing one “dimension” of 
choice.  In the field of transportation the classic large multidimensional problem is the joint mode-destination 
choice.  Current passenger travel choice modeling problems involve many more dimensions, including activity 
participation—for all purposes—and its accompanying travel modes, destinations and timing for all travel by all 
household members during the course of a day or even longer periods.  In large multidimensional choice 
problems, it is almost a given that shared unobserved attributes exist among various subsets of alternatives, and 
heteroscedasticity is also likely.   

Model forms exist that capture correlation in multidimensional problems.  Nested logit (NL) is used for 
two-dimensional problems in which nests within one dimension share unobserved attributes more significantly 
than do nests in the other dimension.  Ben-Akiva and Lerman (1) describe this for the classic mode-destination 
choice problem; NL must assume that correlation among alternatives sharing the same mode are insignificant, or 
that correlation among alternatives sharing the same destination are insignificant.  NL extends to more 
dimensions.  However, even with two dimensions its conditional independence assumptions can be untenable; 
ignored correlations may be responsible for difficulties in finding a nested specification with the desired 
characteristic that all nesting parameters fall between zero and one.  The Paired combinatorial logit (PCL) (2) 
allows shared unobserved effects in multiple dimensions, defining each pair of alternatives as a dimension.  In 
concept, the approach could probably be generalized to accommodate n-tuples of alternatives, but the problem 
would become unwieldy, and the generalization has apparently not been attempted.  Cross-nested logit (CNL) 
(3) generalizes nested logit to accommodate shared unobserved attributes among alternatives within nests in 
more than one dimension.  In the mode-destination problem, it allows for shared unobserved attributes among 
alternatives with the same mode, and (simultaneously) shared unobserved attributes among alternatives with the 
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same destination.  The CNL could probably be generalized to accommodate nesting in three or more dimensions.  
However, this would also become unwieldy, and has apparently not been implemented.  Heteroscedastic logit 
(4) accommodates variances that differ across individual alternatives, but it is unable to capture correlation 
among multiple alternatives in multiple dimensions, a hallmark of multidimensional problems.  The above forms 
all belong to the Generalized extreme value (GEV) family of models (5) along with several other forms that 
have been developed to capture a variety of patterns of correlation among alternatives (6).  

The Logit kernel model used in this paper is more general than, and can be used to approximate any of 
the above model forms.  It is an MNL model with random parameters, and the probabilities are calculated by 
integrating over the distribution of the random parameters.  McFadden and Train (7) have proven that it can 
approximate any random utility model.  They call it Mixed multinomial logit (MMNL), because it is essentially 
a mixture of multiple (infinite if a random parameter has a continuous distribution) multinomial logit models.  
Train’s text (8) is an excellent reference regarding MMNL and Bhat (9) provides an extensive review of GEV 
and MMNL models. 

The Factor analytic logit kernel model, described in detail by Walker et al (10) is a particular—but 
still very flexible—form of logit kernel, based on the factor analytic structure proposed by McFadden (11) for 
the probit model.  It takes the following form (using notation of Walker et al (10)): 

n n n nU X F T nβ ζ ν= + +  ,    (1) 

cov( )nU = 2' ' ( / )
nn n JF TT F g Iµ+     (2) 

(denoted as ),  n nΩ = Σ + Γn

)where:  is a  vector of utilities; nU ( 1nJ ×

 nX  is a ( )nJ K×  matrix of explanatory variables; 

 β  is a (  vector of unknown parameters; 1K × )

 nF  is a ( )nJ M×  matrix of factor loadings, including fixed and/or unknown parameters; 

  is a (T )M M×  lower triangular matrix of unknown parameters, where 
' ( n nTT Cov T )ξ ζ= = ; 

 nζ  is a (  vector of i.i.d. random variables with zero mean and unit variance; and 1M × )

 nν  is a (  vector of i.i.d. Gumbel random variables with zero location parameter and 

scale equal to 

1nJ × )

0µ > . The variance is 2/g µ , where g  is the variance of a standard Gumbel 

( ). 2 / 6π

The unknown parameters in this model are µ , β , those in nF , and those in T .  nX  are observed, 
whereas nζ  and nν  are unobserved.  The choice probability is ( ) ( | ) ( , )MIP i i n dζ ζ ζ ζ= Λ∫  , where ( , )Mn Iζ  

is the joint density function of ζ , and ( ) ( )( | ) jn jn nin in n
n

X F TX F T
n j Ci e e

µ β ζµ β ζζ
++

∈Λ = ∑ , an MNL model.  

The probability can be simulated by 1
ˆ( ) (1 ) ( | )d

ndP i i ζ== Λ∑DD  , where d
nζ  denotes draw  from the 

distribution of 
d

ζ .  This simulated probability can be used to simulate the likelihood function for maximum 
simulated likelhood (MSL) estimation of the parameters.  Once the parameters are estimated, it can be used 
directly (with simulation) for model predictions.  In this paper, subsequent references to “logit kernel” refer to 
this factor analytic form of logit kernel. 

There are good reasons to use one of the above model forms other than logit kernel if it adequately 
captures the important correlations.  In particular, in each case the choice probability has a closed form, so that 
estimation and application of the model can be accomplished without resorting to costly numercial 
approximation techniques such as Gaussian quadrature, simulated likelihood or simulated moments.  However, 
not only can logit kernel mimic all of these forms, it can also combine them with each other and with other 



Bowman, Logit kernel for large problems:  identification and estimation page 5 

forms, such as random parameters, and provides flexibility for extending them without much, if any, further 
theoretical development.  When they are combined and extended, the computational requirements increase, but 
the basic specification, estimation and application procedures remain the same.  Thus, for large multi-
dimensional problems, logit kernel is an appealing option. 

Table 1 shows the F matrix for examples of NL, CNL and PCL analogs, and various combinations.  In 
all cases F is composed of zeroes and ones, and the (unshown) T matrix is diagonal.  Each column of F defines a 
nest of alternatives, with a 1 in the column, that share unobserved attributes.  Some of these models have nests in 
multiple dimensions, defining a dimension as a group of non-overlapping nests (ie, within a dimension, an 
alternative can belong to no more than one nest).  Nest membership within a dimension is sometimes determined 
by the value of a categorical attribute, such as mode or destination. 

 

Table 1:  Logit kernel models (F matrix with shorthand label and description) 
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

NL(1:2) 
Nested logit analog with 
2 nests in one dimension 

 1 0 0
0 1 1
1 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

PCL(3) 
Paired combinatorial logit  
with 3 pairs 

1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 0 1
0 1 0 0 0 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 

NL(2:2,4) 
2-dimensional nested 
logit with 2 nests in the 
first dimension, and 4 
nests in the second 
dimension (2 subnests in 
each nest of the first 
dimension)  

 1 0 0
0 1 1
1 1 0
1 0 0
0 1 1
0 0 0
0 0 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

TCL(3) 
‘Tripled’ combinatorial logit 
with 3 triples 

1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 0 1
0 1 0 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 

CNL(2:2,2) 
2-dimensional cross-
nested logit with 2 nests 
in the first dimension and 
2 nests in the second 
dimension 

 1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

NL(2:2,4)CNL(1:2) 
Combination of NL and 
CNL 

1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 0 0 1 1 0 0
1 0 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 0 0 0 1
0 1 0 1 0 0 1
0 1 0 1 0 0 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 

CNL(3:2,2,3) 
3-dimensional cross-
nested logit with 2 nests 
in each of the first two 
dimensions, and 3 nests 
in the third dimension 

 1 0 1 0 0
1 0 0 1 1
1 0 1 1 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

NL(1:2)PCL(3) 
Combination of NL and 
PCL 

   1 0 1 0 0 0 1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 1
1 0 0 1 0 0 0 1 1 0 0 1 1 0
1 0 0 1 0 0 0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 1 0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

NL(2:2,4)CNL(2:2,3) 
PCL(3) 
Combination of NL, CNL 
and PCL 

 

These models do not address the issue of heteroscedasticity.  As specified, including the most general 
form of T matrix (with a distinct parameter on each element of the diagonal), each model imposes a particular 

form of heteroscedasticity.  For example, in NL(1:2), with T= 1
2

0
0

σ
σ

⎡ ⎤
⎢ ⎥⎣ ⎦

, the alternatives in the first nest (are 

assumed to) have equal variance, but different than the variance of alternatives in the second nest. 

It is possible to enforce a homoscedasticity assumption or any desired heteroscedasticity assumption by 
adding columns defining one-alternative nests and specifying a particular form for each diagonal element of T.  
This broadens the class of models to include ALL logit kernel models in which F is comprised of ones and 
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zeroes, and T is diagonal, referred to herein as Error component logit kernel (EC), as named by Ben-Akiva and 
Bolduc (12).  Table 2 shows F and T for several EC models, including the analogs of MNL, heteroscedastic 
logit, and three NL variations.  Among the NL variations, only the first replicates a pure NL model, with 
homoscedastic disturbances and shared unobserved attributes of equal magnitude in both nests. 

Table 2:  Error component logit kernel models (EC) 
F T Description 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1
1

1
1

1
1

1
1

0 0 0 0 0 0 0
0 0 0 0 0 00

0 0 0 0 00 0
0 0 0 00 0 0

0 0 00 0 0 0
0 00 0 0 0 0

00 0 0 0 0 0
0 0 0 0 0 0 0

σ
σ

σ
σ

σ
σ

σ
σ

⎡
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎤

 

MNL 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1
2

3
4

5
6

7
8

0 0 0 0 00 0
0 0 0 0 000

0 0 0 000 0
0 0 0 00 0 0

0 0 00 0 00
0 00 0 00 0

00 0 00 0 0
0 0 00 0 0 0

σ
σ

σ
σ

σ
σ

σ
σ

⎡
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎤

 

Heteroscedastic Logit 

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1
1

0
0

σ
σ

⎡ ⎤
⎢ ⎥⎣ ⎦

 NL(1:2)—Homoscedastic with 
shared unobserved attributes of 
same magnitude in both nests 

1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1
2

2
2

2
2

1
1

1
1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 00

0 0 0 0 0 0 00 0
0 0 0 0 0 00 0 0

0 0 0 0 00 0 0 0
0 0 0 00 0 0 0 0

0 0 00 0 0 0 0 0
0 00 0 0 0 0 0 0

00 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

⎡
⎢
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥
⎥

 

NL(1:2)—Homoscedastic with 
shared unobserved attributes of 
different magnitude in the two nests 

1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1
2

3
4

5
6

7
8

9
10

0 0 0 0 0 0 00 0
0 0 0 0 0 0 000

0 0 0 0 0 000 0
0 0 0 0 0 00 0 0

0 0 0 0 00 0 00
0 0 0 00 0 00 0

0 0 00 0 00 0 0
0 00 0 00 0 0 0

00 0 00 0 0 0 0
0 0 00 0 0 0 0 0

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

⎡
⎢
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥
⎥

 

NL(1:2)—Heteroscedastic with 
shared unobserved attributes of 
different magnitude in the two nests 

IDENTIFICATION OF EC 

Introduction 

As Walker et al (10) point out, identification of logit kernel is an important and non-trivial task, because of the 
joint presence of the IID Gumbel disturbance and the probit-like covariance matrix.  They review the necessary 
Order condition and sufficient Rank condition (for determining the number of identifiable covariance 
parameters) and what they call the Equality condition (for choosing restrictions to uniquely identify the 
parameters while preserving equality of the restricted differenced covariance matrix with its unrestricted 
counterpart).   They then use these conditions to establish simple sufficient rules for correctly identifying and 
normalizing two kinds of logit kernel models:  one-dimensional nesting (like the simplest nested logit) and 
heteroscedasticity:  
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Nesting 

2M = nests 1M −  parameters identified and normalization is arbitrary 

3M ≥ nests M parameters identified 

Heteroscedasticity 

2J = alternatives 0 parameters identified 

3J ≥ alternatives 1J −  parameters identified and must constrain the minimum variance term to 0 
 

The strengths of the rules are their simplicity and sufficiency.  Unfortunately, they only cover a small 
subset of the EC models with which we are concerned.   

This section presents a rule for identification and normalization of all EC models.  The rule is necessary 
but not sufficient; it can be viewed as an enhancement of the order condition, providing a more refined method 
of discovering identification mistakes, but it does not in all cases guarantee that a particular specification is 
correctly identified.  However, it correctly handles all the particular models presented in this paper.  In most 
cases it identifies and normalizes them.  In a few cases it detects the need to rely on a formal (and more tedious) 
application of the Rank and Equality conditions. 

Overview of the EC identification rule 

1. Order condition.  This is the standard Order condition, necessary for identifying any logit kernel model.  It 
provides an upper bound on the number of identifiable parameters that is rarely a binding constraint. 

2. Complementary pairs.  For any complementary pair of nests, at most one covariance parameter can be 
identified.  “Complementary pair” means two nests that define two mutually exclusive and collectively 
exhaustive subsets of the universal choice set.  The two nests are called complements.  In terms of the F 
matrix, a complementary pair consists of two columns of F for which there is one ‘1’ and one ‘0’ in each 
row.  Complementary pairs must be restricted in any way that preserves non-negativity for both T-elements 
of the pair and allows their sum of squares to be expressed with a single parameter.  (This is satisfied by 
restricting either member’s covariance parameter to zero, or restricting them to equal each other.)  This is a 
generalization of the nesting rule for M=2 nests. 

3. Heteroscedasticity.  At most J-1 covariance parameters can be identified for the 2J possible columns (J 
complementary pairs) of F representing single alternatives and their complements.  This broadens Walker, et 
al’s heteroscedasticity rule for alternatives, taking into consideration the complements of the 
heteroscedastic alternatives.  If the columns of F include only single alternatives and their complements, 
then a satisfactory normalization restricts both members of the pair with smallest sum of variance to 0, and 
employs complementary pair normalization for all other pairs.  A simple normalization rule has not been 
determined for the general class of EC models with a mixture of heteroscedastic and other columns. 

3J ≥

4. Subsets.  Given choice set  of size C J , and any subset  of size C J = 2, 3, 4 or 5, it may be the case that at 

most 1
J
i i=∑ parameters (3, 6, 10 or 15, respectively) can be identified for the 2J 1− (i.e. 3, 7, 15 or 31, 

respectively) possible non-empty subsets of C and their 2J 1− complements.  The pattern suggests that the 
rule may hold for J >5, but this has not been proven.  No simple normalization rule has been determined, 
although there is evidence that for J =3 the normalization is arbitrary and for J >3 it is not.  Fortunately, 
the subset rule applies only to very complex EC specifications.  In many cases, it is possible to simply 
confirm that the subset rule does not apply, and then to apply the first three parts of the EC identification 
rule. 

The entire rule can be stated succinctly as follows: 
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EC identification and normalization rule 

Identification: 

For any EC model (logit kernel with factor matrix F comprised of 1s and 0s, and diagonal matrix T), no 
more than 

  (3) 1 2min[ ( 1) / 2 1, min( , 1)]I J J M C H C J= − − − + − −

 covariance parameters can be identified, where: 
J is the size of the universal choice set C 
M is the number of unique columns of F with at least 2 and less than J-1 nested alternatives 
C1 is the number of complementary pairs among the M columns 
H is the number of unique columns with 1 or J-1 nested alternatives 
C2 is the number of complementary pairs among the H columns 

Normalization: 

All complementary pairs must be restricted in any way that preserves non-negativity for both T-
elements of the pair and allows their sum of squares to be expressed with a single parameter.  (This is 
satisfied, for example, by restricting either member’s T-element to zero, or restricting both to equal each 
other.) 

Among the J possible complementary pairs of columns with 1 and J-1 nested alternatives, an additional 
normalization may be required.  If these are the only columns of F , then a satisfactory normalization 
restricts both members of the pair with smallest sum of variance to 0, and employs complementary pair 
normalization for all other pairs.  A simple normalization rule has not been determined for the general 
class of EC models with a mixture of heteroscedastic and other columns. 

The number of identifiable parameters may be less than I if for any choice subset C of size J = 2, 3, 4 

or 5, more than 1
J
i i=∑ parameters (3, 6, 10 or 15, respectively) have been specified for the  

possible non-empty subsets of C and their 2

2 1J −

1J − complements.   
 

Support for the EC identification and normalization rule 

Complementary pair identification.  Walker et al (10) demonstrate their nesting rule for M=2 nests with the 
following example (Example 1): 

1 0
1 0
0 1
0 1
0 1

F
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 1
2

0
0T σ

σ
⎡ ⎤= ⎢ ⎥⎣ ⎦

, 

2
11 22 2
11 22 2

2

2 /
/( )

/
2 /

g
gV

g
g

σ σ µ
σ σ µ

µ
µ

∆

⎡ ⎤+ +
⎢ ⎥+ +Ω = ⎢ ⎥
⎢ ⎥
⎣ ⎦

, 
1 1 2
1 1 1( ) 0 0 1
0 0 2

J V
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

, . ( ) 1 1rank J − =

In addition to the F and T matrices, the key outputs of a formal test of the rank condition are shown above, 
including the unique terms of the vectorized differenced covariance matrix, denoted , its jacobian, 
denoted 

(V ∆Ω )
( )J V , and the rank of the jacobian minus 1, indicating the number of identifiable parameters .  They 

note that only the sum 11 22( )σ σ+  can be identified.  This is because the two variance terms always appear 
together as a sum in , and it results in duplicate columns of (V ∆Ω ) ( )J V .  As it turns out, for every distinct pair 
of complementary columns of F with a corresponding pair of unique parameters iσ and jσ  on the diagonal of T, 

the variance terms iiσ and jjσ  always appear together as a sum in (V )∆Ω , and a duplicate pair of columns 

occurs in ( )J V .  This can be shown to be true regardless of the presence of any other columns of F (see 
Appendix), and results in the complementary pair rule. 

Example 2 demonstrates the rule in the case where two additional complementary columns are added to 
the previous example.  In this and subsequent examples the T matrix is not shown, but is a diagonal matrix with 
parameter jσ in column j.  With the addition of a complementary pair of F columns comes a duplicate pair of 
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J(V) columns, so at most one more parameter is identifiable.  In this case no other rules further limit the number 
of identifiable parameters: 

1 0 1 0
1 0 1 0
0 1 1 0
0 1 0 1
0 1 0 1

F
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2
11 22 33 44 2
11 22 33 44 2

33 44 2
2

33 44 2

2 /
/

/( )
/

2 /
2 /

g
g

gV
g

g
g

σ σ σ σ µ
σ σ σ σ µ

σ σ µ
µ

σ σ µ
µ

∆

⎡ ⎤+ + + +
⎢ ⎥+ + + +⎢ ⎥+ +Ω = ⎢ ⎥
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1 1 1 1 2
1 1 1 1 1
0 0 1 1 1( ) 0 0 0 0 1
0 0 1 1 2
0 0 0 0 2

J V

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, . ( ) 1 2rank J − =

 

Complementary pair normalization.  Walker et al (10) argue that, because the model identifies the sum 
11 22( )σ σ+  , any normalization of  11σ and 22σ  is acceptable that expresses this sum with one parameter.  

When a specification includes two or more complementary pairs of nests, the same argument applies 
independently to each complementary pair.  

Heteroscedasticity identification.  The complementary pair rule implies that the variance of a lone alternative 
in a heteroscedastic specification cannot be identified separately from the shared unobserved attributes of  the 
remaining J-1 alternatives, because the two columns of F corresponding to these two parameters are a 
complementary pair.  This implies that Walker et al’s heteroscedasticity rule—that at most J-1 parameters can be 
identified for heteroscedastic terms—can be broadened to say that at most J-1 parameters can be identified for 
the set of all columns of F comprising single alternatives and their complements.  Example 3 demonstrates this 
limit for the case with four alternatives: 

1 0 0 1 0 1 0 1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0

F
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

, 

2
11 22 77 88 2

77 88 2
33 44 77 88 2
55 66 77 88

2 /
/( )

2 /
2 /

g
gV

g
g

σ σ σ σ µ
σ σ µ

σ σ σ σ µ
σ σ σ σ µ

∆

⎡ ⎤+ + + +
⎢ ⎥+ +Ω = ⎢ ⎥+ + + +⎢ ⎥+ + + +⎢ ⎥⎣ ⎦

, 
1 1 0 0 0 0112
0 0 0 0 0 0111( ) 0 0 1 1 0 0112
0 0 0 0 1 1112

J V
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

, ( ) 1 3rank J − = . 

 

Heteroscedasticity normalization.  The broadened identification rule makes it apparent that in a pure 
heteroscedastic specification, an implicit normalization is occuring; the parameter of each alternative’s 
complement is assumed to equal zero.  If this assumption is relaxed for any of these complements, the 
normalization rule for complementary pairs allows for any normalization of the pair that expresses the sum with 
one parameter.  In such a case, however, Walker et al’s normalization rule must broaden to deal with the 
complements.  It is satisfactory to set to zero the smallest sum  among the complementary pairs 

involving a heteroscedastic alternative.  Walker et al’s normalization argument still applies, with  

substituting for the heteroscedastic variance.  In essence, 

( ii jjσ σ+ )

( )ii jjσ σ+

jjσ was lurking in their argument, but with an assumed 
value of 0. 

However, a simple normalization rule has not been determined for the general class of EC models with 
a mixture of heteroscedastic (including complements) and other columns, where it is possible that correlations 
among alternatives might cause the Equality condition to be violated under the simple heteroscedasticity 
normalization. 

Subsets.  As it turns out, the order condition, complementary pair rule and heteroscedasticy rule, when taken 
together, as in equation (3) are necessary (as argued above) but not sufficient.  Additional limits apply when 
many nests are specified for any particular subset of alternatives.  Given a model with a choice set  of size C J , 

any subset  of size C J  has  possible nests (including nests of one alternative), and for2J −1 J >2, it may be 

that less than of them can be identified.  Empirical tests of the rank condition have in all cases yielded 
results consistent with the following table of identification limits: 
 

2J −1
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Table 3:  Identification limits for subsets of EC nests    
J  maximum number of nests within 

any subset of sizeC J  ( ) 2 1J −

maximum number of identifiable nest 
parameters within any subset C of size J  
( 1

J
i i=∑ ) 

2 3 3 
3 7 6 
4 15 10 
5 31 15 

 

Example 4 illustrates a case where J=8 , and the top 3 ( J )  rows of F correspond to C : 

1 1 1 0 1 0 0
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Seven nests have been defined for , but only 6 parameters are identified; in J(V), columns 1, 5, 6 and 7 are a 
linear combination of columns 2, 3 and 4. 

C

Using the EC identification and normalization rule 

The rule can be translated into the following practical procedure for specifying, identifying and 
normalizing an EC model: 

EC identification and normalization procedure 

Step 1:  Hypothesize a non-redundant set of nests.  It may be helpful, although not necessary, to first 
specify sets of nests that span the choice set and then remove those that are undesired or redundant. 

Step 2:  Count the M nests with more than 1 and less than J-1 alternatives, find the C1 complementary 
pairs among them, and remove one member of each pair. 

Step 3:  Count the H nests with 1 or J-1 alternatives (heteroscedastic nests), find the C2 complementary 
pairs among them, and remove one member of each pair. 

Step 4:  If there is a full set of heteroscedastic nests (H-C2=J), then one more restriction of the 
heteroscedastic nests is required, although it is not clear at this point what restriction(s) will not violate the 
Equality condition.  Even if there is not a full set of heteroscedastic nests, it is possible that the heteroscedastic 
nests violate the Equality condition.  In either case, it may be necessary to estimate the model with more than 
one alternative normalization, to try to empirically determine the unbiased normalization. 

Step 5:  Verify that the order condition is not violated—that the remaining number of covariance 
parameters is less than J(J-1)/2. 

Step 6:  For each covariance parameter in the model, list the nests in the model that are subsets of it or 
its complement.  Remove one or more subset nests for each case where it appears that the number of identifiable 
subsets is exceeded. 

CASE STUDY:  THE ACTIVITY PATTERN MODEL 

The activity pattern model 

The case study involves the modeling of secondary activity and travel choices of workers on their workday.  
Together with the choice of the day’s primary activity purpose and location (in this case, work on tour), this 
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model defines the day’s activity pattern (13).  The activity pattern model is a major integrating component of the 
activity schedule model system, which also includes conditional models of locations, timing and travel mode for 
all the activity pattern’s stops.  Even by itself, and conditioned by primary activity, the activity pattern model is 
large and multidimensional.  In this case study it has a choice set of 162 alternatives defined by the feasible 
combinations of outcomes (shown in parentheses below) in four primary dimensions: 

• Presence and purpose of stops on the way to work (none, maintenance, discretionary) 
• Presence and purpose of work-based subtours (none, maintenance, discretionary) 
• Presence and purpose of stops on the way home from work (none, maintenance, discretionary) 
• Number and purpose of home-based tours (0, 1 maintenance, 2+ maintenance, 1 discretionary, 2+ 

discretionary, 1+ maintenance with 1+ discretionary) 

The case study starts with a nested logit model estimated from 1994 Portland Metro diary survey data, 
and tests for the presence of shared unobserved attributes in several dimensions. 

Hypothesized EC parameters and their identification 

We use the six step procedure presented above to hypothesize, identify and normalize the EC 
parameters of the model: 

Step 1:  Table 4 lists ten dimensions, each spanning the choice set, with suspected shared unobserved 
attributes.  In hypothesizing the importance of dimension 1, for example, we suspect that the lone pattern 
alternative with no extra stops or tours is viewed as distinctly different from the other 161 pattern alternatives in 
ways that the utility functions cannot capture.  In dimension 2, we similarly suspect an otherwise unexplained 
preference for, or against, the six pattern alternatives with no extra stops on the commute tour. 
 
The first nest in dimensions 1, 9 and 10 is redundant, so we remove it from dimensions 9 and 10.   

Table 4:  Hypothesized EC nests of the activity pattern model 
Dim-
en-
sion 

Kept 
Nest 

Description No. 
of 

alts 
1 1 Pattern has no secondary tours or stops 1 
  Pattern has secondary tours and/or stops 161 

2 2 Commute tour has extra stops 156 
  Commute tour has no extra stops 6 

3 3 Pattern has secondary tours 135 
  Pattern has no secondary tours 27 

4 4 Pattern has secondary maintenance tours and/or maintenance stops on primary tour 138 
  Pattern has no maintenance tours and no maintenance stops on primary tour 24 

5 5 Pattern has secondary discretionary tours and/or discretionary stops on primary tour 138 
  Pattern has no discretionary tours and no discretionary stops on primary tour 24 

6 6 Commute has stops before work 108 
  Commute has no stops before work 54 

7 7 Commute has stops after work 108 
  Commute has no stops after work 54 

8 8 Pattern has work-based subtour 108 
  Pattern has no work-based subtour 54 

9  Pattern has no secondary tours or stops 1 
 9 Pattern has secondary tours but no secondary stops on primary tour 5 
 10 Pattern has secondary stops on primary tour but no secondary tours 26 
 11 Pattern has secondary tours and secondary stops on primary tour 130 

10  Pattern has no secondary tours or stops 1 
 12 Pattern has maintenance tours and/or stops but not discretionary 23 
 13 Pattern has discretionary tours and/or stops but not maintenance 23 
 14 Pattern has maintenance and discretionary tours and/or stops 115 
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Step 2:  Of the 20 (M) nests with more than 1 and less than J-1 alternatives, the 14 in dimensions 2 
through 8 form 7 (C2) complementary pairs.  So, we remove one nest from each of dimensions 2 through 8.   

Step 3:  Only dimension 1 is left with nests having 1 or J-1 alternatives (ie, H=2), and it is a 
complementary pair (C1=1).  So, according to the normalization rule, we must remove one of the pair, and it 
doesn’t matter which one.  In this case the rule implies that it is impossible to distinguish between variance in the 
preference for a simple pattern with no secondary tours or stops, on the one hand, and shared unobserved 
attributes among all the other alternatives, on the other hand.  Empirically, they have identical effects.  In other 
words, an unusual preference for (or against) the simplest pattern is empirically no different than an unusual 
preference against (or for) all of the other alternatives arising from unobserved attribute(s) that they share. 

Step 4:  Of the 14 remaining nests—numbered as Kept Nests in Table 4—only nest 1 has 1 or J-1 
alternatives, so an additional restriction is therefore not necessary.  But it is still possible that this normalization 
of the 162 possible heteroscedastic nests could violate the Equality condition.  In the absence of nests 2 through 
14, this would only occur if the specified heteroscedastic alternative happened to have smaller variance than all 
the other alternatives.  But in the presence of nests 2-14, the evaluation of the chosen normalization is less 
straightforward.  In either case, we are left to assume that the normalization of the heteroscedastic alternative is 
okay, or to try and evaluate it empirically. 

Step 5:  With 162 alternatives and only 14 kept nests, the Order condition is easily satisfied. 

Step 6:  In 12 cases, a nest in the specification, or its complement, has subsets that are also in the 
specification (or a subset’s complement is in the specification.)  These cases are noted in Table 5, where each 
row presents a nest, its size, and its subsets: 

 
Table 5:   Cases where identification restrictions may be needed because of EC nest subsets 
Case Nest ( C ) J  subsets of  C
1 1-complement 161 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
2 2 156 6, 7, 8, 10, 11 
3 2-complement 6 1, 9 
4 3 135 9, 11 
5 3-complement 27 1, 10 
6 4 138 12, 14 
7 4-complement 24 1, 13 
8 5 138 13, 14 
9 5-complement 24 1, 12 
10 6-complement 54 1, 2-complement 
11 7-complement 54 1, 2-complement 
12 8-complement 54 1, 2-complement 

 

For example, in Case 3 the complement of nest 2 (patterns in which the commute tour has no extra 
stops) consists of 6 alternatives, and it has two subset nests in the specification, including nests 1 (no secondary 
stops or tours) and 9 (secondary tours, but no secondary stops on primary tour).  All of the nests with subsets 
have more than 5 alternatives, so the subset rule does not provide an explicit upper limit on the number of 
identifiable subsets.  However, each case has less than the 15 subset limit for nests with 5 alternatives, so it is 
unlikely that the presence of subsets restricts the number of identifiable parameters. 

Since the identification rule is necessary, but not sufficient, in order to be certain of identification and 
proper normalization we would need to complete the daunting task of explicitly verifying the rank and equality 
conditions.   However, the just-completed analysis gives us a high degree of confidence that this EC model 
specification is identified. 

Model estimation 

We specified and estimated two EC specifications.  The first, EC1, is the EC analog of the original NL model, 
including only the dimension 1 covariance parameter.  The second, EC14, includes all 14 covariance parameters, 
and is not augmented to maintain the NL homoscedasticity assumption.  Both models were estimated using the 
Maximum Simulated Likelihood (MSL) feature of ALOGIT 4EC (14), with probabilities simulated from 
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Shuffled Halton draws (15).  Shuffled Halton draws differ from a Halton sequence in one respect:  the sequence 
is randomly shuffled before drawing.  The Shuffled Halton method was chosen because, like the pure Halton or 
scrambled Halton methods,  it covers the simulation space more efficiently than quasi-random draws but, unlike 
them, it does not suffer from high inter-dimensional correlation when the specification has a large number of 
dimensions.  Estimation using shuffled uniform vectors (16) is another simple and even more efficient method 
that could have been used.  This is like shuffled Halton, except it shuffles evenly spaced numbers instead of a 
Halton sequence.  

Table 6 shows the estimation results for the two EC models, as well as maximum likelhood estimation 
results for the original MNL and NL models.  It also includes an additional EC model (EC4), in which 10 
insignificant EC14 covariance parameters are eliminated.  All five models include the same 57 utility function 
parameters.  Parameters 1-15 associate utility with each maintenance and discretionary activity in a pattern, 
regardless of the activity’s position in the pattern.  Parameters 16-55 alter a pattern alternative’s utility, 
depending on the position of maintenance and discretionary activities in the pattern.  These utility effects of the 
presence and position of maintenance and dicretionary activities depend heavily on the characteristics of the 
individual and the individual’s household.  Parameters 56 and 57 capture the sensitivity of pattern choice to land 
development and transportation attributes (such as activity opportunities, mode availability, travel time and 
travel cost), via expected utility measures (logsums) from conditional destination, mode, and time-of-day choice 
models.  For a detailed discussion of the factors affecting pattern choice, and the integration of activity pattern 
models with travel demand models, see Bowman (17).   

One important note regarding parameters 1-57 is that their values are not perfectly comparable across 
the models.  As more structural parameters (58-71) are introduced, more of the variation in the data is attributed 
to structural correlations, so less is attributed to the IID disturbance of the MNL component of the model, 
increasing its scale.  Since the IID scale is embedded in the utility function parameters, 1-57, its increase causes 
across the board increases in their estimated values.   

Our primary interest is in the covariance parameters, 58-71, where the potential advantage of the EC 
specification over the MNL and NL models can be tested.  Looking first at parameter 58, we note that the NL 
and NL analog (EC1) both capture the distinctiveness of the pattern with no secondary tours or stops (or, viewed 
another way, perceived but unspecified similarity of the other 161 alternatives).  The effect is statistically quite 
significant.  The sign and magnitude of the parameters is different, but this is because they measure the same 
covariance in different ways.  The same effect is even more pronounced in EC14, evidenced in the larger 
magnitude of parameter 58 in this model.  Looking at the rest of the EC14 parameters, we see that, although the 
NL specifications apparently capture the strongest nesting effect, several other parameters are also large and 
significant, especially 68, 64, and 70.  These capture the effect of shared unobserved attributes among three 
additional distinct (but overlapping) subsets of alternatives:  the 130 patterns with secondary tours AND 
secondary stops on the commute tour (68), the 108 patterns with stops on the way home from work (64), and the 
23 patterns with discretionary stops and/or tours but not maintenance (70).  An additional model (EC4) was 
estimated, retaining only these four covariance parameters.  The loglikelihood values are not perfectly 
comparable, because the EC models have simulated likelihood functions.  However, it appears that moving from 
NL to EC4 obtains nearly as much likelihood improvement as moving from MNL to NL.  The EC4 adjusted rho 
squared is also the best of the tested models, by a slight margin.  These results, coupled with the intuitive appeal 
and very strong significance of the four EC4 covariance parameters, point to its superiority.  However, model 
application was not conducted as part of this research, and the statistical results are close enough between NL 
and EC4 that a comparison of model application results would seem appropriate before finally choosing one 
specification over the other.  If EC4 performed essentially the same as NL in relevant forecasting tasks, then its 
extra operating overhead costs might not be justified.  On the other hand, reverting to NL would ignore the 
possibility that the EC4 might perform differently than NL in an important way in some yet untested forecasting 
task.
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 Table 6:  Estimation results for work-on-tour activity pattern model with 162 alternatives 
   MNL NL EC1 

(NL analog) 
EC14  EC4

 Pattern component Variable description est. st. err est. st. err est. st. err est. st. err est. st. err
 Utility Function Parameters   

1 Secondary on-tour maintenance activities constant -2.725 0.25 -2.819-2.820 0.26 0.26 -3.089 0.34 -3.030 0.33
2  child age 12-17 -0.529 0.30 -0.462 0.35 -0.452 0.34 -0.632 0.48 -0.536 0.41
3  #children 0-17, age 18+ male 0.064 0.03 0.055 0.03 0.054 0.03 0.090 0.04 0.073 0.04
4  #children 0-17, age 18+ female 0.219 0.03 0.244 0.03 0.241 0.03 0.336 0.05 0.301 0.04
5  child age 18+ -0.401 0.13 -0.408 0.13 -0.407 0.13 -0.558 0.18 -0.483 0.15
6  per capita income ($10K) 0.061 0.02 0.075 0.02 0.074 0.02 0.094 0.03 0.083 0.03
7  workforce participation rate 0.237 0.10 0.288 0.12 0.291 0.11 0.390 0.16 0.336 0.14
8 Secondary on-tour discretionary activities constant -2.866 0.24 -2.820 0.24 -2.819 0.24 -3.146 0.31 -3.108 0.31
9  child age 12-17 0.271 0.30 0.302 0.35 0.311 0.34 0.312 0.46 0.279 0.42

10  nonfamily, age 18+ 0.127 0.08 0.136 0.09 0.136 0.09 0.173 0.11 0.177 0.10
11  children 0-11 are in HH, age 18+ female -0.456 0.12 -0.451 0.12 -0.454 0.12 -0.503 0.15 -0.456 0.13
12  full-time worker -0.260 0.10 -0.356 0.11 -0.356 0.11 -0.357 0.13 -0.380 0.12
13  student -0.234 0.10 -0.250 0.10 -0.249 0.10 -0.311 0.12 -0.276 0.11
14  per capita income, full time worker 0.050 0.02 0.061 0.03 0.061 0.03 0.070 0.03 0.066 0.03
15  children 0-11 are in HH, age 18+ male -0.136 0.08 -0.164 0.08 -0.164 0.08 -0.239 0.11 -0.202 0.10
16 Position of secondary on-tour 

maintenance activity in pattern, base 
case is after primary activity                   
maintenance stop before primary activity 

constant -0.249 0.14 -0.212 0.14 -0.213 0.14 -0.008 0.21 0.049 0.21

17 maintenance dest-based subtour constant -0.110 0.23 -0.049 0.23 -0.050 0.23 0.101 0.30 0.155 0.29
18  children 0-11 are in HH, age 18+ female -0.817 0.20 -0.857 0.20 -0.856 0.20 -0.959 0.20 -0.939 0.20
19 Secondary maintenance tour Constant 1.165 0.33 1.310 0.34 1.312 0.34 1.582 0.42 1.551 0.41
20  fulltime worker -0.527 0.09 -0.598 0.10 -0.599 0.10 -0.633 0.11 -0.629 0.11
21  per capita income -0.137 0.03 -0.139 0.03 -0.139 0.03 -0.165 0.04 -0.158 0.04
22  1+ cars per adult -0.291 0.08 -0.311 0.08 -0.309 0.08 -0.349 0.10 -0.322 0.09
23 Position of secondary on-tour 

discretionary activity in pattern, base 
case is after primary activity                   
before primary activity 

Constant -0.521 0.16 -0.487-0.487 0.16 0.16 -0.207 0.23 -0.187 0.23

24 discretionary dest-based subtour  Constant 0.311 0.28 0.356 0.28 0.355 0.28 0.575 0.34 0.607 0.34
25  fulltime worker 0.956 0.17 0.976 0.17 0.976 0.17 0.996 0.18 0.989 0.17
26 Secondary discretionary tour  Constant 0.292 0.41 0.342 0.42 0.345 0.42 0.569 0.51 0.528 0.49
27  family w children 0-11, age 18+ female 0.273 0.16 0.316 0.16 0.317 0.16 0.410 0.17 0.386 0.16
28  per capita income -0.158 0.03 -0.159 0.03 -0.159 0.03 -0.186 0.04 -0.178 0.04
29 

 
 1+ cars per adult 0.283 0.10 0.275 0.10 0.276 0.10 0.311 0.12 0.297 0.11
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 Table 6:  Estimation results for work-on-tour activity pattern model with 162 alternatives 
   MNL NL EC1 

(NL analog) 
EC14 EC4 

 Pattern component Variable description est. st. err est. st. err est. st. err est. st. err est. st. err
30 Secondary activity combinations on 

primary tour                                  
Maintenance stops before & after 

constant 1.055 0.12 1.012 0.12 1.012 0.12 0.890 0.13 0.877 0.13

31  children 0-4 are in household, age 18+  0.566 0.21 0.600 0.22 0.598 0.22 0.660 0.23 0.666 0.23
32  children 0-4 are in household, age 18+ 

female  
0.616 0.26 0.557 0.27 0.561 0.27 0.531 0.29 0.540 0.29

33 No secondary stops on primary tour children age 5-11 are in HH, age 18+ -0.190 0.10 -0.204 0.10 -0.205 0.10 -0.300 0.12 -0.281 0.11
34  self-employed, age 18+ -0.236 0.15 -0.267 0.15 -0.267 0.15 -0.361 0.18 -0.340 0.16
35  age 35-49 -0.121 0.07 -0.128 0.07 -0.128 0.07 -0.145 0.09 -0.134 0.08
36  age 18+, female -0.182 0.06 -0.267 0.07 -0.267 0.07 -0.329 0.09 -0.306 0.08
37 Inter-tour combinations, simple 

primary tour with 0 or 1 secondary 
tours and complex primary tour with 0 
secondary tours are base cases             
simple primary tour with 2+ secondary 
tours 

constant -1.646 0.14 -1.774 0.15 -1.774 0.15 -1.899 0.18 -1.882 0.15

38 complex primary tour with 1 secondary 
tour 

constant -0.630 0.08 -0.733 0.09 -0.733 0.09 -2.202 0.57 -1.906 0.54

39 complex primary tour with 2+ secondary 
tours 

constant -2.553 0.20 -2.799 0.21 -2.799 0.21 -4.365 0.64 -4.090 0.60

40 2+ secondary tours children age 12-17 are in HH, age 18+ 0.490 0.15 0.503 0.15 0.504 0.15 0.439 0.16 0.459 0.16
41 simple primary tour with 0 secondary 

tours 
fulltime worker 0.239 0.08 0.159 0.12 0.161 0.12 0.354 0.17 0.251 0.14

42  children age 5-11 are in HH, age 18+ -0.081 0.11 -0.233 0.15 -0.231 0.15 -0.284 0.20 -0.224 0.18
43  HH income over $60K -0.307 0.07 -0.478 0.13 -0.471 0.13 -0.631 0.18 -0.574 0.16
44  child age 18+ 0.015 0.15 0.195 0.23 0.199 0.23 0.347 0.32 0.303 0.29
45  nonfamily, age 18+ 0.172 0.09 0.176 0.12 0.175 0.12 0.332 0.17 0.297 0.15
46  self-employed, age 18+ -0.140 0.16 -0.315 0.23 -0.303 0.22 -0.449 0.29 -0.390 0.26
47  student, age 18+ -0.460 0.12 -0.694 0.20 -0.688 0.20 -0.929 0.28 -0.815 0.24
48  no vehicles in HH, age 18+ 0.355 0.17 0.507 0.26 0.514 0.27 0.709 0.37 0.665 0.33
49  age 35-49 -0.044 0.08 -0.161 0.11 -0.162 0.11 -0.226 0.15 -0.204 0.14
50  HH income is under $30K, age 18+ 0.244 0.08 0.261 0.11 0.264 0.11 0.383 0.16 0.335 0.14
51  children age 0-4 are in HH, age 18+ 0.292 0.09 0.310 0.10 0.311 0.10 0.406 0.13 0.378 0.11
52 Secondary stop and tour purposes 

included in pattern                               
maintenance and discretionary 

children age 5-11 are in HH, age 18+ 0.168 0.10 0.164 0.10 0.164 0.10 0.350 0.13 0.316 0.12

53  2+ adults in HH, age 18+ -0.150 0.07 -0.146 0.07 -0.147 0.07 -0.127 0.11 -0.123 0.08
54  age 18-24 -0.367 0.13 -0.347 0.14 -0.348 0.14 -0.429 0.19 -0.369 0.15
55  nonfamily, age 18+ 0.229 0.10 0.281 0.10 0.282 0.10 0.315 0.15 0.236 0.12
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 Table 6:  Estimation results for work-on-tour activity pattern model with 162 alternatives 
   MNL NL EC1 

(NL analog) 
EC14 EC4 

 Pattern component Variable description est. st. err est. st. err est. st. err est. st. err est. st. err
56 Logsums from the nested mode-dest-

TOD choice models of the pattern's 
tours                                                          
Secondary tours 

weighted avg of 4 sec. tour types' mode-
dest-TOD logsums.  For patterns with 2+ 
sec. tours, logsum is scaled up by avg 
no. of sec. tours observed in sample for 
pattern type and tour purpose. 

0.445 0.09 0.469 0.09 0.468 0.09 0.504 0.11 0.515 0.10

57 Primary work tour  1.358 0.32 1.458 0.32 1.457 0.32 1.283 0.37 1.328 0.37
58 Covariance Parameters Pattern has no sec. tours or stops  0.644 0.09 -1.874 0.45 -2.773 0.62 -2.468 0.56
59  Commute tour has extra stops  -0.465 0.83
60  Pattern has sec. tours  -0.059 0.46
61  Pattern has sec. maint tours and/or 

maint stops on primary tour 
 -1.050 0.50

62  Pattern has sec. discret tours and/or 
discret stops on primary tour 

 0.015 1.10

63  Commute has stops before work  -0.205 0.44
64  Commute has stops after work  -1.669 0.48 -1.605 0.46
65  Pattern has work-based subtour  -0.128 0.39
66  Pattern has sec. tours but no sec. stops 

on primary tour 
 -0.301 0.61

67  Pattern has sec. stops on primary tour 
but no sec. tours 

 -0.028 0.63

68  Pattern has sec. tours and sec. stops on 
primary tour 

 -2.548 0.63 -2.173 0.64

69  Pattern has maint tours and/or stops but 
not discret 

 -0.572 0.89

70  Pattern has discret tours and/or stops 
but not maint 

 -1.270 0.31 -1.079 0.24

71  Pattern has maint and discret tours 
and/or stops 

 -0.495 0.34

 Estimation Method Summary  
 Method ML NL MSL MSL MSL
 Type of draws for MSL  Shuff. Halton Shuff. Halton Shuff. Halton
 No. of draws per simulated probability  100 1500 1500
 Summary Statistics   
 Number observed choices  6170 6170 6170 6170 6170
 Number of estimated parameters  57 58 58 71 61
 Log likelihood w coeffs=0  -31390 -31390 -31390 -31390 -31390
 Final Log likelihood  -16890 -16885 -16885 -16876 -16880
 Rho squared  0.46193 0.46211 0.46209 0.46238 0.46225
 Adjusted rho squared  0.46011 0.46026 0.46025 0.46012 0.46030

 



 

Using EC for large multidimensional models 

The undertaken empirical work provides some insight regarding important questions about the development of 
large EC models.  The first question is, how many Shuffled Halton draws are necessary?  The answer is to use 
enough draws so that simulation error does not significantly affect the estimation results.  Researchers who have 
considered this issue in the past have used small models and re-estimated many times, enabling them to 
empirically measure the variability of the MSL estimation results.  Unfortunately, with the EC14 model, the time 
required for estimation practically prevents the use of this approach.  Nevertheless, we can gain some insight by 
estimating the model a small number of times, varying the number of draws used for the simulated probabilities.  
EC14 was estimated with 100, 400 and 1500 draws per simulated probability, using the convergent estimates 
from the 100 draw case as starting values for the 400 and 1500 draw cases.   Table 7 shows the estimated EC14 
covariance parameters, with the 4 EC4 parameters highlighted.  Although parameter 61 is significant in the 1500 
draw case, it was insignificant in a subsequent re-estimation with 1500 draws using a new seed, and again in an 
EC5 model (EC4 with parameter 61 added).  The EC4 parameters are of similar magnitude and significance with 
1500 and 400 draws, but two of them are insignificant in the 100 draw case; if only 100 draws had been used, the 
selected model might have been “EC4”, but with a different set of four covariance parameters.  This provides the 
first empirical clue that 100 draws is insufficient. 

 
Table 7:  EC14 covariance parameter estimates with 100, 400, and 1500 draws per simulated probability 

 100 draws 400 draws 1500 draws 
 est. std error abs T est. std error abs T est. std error abs T

58 -3.054 0.70 4.34 -2.882 0.62 4.63 -2.773 0.62 4.45
59 0.957 0.47 2.02 -0.097 0.50 0.19 -0.465 0.83 0.56
60 0.881 0.48 1.85 -0.143 0.39 0.36 -0.059 0.46 0.13
61 0.100 0.43 0.23 -0.105 0.41 0.26 -1.050 0.50 2.08
62 -0.078 0.68 0.11 -0.529 0.58 0.91 0.015 1.10 0.01
63 -0.127 0.33 0.39 -0.609 0.33 1.85 -0.205 0.44 0.46
64 -0.032 0.26 0.13 1.878 0.47 4.00 -1.669 0.48 3.48
65 0.051 0.28 0.18 -0.216 0.31 0.70 -0.128 0.39 0.33
66 0.013 0.28 0.05 0.878 0.61 1.44 -0.301 0.61 0.49
67 -0.846 0.45 1.86 -0.040 0.42 0.10 -0.028 0.63 0.05
68 -0.164 0.68 0.24 -2.552 0.58 4.40 -2.548 0.63 4.03
69 -1.436 0.39 3.72 -0.683 0.43 1.60 -0.572 0.89 0.65
70 -0.951 0.27 3.54 -1.234 0.29 4.21 -1.270 0.31 4.13
71 -0.143 0.29 0.49 0.620 0.27 2.26 -0.495 0.34 1.48

 
 
In a further test for simulation error, the EC4 model was estimated two times with 100 draws per simulated 
probability, using the same starting values but different simulation seeds, and statistics were calculated 
measuring the magnitude of the difference in the results.  This procedure was repeated with 400 and 1500 draws, 
respectively, and the results are shown in Table 8.  The original intent was to repeat this comparison with 5000 
draws, but that turned out to be prohibitively time consuming.   

The statistics in the row numbered 1 show that the root mean squared (RMS) percentage change in the 
covariance parameter estimates is almost 25% when comparing two 100 draw simulations, and drops to 10.6% 
with 400 draws, and to 3.5% with 1500 draws.  Rows 2 through 4 show that the maximum percent change in 
covariance parameters, as well as the root mean squared and maximum changes in absolute T, have drops of 
similar magnitude.  The rows numbered 5 through 8 provide the same summary measures for the utility function 
parameters.  Here the difference between root mean squared and maximum changes is more pronounced, 
probably because several utility function parameters have small absolute T values, but the increase from 100 to 
1500 draws again shows a 5 to 10-fold reduction in change to well under 10%.  Since each of the statistics is 
based on only a pair of MSL estimation runs, it is possible that luck has caused the 1500 simulation case to 
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appear superior to the 100 and 400 simulation cases.  So, while we can’t be sure that 1500 simulations is 
adequate without re-estimating more times, these results show fairly large variation with only 100 simulations.   

 

Table 8:  Summary of changes in EC4 Maximum Simulated Likelihood (MSL) estimation results when the 
Shuffled Halton simulation seed changes 

 Summary Statistic Two 100 
draw 
simulations

Two 400 
draw 
simulations 

Two 1500 
draw 
simulations

A. Excluding cases with |T|<1  
 Covariance Parameters (all statistics based on absolute values of parameter estimates) 
 Percentage of cases with |T|<1  25.0% 0.0% 0.0%

1 Root mean squared percent change in parameter estimates 23.3% 10.6% 3.5%
2 Maximum percent change in parameter estimates 39.1% 18.2% 5.9%
3 Root mean squared percent change in |T| 16.7% 15.7% 3.5%
4 Maximum percent change in |T| 27.8% 27.5% 6.1%

 Utility Function Parameters  
 Percentage of cases with |T|<1  7.0% 8.8% 7.0%

5 Root mean squared percent change in parameter estimates 11.7% 4.4% 1.4%
6 Maximum percent change in parameter estimates 57.9% 20.4% 5.6%
7 Root mean squared percent change in |T| 11.7% 4.1% 1.3%
8 Maximum percent change in |T| 65.0% 18.9% 4.5%

B. Including cases with |T|<1  
 Covariance Parameters (all statistics based on absolute values of parameter estimates) 

9 Root mean squared percent change in parameter estimates 4844.0% 10.6% 3.5%
10 Maximum percent change in parameter estimates 9688.0% 18.2% 5.9%
11 Root mean squared percent change in |T| 6489.1% 15.7% 3.5%
12 Maximum percent change in |T| 12978.2% 27.5% 6.1%

 Utility Function Parameters  
13 Root mean squared percent change in parameter estimates 23.4% 57.6% 3.7%
14 Maximum percent change in parameter estimates 125.8% 431.4% 23.8%
15 Root mean squared percent change in |T| 22.4% 57.0% 3.5%
16 Maximum percent change in |T| 123.6% 427.6% 21.7%

 

Rows 1 through 8 exclude parameters with absolute T values smaller than 1, because they could 
arguably be removed from the model and they tend to dominate the change statistics.  Rows 9 through 16 repeat 
the statistics, this time including the parameters with small absolute T.  In the 400 and 1500 simulation cases, 
there is no change in the covariance parameter statistics, because none of the parameters has absolute T less than 
1.  For the utility parameters, the presence of a few with small absolute T causes the statistics to get somewhat 
larger.  In the case of 100 draws, the covariance parameter statistics explode.  This occurs because the lone 
insignificant covariance parameter became quite large and significant in the second 100 simulation estimation 
run, and it underscores the insufficiency of the 100 draw simulation. 

The above analysis suggests that for models of this size, estimated by MSL with Shuffled Halton 
draws, too much simulation error may occur when using only 100 draws per simulated probability, and 
using 1500 draws or more is desirable.  It is advisable to estimate the model at least twice (with different 
simulation seeds), using the selected number of draws per simulated probability, in order to gain a sense 
of the variability caused by the simulation procedure. 

The second question is, how long does it take to estimate large multidimensional EC models?  Does it 
take so long that it is still impractical, in most cases, to estimate them (ignoring the application run times for 
now)?  Table 9 shows that the EC14 specification with 1500 draws per probability calculation took 22000 times 
longer than the MNL per iteration, and 80000 times longer overall, because it required more iterations.  All the 
models in the table have 162 alternatives, 6170 observed choices, 57 utility parameters, and were estimated using 
ALOGIT 4EC.  All models except the  largest were estimated on a dedicated IBM Thinkpad T30 laptop 
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computer with a 1.8 GHz Intel Pentium 4 processor and 256megabytes of memory, operating under the 
Windows 2000 operating system.  The largest model was estimated on a desktop machine with a 3.0 GHz Intel 
Pentium 4 processor and 1gigabyte of memory, operating under Windows XP Pro.  In order to compare its 
runtimes to those estimated on the laptop, the EC model was estimated on both platforms with 100 and 400 
draws per simulated probability, to establish a conversion factor of .57 on estimation run times.  On the more 
powerful machine, the total run time was 28 days, too long to be practical except in the research lab.  However, 
the numerical aspects of this model estimation problem are well-suited to a programming implementation in 
which multiple processors solve the problem efficiently by working in parallel.  It is easy to imagine a 20 CPU 
array of processors, each operating 5 times as fast as the 3MHz machine, solving this problem in 6 hours, which 
would be quite practical.  So, at this time, it is not very practical to estimate EC models for large 
multidimensional problems, but that should change within the next few years as computational power 
increases, or sooner if estimation software becomes available that supports parallel processing. 

 
Table 9:  Model estimation run time comparisons.  All the models in the table have 162 alternatives, 6170 
observed choices, 57 utility parameters, and were estimated using ALOGIT 4EC.  Except where noted, run times 
are for a dedicated IBM Thinkpad T30 laptop computer with a 1.8 GHz Intel Pentium 4 processor and 
256megabytes of memory, operating under the Windows 2000 operating system. 
Model MNL NL EC1 EC14 EC14 EC14 
Number of covariance parameters 0 1 1 14 14 14 
Number of draws per simulated probability   100 100 400 1500 
Previously converged model supplying 
starting values: 

 MNL NL EC1 EC14       
(100 draws)

EC14       
(100 draws)

Number of iterations to convergence 9 8 5 14 25 24 
iteration duration (seconds) 7.6 25.8 410 11250 45000 170526 
Approximate iteration duration 8 

seconds
26 

seconds 
7 minutes 3 hours 12 hours 2 days 

iteration duration (relative to MNL)  3x 50x 1500x 6000x 22000x 
Approximate total estimation duration 1 minute 5 minutes 30 

minutes 
2 days 13 days 50 days 

total duration (relative to MNL)  5x 30x 3000x 20000x 80000x 
Estimation duration on Windows XPPro 
machine with 3 MHz Pentium 4 processor 

     28 days 

 

The table notes that convergent values of simpler models were used as starting values for the more 
complex models.  Although it makes the comparison of run times difficult, it was done with the hope of avoiding 
numerical problems in the optimization search routine and reducing the number of required iterations.  
Numerical problems were avoided, but the only case where it seems clear that iterations were reduced is in the 
estimation of the true NL model using convergent MNL results as starting values.  Using the convergent EC14 
100 draw results might have increased the required iterations of the 400 and 1500 draw versions; the differences 
in estimated parameters discussed above indicates that the search routine was forced to traverse fairly large 
changes in estimated values in order to converge on new MSL estimates.   Therefore, it may save time to start 
MSL estimation of EC models using the anticipated acceptable number of draws, rather than starting 
with few draws and increasing the number in subsequent estimation runs. 

CONCLUSION 

The identification rule, with accompanying procedure, presented in this paper provides a manageable method of 
increasing confidence that a large error component logit kernel (EC) model is identified, and the case study 
demonstrates its use.  The case study also demonstrates the statistical advantages of logit kernel for a particular 
large multidimensional choice problem, identifies some development pitfalls to avoid, and concludes that using 
EC with maximum simulated likelihood should soon be practical for large real-world choice modeling problems.  
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APPENDIX—PROOF OF COMPLEMENTARY PAIR IDENTIFICATION RULE 

Given an EC model with F matrix (JxM) having a complementary pair of columns a and b, and T matrix (MxM) 
having elements aa aT σ= and bb bT σ= , and no other appearances in T of aσ or bσ , then aaσ and bbσ always 
appear together as a sum in the vectorized differenced covariance matrix (V )∆Ω , and a duplicate pair of 
columns occurs in its jacobian, ( )J V .  

Proof:   Let  be the (J-1)xJ differencing matrix, consisting of the (J-1)x(J-1) identity matrix augmented by a 
negative unit column vector.   Define the four sets of indices, 

.  Then, since a and b are a complementary 

pair, and .  It follows that in the covariance matrix 

∆

{ | 1},  { | 0}, { | 1},  { | 0}ia ia ib ibi F i F i F i F≡ = ≡ = ≡ = ≡ =cA A B Bc

cA = B cA = B ' 'FTT FΩ ≡ , any element includes the 

additive term 
ijΩ

aaσ exactly once if and only if i ∈ A  and j ∈ A , and it does not include any function of 

aσ otherwise.  Likewise, any element  includes the additive term ijΩ ∈ Ω bbσ exactly once if and only if i  

and , and it does not include any function of 

∈ cA

j ∈ cA bσ otherwise.  Therefore, Ω  includes four types of 
elements:  (1) | ,ij i jΩ ∈ ∈A A , containing the additive term aaσ  exactly once and no function of  bσ ;  

(2) , containing no function of either | ,ij i jΩ ∈ ∈ cA A aσ or bσ ;  (3) | ,ij i jΩ ∈ ∈cA A , containing no function 

of either aσ or bσ ; and (4) , containing the additive term | ,ij i jΩ ∈ ∈cA cA bbσ  exactly once and no function 

of aσ .  Each element  of the differenced covariance matrix ij∆Ω '∆Ω ≡ ∆Ω∆  therefore includes the additive 

term aa bbσ σ+ exactly once (with no other appearance of functions of either  aσ or bσ ) or not at all.  It follows 
directly that aaσ and bbσ always appear together as a sum in (V )∆Ω , and a duplicate pair of columns occurs in 

( )J V .  QED.  This proof can be easily visualized by carrying out its calculations on a representative case. 
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Table 1:  Logit kernel models (F matrix with shorthand label and description) 
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

NL(1:2) 
Nested logit analog with 
2 nests in one dimension 

 1 0 0
0 1 1
1 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

PCL(3) 
Paired combinatorial logit  
with 3 pairs 

1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 0 1
0 1 0 0 0 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 

NL(2:2,4) 
2-dimensional nested 
logit with 2 nests in the 
first dimension, and 4 
nests in the second 
dimension (2 subnests in 
each nest of the first 
dimension)  

 1 0 0
0 1 1
1 1 0
1 0 0
0 1 1
0 0 0
0 0 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

TCL(3) 
‘Tripled’ combinatorial logit 
with 3 triples 

1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 0 1
0 1 0 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 

CNL(2:2,2) 
2-dimensional cross-
nested logit with 2 nests 
in the first dimension and 
2 nests in the second 
dimension 

 1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

NL(2:2,4)CNL(1:2) 
Combination of NL and 
CNL 

1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 0 0 1 1 0 0
1 0 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 0 0 0 1
0 1 0 1 0 0 1
0 1 0 1 0 0 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 

CNL(3:2,2,3) 
3-dimensional cross-
nested logit with 2 nests 
in each of the first two 
dimensions, and 3 nests 
in the third dimension 

 1 0 1 0 0
1 0 0 1 1
1 0 1 1 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

NL(1:2)PCL(3) 
Combination of NL and 
PCL 

   1 0 1 0 0 0 1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 1
1 0 0 1 0 0 0 1 1 0 0 1 1 0
1 0 0 1 0 0 0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 1 0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

NL(2:2,4)CNL(2:2,3) 
PCL(3) 
Combination of NL, CNL 
and PCL 

 



 

Table 2:  Error component logit kernel models (EC) 
F T Description 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1
1

1
1

1
1

1
1

0 0 0 0 0 0 0
0 0 0 0 0 00

0 0 0 0 00 0
0 0 0 00 0 0

0 0 00 0 0 0
0 00 0 0 0 0

00 0 0 0 0 0
0 0 0 0 0 0 0
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Table 3:  Identification limits for subsets of EC nests    
J  maximum number of nests within 

any subset of sizeC J  ( ) 2 1J −

maximum number of identifiable nest 
parameters within any subset C of size J  
( 1

J
i i=∑ ) 

2 3 3 
3 7 6 
4 15 10 
5 31 15 
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Table 4:  Hypothesized EC nests of the activity pattern model 
Dim-
en-
sion 

Kept 
Nest 

Description No. 
of 

alts 
1 1 Pattern has no secondary tours or stops 1 
  Pattern has secondary tours and/or stops 161 

2 2 Commute tour has extra stops 156 
  Commute tour has no extra stops 6 

3 3 Pattern has secondary tours 135 
  Pattern has no secondary tours 27 

4 4 Pattern has secondary maintenance tours and/or maintenance stops on primary tour 138 
  Pattern has no maintenance tours and no maintenance stops on primary tour 24 

5 5 Pattern has secondary discretionary tours and/or discretionary stops on primary tour 138 
  Pattern has no discretionary tours and no discretionary stops on primary tour 24 

6 6 Commute has stops before work 108 
  Commute has no stops before work 54 

7 7 Commute has stops after work 108 
  Commute has no stops after work 54 

8 8 Pattern has work-based subtour 108 
  Pattern has no work-based subtour 54 

9  Pattern has no secondary tours or stops 1 
 9 Pattern has secondary tours but no secondary stops on primary tour 5 
 10 Pattern has secondary stops on primary tour but no secondary tours 26 
 11 Pattern has secondary tours and secondary stops on primary tour 130 

10  Pattern has no secondary tours or stops 1 
 12 Pattern has maintenance tours and/or stops but not discretionary 23 
 13 Pattern has discretionary tours and/or stops but not maintenance 23 
 14 Pattern has maintenance and discretionary tours and/or stops 115 
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Table 5:   Cases where identification restrictions may be needed because of EC nest subsets 
Case Nest ( C ) J  subsets of  C
1 1-complement 161 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
2 2 156 6, 7, 8, 10, 11 
3 2-complement 6 1, 9 
4 3 135 9, 11 
5 3-complement 27 1, 10 
6 4 138 12, 14 
7 4-complement 24 1, 13 
8 5 138 13, 14 
9 5-complement 24 1, 12 
10 6-complement 54 1, 2-complement 
11 7-complement 54 1, 2-complement 
12 8-complement 54 1, 2-complement 
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 Table 6:  Estimation results for work-on-tour activity pattern model with 162 alternatives 
   MNL NL EC1 

(NL analog) 
EC14  EC4

 Pattern component Variable description est. st. err est. st. err est. st. err est. st. err est. st. err
 Utility Function Parameters   

1 Secondary on-tour maintenance activities constant -2.725 0.25 -2.819-2.820 0.26 0.26 -3.089 0.34 -3.030 0.33
2  child age 12-17 -0.529 0.30 -0.462 0.35 -0.452 0.34 -0.632 0.48 -0.536 0.41
3  #children 0-17, age 18+ male 0.064 0.03 0.055 0.03 0.054 0.03 0.090 0.04 0.073 0.04
4  #children 0-17, age 18+ female 0.219 0.03 0.244 0.03 0.241 0.03 0.336 0.05 0.301 0.04
5  child age 18+ -0.401 0.13 -0.408 0.13 -0.407 0.13 -0.558 0.18 -0.483 0.15
6  per capita income ($10K) 0.061 0.02 0.075 0.02 0.074 0.02 0.094 0.03 0.083 0.03
7  workforce participation rate 0.237 0.10 0.288 0.12 0.291 0.11 0.390 0.16 0.336 0.14
8 Secondary on-tour discretionary activities constant -2.866 0.24 -2.820 0.24 -2.819 0.24 -3.146 0.31 -3.108 0.31
9  child age 12-17 0.271 0.30 0.302 0.35 0.311 0.34 0.312 0.46 0.279 0.42

10  nonfamily, age 18+ 0.127 0.08 0.136 0.09 0.136 0.09 0.173 0.11 0.177 0.10
11  children 0-11 are in HH, age 18+ female -0.456 0.12 -0.451 0.12 -0.454 0.12 -0.503 0.15 -0.456 0.13
12  full-time worker -0.260 0.10 -0.356 0.11 -0.356 0.11 -0.357 0.13 -0.380 0.12
13  student -0.234 0.10 -0.250 0.10 -0.249 0.10 -0.311 0.12 -0.276 0.11
14  per capita income, full time worker 0.050 0.02 0.061 0.03 0.061 0.03 0.070 0.03 0.066 0.03
15  children 0-11 are in HH, age 18+ male -0.136 0.08 -0.164 0.08 -0.164 0.08 -0.239 0.11 -0.202 0.10
16 Position of secondary on-tour 

maintenance activity in pattern, base 
case is after primary activity                   
maintenance stop before primary activity 

constant -0.249 0.14 -0.212 0.14 -0.213 0.14 -0.008 0.21 0.049 0.21

17 maintenance dest-based subtour constant -0.110 0.23 -0.049 0.23 -0.050 0.23 0.101 0.30 0.155 0.29
18  children 0-11 are in HH, age 18+ female -0.817 0.20 -0.857 0.20 -0.856 0.20 -0.959 0.20 -0.939 0.20
19 Secondary maintenance tour Constant 1.165 0.33 1.310 0.34 1.312 0.34 1.582 0.42 1.551 0.41
20  fulltime worker -0.527 0.09 -0.598 0.10 -0.599 0.10 -0.633 0.11 -0.629 0.11
21  per capita income -0.137 0.03 -0.139 0.03 -0.139 0.03 -0.165 0.04 -0.158 0.04
22  1+ cars per adult -0.291 0.08 -0.311 0.08 -0.309 0.08 -0.349 0.10 -0.322 0.09
23 Position of secondary on-tour 

discretionary activity in pattern, base 
case is after primary activity                   
before primary activity 

Constant -0.521 0.16 -0.487-0.487 0.16 0.16 -0.207 0.23 -0.187 0.23

24 discretionary dest-based subtour  Constant 0.311 0.28 0.356 0.28 0.355 0.28 0.575 0.34 0.607 0.34
25  fulltime worker 0.956 0.17 0.976 0.17 0.976 0.17 0.996 0.18 0.989 0.17
26 Secondary discretionary tour  Constant 0.292 0.41 0.342 0.42 0.345 0.42 0.569 0.51 0.528 0.49
27  family w children 0-11, age 18+ female 0.273 0.16 0.316 0.16 0.317 0.16 0.410 0.17 0.386 0.16
28  per capita income -0.158 0.03 -0.159 0.03 -0.159 0.03 -0.186 0.04 -0.178 0.04
29 

 
 1+ cars per adult 0.283 0.10 0.275 0.10 0.276 0.10 0.311 0.12 0.297 0.11
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 Table 6:  Estimation results for work-on-tour activity pattern model with 162 alternatives 
   MNL NL EC1 

(NL analog) 
EC14 EC4 

 Pattern component Variable description est. st. err est. st. err est. st. err est. st. err est. st. err
30 Secondary activity combinations on 

primary tour                                  
Maintenance stops before & after 

constant 1.055 0.12 1.012 0.12 1.012 0.12 0.890 0.13 0.877 0.13

31  children 0-4 are in household, age 18+  0.566 0.21 0.600 0.22 0.598 0.22 0.660 0.23 0.666 0.23
32  children 0-4 are in household, age 18+ 

female  
0.616 0.26 0.557 0.27 0.561 0.27 0.531 0.29 0.540 0.29

33 No secondary stops on primary tour children age 5-11 are in HH, age 18+ -0.190 0.10 -0.204 0.10 -0.205 0.10 -0.300 0.12 -0.281 0.11
34  self-employed, age 18+ -0.236 0.15 -0.267 0.15 -0.267 0.15 -0.361 0.18 -0.340 0.16
35  age 35-49 -0.121 0.07 -0.128 0.07 -0.128 0.07 -0.145 0.09 -0.134 0.08
36  age 18+, female -0.182 0.06 -0.267 0.07 -0.267 0.07 -0.329 0.09 -0.306 0.08
37 Inter-tour combinations, simple 

primary tour with 0 or 1 secondary 
tours and complex primary tour with 0 
secondary tours are base cases             
simple primary tour with 2+ secondary 
tours 

constant -1.646 0.14 -1.774 0.15 -1.774 0.15 -1.899 0.18 -1.882 0.15

38 complex primary tour with 1 secondary 
tour 

constant -0.630 0.08 -0.733 0.09 -0.733 0.09 -2.202 0.57 -1.906 0.54

39 complex primary tour with 2+ secondary 
tours 

constant -2.553 0.20 -2.799 0.21 -2.799 0.21 -4.365 0.64 -4.090 0.60

40 2+ secondary tours children age 12-17 are in HH, age 18+ 0.490 0.15 0.503 0.15 0.504 0.15 0.439 0.16 0.459 0.16
41 simple primary tour with 0 secondary 

tours 
fulltime worker 0.239 0.08 0.159 0.12 0.161 0.12 0.354 0.17 0.251 0.14

42  children age 5-11 are in HH, age 18+ -0.081 0.11 -0.233 0.15 -0.231 0.15 -0.284 0.20 -0.224 0.18
43  HH income over $60K -0.307 0.07 -0.478 0.13 -0.471 0.13 -0.631 0.18 -0.574 0.16
44  child age 18+ 0.015 0.15 0.195 0.23 0.199 0.23 0.347 0.32 0.303 0.29
45  nonfamily, age 18+ 0.172 0.09 0.176 0.12 0.175 0.12 0.332 0.17 0.297 0.15
46  self-employed, age 18+ -0.140 0.16 -0.315 0.23 -0.303 0.22 -0.449 0.29 -0.390 0.26
47  student, age 18+ -0.460 0.12 -0.694 0.20 -0.688 0.20 -0.929 0.28 -0.815 0.24
48  no vehicles in HH, age 18+ 0.355 0.17 0.507 0.26 0.514 0.27 0.709 0.37 0.665 0.33
49  age 35-49 -0.044 0.08 -0.161 0.11 -0.162 0.11 -0.226 0.15 -0.204 0.14
50  HH income is under $30K, age 18+ 0.244 0.08 0.261 0.11 0.264 0.11 0.383 0.16 0.335 0.14
51  children age 0-4 are in HH, age 18+ 0.292 0.09 0.310 0.10 0.311 0.10 0.406 0.13 0.378 0.11
52 Secondary stop and tour purposes 

included in pattern                               
maintenance and discretionary 

children age 5-11 are in HH, age 18+ 0.168 0.10 0.164 0.10 0.164 0.10 0.350 0.13 0.316 0.12

53  2+ adults in HH, age 18+ -0.150 0.07 -0.146 0.07 -0.147 0.07 -0.127 0.11 -0.123 0.08
54  age 18-24 -0.367 0.13 -0.347 0.14 -0.348 0.14 -0.429 0.19 -0.369 0.15
55  nonfamily, age 18+ 0.229 0.10 0.281 0.10 0.282 0.10 0.315 0.15 0.236 0.12
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 Table 6:  Estimation results for work-on-tour activity pattern model with 162 alternatives 
   MNL NL EC1 

(NL analog) 
EC14 EC4 

 Pattern component Variable description est. st. err est. st. err est. st. err est. st. err est. st. err
56 Logsums from the nested mode-dest-

TOD choice models of the pattern's 
tours                                                          
Secondary tours 

weighted avg of 4 sec. tour types' mode-
dest-TOD logsums.  For patterns with 2+ 
sec. tours, logsum is scaled up by avg 
no. of sec. tours observed in sample for 
pattern type and tour purpose. 

0.445 0.09 0.469 0.09 0.468 0.09 0.504 0.11 0.515 0.10

57 Primary work tour  1.358 0.32 1.458 0.32 1.457 0.32 1.283 0.37 1.328 0.37
58 Covariance Parameters Pattern has no sec. tours or stops  0.644 0.09 -1.874 0.45 -2.773 0.62 -2.468 0.56
59  Commute tour has extra stops  -0.465 0.83
60  Pattern has sec. tours  -0.059 0.46
61  Pattern has sec. maint tours and/or 

maint stops on primary tour 
 -1.050 0.50

62  Pattern has sec. discret tours and/or 
discret stops on primary tour 

 0.015 1.10

63  Commute has stops before work  -0.205 0.44
64  Commute has stops after work  -1.669 0.48 -1.605 0.46
65  Pattern has work-based subtour  -0.128 0.39
66  Pattern has sec. tours but no sec. stops 

on primary tour 
 -0.301 0.61

67  Pattern has sec. stops on primary tour 
but no sec. tours 

 -0.028 0.63

68  Pattern has sec. tours and sec. stops on 
primary tour 

 -2.548 0.63 -2.173 0.64

69  Pattern has maint tours and/or stops but 
not discret 

 -0.572 0.89

70  Pattern has discret tours and/or stops 
but not maint 

 -1.270 0.31 -1.079 0.24

71  Pattern has maint and discret tours 
and/or stops 

 -0.495 0.34

 Estimation Method Summary  
 Method ML NL MSL MSL MSL
 Type of draws for MSL  Shuff. Halton Shuff. Halton Shuff. Halton
 No. of draws per simulated probability  100 1500 1500
 Summary Statistics   
 Number observed choices  6170 6170 6170 6170 6170
 Number of estimated parameters  57 58 58 71 61
 Log likelihood w coeffs=0  -31390 -31390 -31390 -31390 -31390
 Final Log likelihood  -16890 -16885 -16885 -16876 -16880
 Rho squared  0.46193 0.46211 0.46209 0.46238 0.46225
 Adjusted rho squared  0.46011 0.46026 0.46025 0.46012 0.46030
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Table 7:  EC14 covariance parameter estimates with 100, 400, and 1500 draws per simulated probability 

 100 draws 400 draws 1500 draws 
 est. std error abs T est. std error abs T est. std error abs T

58 -3.054 0.70 4.34 -2.882 0.62 4.63 -2.773 0.62 4.45
59 0.957 0.47 2.02 -0.097 0.50 0.19 -0.465 0.83 0.56
60 0.881 0.48 1.85 -0.143 0.39 0.36 -0.059 0.46 0.13
61 0.100 0.43 0.23 -0.105 0.41 0.26 -1.050 0.50 2.08
62 -0.078 0.68 0.11 -0.529 0.58 0.91 0.015 1.10 0.01
63 -0.127 0.33 0.39 -0.609 0.33 1.85 -0.205 0.44 0.46
64 -0.032 0.26 0.13 1.878 0.47 4.00 -1.669 0.48 3.48
65 0.051 0.28 0.18 -0.216 0.31 0.70 -0.128 0.39 0.33
66 0.013 0.28 0.05 0.878 0.61 1.44 -0.301 0.61 0.49
67 -0.846 0.45 1.86 -0.040 0.42 0.10 -0.028 0.63 0.05
68 -0.164 0.68 0.24 -2.552 0.58 4.40 -2.548 0.63 4.03
69 -1.436 0.39 3.72 -0.683 0.43 1.60 -0.572 0.89 0.65
70 -0.951 0.27 3.54 -1.234 0.29 4.21 -1.270 0.31 4.13
71 -0.143 0.29 0.49 0.620 0.27 2.26 -0.495 0.34 1.48
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Table 8:  Summary of changes in EC4 Maximum Simulated Likelihood (MSL) estimation results when the 
Shuffled Halton simulation seed changes 

 Summary Statistic Two 100 
draw 
simulations

Two 400 
draw 
simulations 

Two 1500 
draw 
simulations

A. Excluding cases with |T|<1  
 Covariance Parameters (all statistics based on absolute values of parameter estimates) 
 Percentage of cases with |T|<1  25.0% 0.0% 0.0%

1 Root mean squared percent change in parameter estimates 23.3% 10.6% 3.5%
2 Maximum percent change in parameter estimates 39.1% 18.2% 5.9%
3 Root mean squared percent change in |T| 16.7% 15.7% 3.5%
4 Maximum percent change in |T| 27.8% 27.5% 6.1%

 Utility Function Parameters  
 Percentage of cases with |T|<1  7.0% 8.8% 7.0%

5 Root mean squared percent change in parameter estimates 11.7% 4.4% 1.4%
6 Maximum percent change in parameter estimates 57.9% 20.4% 5.6%
7 Root mean squared percent change in |T| 11.7% 4.1% 1.3%
8 Maximum percent change in |T| 65.0% 18.9% 4.5%

B. Including cases with |T|<1  
 Covariance Parameters (all statistics based on absolute values of parameter estimates) 

9 Root mean squared percent change in parameter estimates 4844.0% 10.6% 3.5%
10 Maximum percent change in parameter estimates 9688.0% 18.2% 5.9%
11 Root mean squared percent change in |T| 6489.1% 15.7% 3.5%
12 Maximum percent change in |T| 12978.2% 27.5% 6.1%

 Utility Function Parameters  
13 Root mean squared percent change in parameter estimates 23.4% 57.6% 3.7%
14 Maximum percent change in parameter estimates 125.8% 431.4% 23.8%
15 Root mean squared percent change in |T| 22.4% 57.0% 3.5%
16 Maximum percent change in |T| 123.6% 427.6% 21.7%
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Table 9:  Model estimation run time comparisons.  All the models in the table have 162 alternatives, 6170 
observed choices, 57 utility parameters, and were estimated using ALOGIT 4EC.  Except where noted, run times 
are for a dedicated IBM Thinkpad T30 laptop computer with a 1.8 GHz Intel Pentium 4 processor and 
256megabytes of memory, operating under the Windows 2000 operating system. 
Model MNL NL EC1 EC14 EC14 EC14 
Number of covariance parameters 0 1 1 14 14 14 
Number of draws per simulated probability   100 100 400 1500 
Previously converged model supplying 
starting values: 

 MNL NL EC1 EC14       
(100 draws)

EC14       
(100 draws)

Number of iterations to convergence 9 8 5 14 25 24 
iteration duration (seconds) 7.6 25.8 410 11250 45000 170526 
Approximate iteration duration 8 

seconds
26 

seconds 
7 minutes 3 hours 12 hours 2 days 

iteration duration (relative to MNL)  3x 50x 1500x 6000x 22000x 
Approximate total estimation duration 1 minute 5 minutes 30 

minutes 
2 days 13 days 50 days 

total duration (relative to MNL)  5x 30x 3000x 20000x 80000x 
Estimation duration on Windows XPPro 
machine with 3 MHz Pentium 4 processor 

     28 days 

 

 


