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ABSTRACT 

This paper presents the latest information about the activity-based regional travel forecasting 
model system being implemented for the Sacramento, California, Council of Governments.  
T The SACSIM model system represents travel in the context of an integrated disaggregate 
econometric model of each resident’s full-day activity and travel schedule.  Sensitivity to 
neighborhood scale is enhanced through disaggregation of the modeled outcomes in three key 
dimensions:  purpose, time, and space.  Each activity episode is associated with one of seven 
specific purposes, and with a particular parcel location at which it occurs.  The beginning and 
ending times of all activity and travel episodes are identified within a specific 30-minute time 
period. The model system has been calibrated and tested for a base year of 2000 and for 
forecasts to the years 2005 and 2032.  The paper summarizes the model system structure, 
explains the integration with the traffic assignment model, and discusses issues with 
preparing input data for such a model system. 

INTRODUCTION AND MODEL SYSTEM OVERVIEW 
This paper presents a regional travel forecasting model system called SACSIM, implemented 
by the Sacramento (California) Area Council of Governments (SACOG).  The system 
includes an integrated econometric microsimulation of personal activities and travel with a 
highly disaggregate treatment of the purpose, time of day and location dimensions of the 
modeled outcomes.  SACSIM will be used for transportation and land development planning, 
and air quality analysis.  . 

Figure 1 shows the major SACSIM components.  The Population Synthesizer creates a 
synthetic population, comprised of households drawn from the region’s U.S. Census Public 
Use Microdata Sample (PUMS) and allocated to parcels.  Long-term choices (work location, 
school location and auto ownership) are simulated for all members of the population.  The 
Person Day Activity and Travel Simulator (DaySim) then creates a one-day activity and 
travel schedule for each person in the population, including a list of their tours and the trips 
on each tour.  The DaySim components, implemented in a single custom software program, 
consist of a hierarchy of multinomial logit and nested logit models.  The models within 
DaySim are connected by adherence to an assumed conditional hierarchy, and by the use of 
accessibility logsums.  The trips predicted by DaySim are aggregated into trip matrices and 
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combined with predicted trips for special generators, external trips and commercial traffic 
into time- and mode-specific trip matrices.  The network traffic assignment models load the 
trips onto the network.  Traffic assignment is iteratively equilibrated with DaySim and the 
other demand models.   

Figure 1:  New SACOG Regional Travel Forecasting Model System 
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As shown here, the regional forecasts are treated as exogenous.  In subsequent 
implementations, it is anticipated that SACSIM will be fully integrated with PECAS, 
Sacramento’s new land use model (Abraham, Garry and Hunt, 2004), so that the long range 
PECAS forecasts will depend on the activity-based travel forecast of DaySim. 

DAYSIM OVERVIEW 

DaySim follows the day activity schedule approach developed by Bowman and Ben-Akiva 
(2001).  Its features include the following: 

• The model uses a microsimulation structure, predicting outcomes for each household 
and person in order to produce activity/trip records comparable to those from a 
household survey (Bradley, et al, 1999). 
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• The model works at four integrated levels—longer term person and household 
choices, single day-long activity pattern choices, tour-level choices, and trip-level 
choices  

• The upper level models of longer term decisions and activity/tour generation are 
sensitive to network accessibility and a variety of land use variables. 

• The model uses seven different activity purposes for both tours and intermediate 
stops (work, school, escort, shop, personal business, meal, social/recreation). 

• The model allows the specific work tour destination for the day to differ from the 
person’s usual work location. 

• The model predicts locations down to the individual parcel level. 

• The model predicts the time that each trip and activity starts and ends to the nearest 
30 minutes, using an internally consistent scheduling structure that is also sensitive 
to differences in travel times across the day (Vovsha and Bradley, 2004). 

• The model is highly integrated, including the use of mode choice logsums and 
approximate logsums in the upper level models, encapsulating differences across 
different modes, destinations, times of day, and types of person. 

The latter five features are key enhancements relative to its primary precursor, the model 
currently in active use by the San Francisco County Transportation Authority (SFCTA).  See 
Bradley, et al. (2001) and Jonnalagadda, et al. (2001) for details of the SFCTA model.   

Table 1 lists DaySim’s component models. The models themselves are numbered 
hierarchically in the table; subsequently in this paper, parenthetical numerical references to 
models refer to these numbers.  The hierarchy embodies assumptions about the relationships 
among simultaneous real world outcomes.  In particular, outcomes from models higher in the 
hierarchy are treated as known in lower level models.  It places at a higher level those 
outcomes that are thought to be higher priority to the decision maker.  The model structure 
also embodies priority assumptions that are hidden in the hierarchy, namely the relative 
priority of outcomes on a given level of the hierarchy.  The most notable of these are the 
relative priority of tours in a pattern, and the relative priority of stops on a tour.  The formal 
hierarchical structure provides what has been referred to by Vovsha, Bradley and Bowman 
(2004) as downward vertical integrity. 

Table 1. Component Models of DaySim 

Model # Model Name Level What is predicted 

1.1 Synthetic Sample Generator Household 

Household size and composition, household  
income, person age, gender, employment 
status, student status 

1.2 Regular Workplace Location Worker Workplace location zone and parcel 
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1.3 Regular School Location Student School location zone and parcel 

1.4 Auto Ownership Household Auto ownership 

2.1 Daily Activity Pattern Person-day 
0 or 1+ tours for 7 activity purposes.  0 or 
1+ stops for 7 activity purposes 

2.2 Exact Number of Tours Person-day For purposes with 1+ tours, 1, 2 or 3 tours. 

3.1 Tour Primary Destination Choice (Sub)Tour 
Primary destination zone and parcel (models 
are purpose-specific) 

3.2 Work-Based Subtour Generation Work Tour 
Number and purpose of any subtours made 
during a work tour 

3.3 Tour Main Mode Choice (Sub)Tour 

Main tour mode  

(models are purpose-specific) 

3.4 Tour Time of Day Choice (Sub)Tour 

The time period arriving and the time period 
leaving primary destination  

(models are purpose-specific) 

4.1 Intermediate Stop Generation Half Tour 

Number and activity purpose of any 
intermediate stops made on the half tour, 
conditional on day pattern 

4.2 Intermediate Stop Location Trip 

Destination zone and parcel of  each 
intermediate stop, conditional on tour origin,  
destination, and location of any previous 
stops 

4.3 Trip Mode Choice Trip Trip mode, conditional on main tour mode 

4.4 Trip Departure Time Trip 

Departure time within 30 min. periods, 
conditional on time windows remaining 
from previous choices 

 

Just as important as downward integrity is the upward vertical integrity that is achieved by 
the use of composite accessibility variables to explain upper level outcomes.  Done properly, 
this makes the upper level models sensitive to important attributes that are known only at the 
lower levels of the model, most notably travel times and costs.  It also captures non-uniform 
cross-elasticities caused by shared unobserved attributes among groups of lower level 
alternatives sharing the same upper level outcome. 

Upward vertical integration is a very important aspect of model integration.  Without it, the 
model system will not effectively capture sensitivity to travel conditions. However, when 
there are very many alternatives (millions in the case of the entire day activity schedule 
model), the most preferred measure of accessibility, the expected utility logsum, requires an 
infeasibly large amount of computation.  So, for SACSIM approaches have been developed 
to capture the most important accessibility effects with a feasible amount of computation.  
One approach involves using logsums that approximate the expected utility logsum.  They are 
calculated in the same basic way, by summing the exponentiated utilities of multiple 
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alternatives.  However, the amount of computation is reduced, either by ignoring some 
differences among decisionmakers, or by calculating utility for a carefully chosen subset or 
aggregation of the available alternatives.  The approximate logsum is pre-calculated and used 
by several of the model components, and can be re-used for many persons.  Two kinds of 
approximate logsums are used, an approximate tour mode/destination choice logsum and an 
approximate intermediate stop location choice logsum.  The approximate tour mode-
destination choice logsum is used in situations where information is needed about 
accessibility to activity opportunities in all surrounding locations by all available transport 
modes at all times of day.  The approximate intermediate stop location choice logsum is used 
in the activity pattern models, where accessibility for making intermediate stops affects 
whether the pattern will include intermediate stops on tours, and how many.   

The other simplifying approach involves simulating a conditional outcome.  For example, in 
the tour destination choice model, where time-of-day is not yet known, a mode choice logsum 
is calculated based on an assumed time of day, where the assumed time of day is determined 
by a probability-weighted Monte Carlo draw.  In this way, the distribution of potential times 
of day is captured across the population rather than for each person, and the destination 
choice is sensitive to time-of-day changes in travel level of service. 

In many other cases within the model system, true expected utility logsums are used.  For 
example, tour mode choice logsums are used in the tour time of day models.   

COMPONENT MODELS OF DAYSIM 

We do not have the space in this paper to provide details on the specification of each 
component model. The reader is referred to the SACSIM Technical Memos (Bowman and 
Bradley, 2005-6), available on the website http://JBowman.net . The following sections list 
some key aspects of the various DaySim component models.  Similar models are grouped 
together, for ease of presentation.   

Day activity pattern (2.1-2.2) 

This model is a variation on the Bowman and Ben-Akiva approach, jointly predicting the 
number of home-based tours a person undertakes during a day for seven purposes, and the 
occurrence of additional stops during the day for the same seven purposes.  The seven 
purposes are work, school, escort, personal business, shopping, meal and social/recreational.  
The pattern choice is a function of many types of household and person characteristics, as 
well as land use and accessibility at the residence and, if relevant, the usual work location.  
The main pattern model (2.1) predicts the occurrence of tours (0 or 1+) and extra stops (0 or 
1+) for each purpose, and a simpler conditional model (2.2) predicts the exact number of 
tours for each purpose.  The “base alternative” in the model is the “stay at home” alternative 
where all 14 dependent variables are 0 (no tours or stops are made). 

Many household and person variables were found to have significant effects on the likelihood 
of participating in different types of activities in the day, and on whether those activities tend 
to be made on separate tours or as stops on complex tours. The significant variables include 
employment status, student status, age group, income group, car availability, work at home 
dummy, gender, presence of children in different age groups, presence of other adults in the 
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household, and family/non-family status. For workers and students, the accessibility (mode 
choice logsum) of the usual work and school locations is positively related to the likelihood 
of traveling to that activity on a given day. For workers, the accessibility to retail and service 
locations on the way to and from work is positively related to the likelihood of making 
intermediate stops for various purposes. 

Simpler models were estimated to predict the exact number of tours for any given purpose, 
conditional on making 1+ tours for that purpose. An interesting result is that, compared to the 
main day pattern model, the person and household variables have less influence but the 
accessibility variables have more influence. This result indicates that the small percentage of 
people who make multiple tours for any given purpose during a day tend to be those people 
who live in areas that best accommodate those tours. Other people will be more likely to 
participate in fewer activities and/or chain their activities into fewer home-based tours. 

Number and purpose of work-based tours (3.2) 

For this model, the work tour destination is known, so variables measuring the number and 
accessibility of activity opportunities near the work site influence the number and purpose of 
work-based tours. This model is very similar in structure to the stop participation and purpose 
models described next. 

Stop participation and purpose (4.1) 

For each tour, once its destination, timing and mode have been determined, the exact number 
of stops and their purposes is modeled for the half-tours leading to and from the tour 
destination.  For each potential stop, the model predicts whether it occurs or not and, if so, its 
activity purpose.  This repeats as long as another stop is predicted.  The outcomes of this 
model are strongly conditioned by (a) the outcome of the day activity pattern model, and (b) 
the outcomes of this model for higher priority tours.  For the last modeled tour, this model is 
constrained to accomplish all intermediate stop activity purposes prescribed by the activity 
pattern model that have not yet been accomplished on other tours. 

The estimation results for this model indicate that accessibility measures are important in 
determining which stops are made on which tours, as well as the exact number of stops. An 
important feature of this model system is that we do not predict the number and allocation of 
stops completely at the upper pattern level, as is done in the Portland and SFCTA models, or 
completely at the tour level, as is done in other models such as those in Columbus and New 
York. Rather, the upper level pattern model predicts the likelihood that ANY stops will be 
made during the day for a given purpose, at a level where the substitution between extra stops 
versus extra tours can be modeled directly. Then, once the exact destinations, modes and 
times of day of tours are known, the exact allocation and number of stops is predicted using 
this additional tour-level information. We think that this approach provides a good balance 
between person-day-level and tour-level sensitivities. 
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LOCATION MODELS 

Usual work (1.1) and school (1.2) locations, tour destinations (3.1) 

The dependent variable in the usual location and tour destination models is the parcel address 
where the activity takes place. Since over 700,000 parcels comprise the universal set of 
location choice alternatives in the SACOG six-county region, it is necessary to both estimate 
and apply the location choice models using a sample of alternatives. The sampling of 
alternatives is done using two-stage importance sampling with replacement; first a TAZ is 
drawn according to a probability determined by its size and impedance, and then a parcel is 
drawn within the TAZ, with a size-based probability. 

Some differences among the models come from the assumed model hierarchy in Table 1.For 
the usual work and school location models, auto ownership is assumed to be unknown, based 
on the assumption that auto ownership is mainly conditioned by work and school locations of 
household members, rather than the other way around.  For the tour destinations, auto 
ownership levels are treated as given, and affect location choice.  For university and grade 
school students who also work, the usual school location is known when usual work location 
is modeled; for other workers who also go to school, the work location is known when usual 
school location is modeled.  For the tour destination models, all usual locations are known. 

There are additional structural differences among these models.  For the two usual location 
models (work and school), the home location is treated as a special location, because it occurs 
with greater frequency than any given non-home location, and size and impedance are not 
meaningful attributes.  As a result, both of these models take the nested logit form, with all 
non-home locations nested together under the conditioning choice between home and non-
home.  In the estimation data, all workers have a usual work location and all students have a 
usual school location, so the model does not have an alternative called “no usual location”. 

Because a large majority of work tours go to the usual work location, the work tour 
destination model has this as a special alternative.  Therefore, the model is nested, with all 
locations other than the usual location nested together under the conditioning binary choice 
between usual and non-usual. (Nearly all observed school tours go to the usual school 
location.  Therefore, there is no school tour destination choice model.)   

Since there are no modeled usual locations for activities other than work and school, the 
destination choice model of all remaining purposes is simply a multinomial logit model. 

Two important variables in all of these models are the disaggregate mode choice logsum and 
network distance.  The logsum represents the expected maximum utility from the tour mode 
choice, and captures the effect of transportation system level of service on the location 
choice.  Distance effects, independent of the level of service, are also present to varying 
degrees depending on the type of tour being modeled.  In nearly all cases, sensitivity to 
distance declines as distance increases; in some cases this is captured through a logarithmic 
form of distance.  In other cases, where there is plenty of data to support a larger number of 
estimated parameters, a piecewise linear form is used to more accurately capture this 
nonlinear effect. 

In most cases the models include an aggregate mode-destination logsum variable at the 
destination.  A positive effect is interpreted as the location’s attractiveness for making 



- 8 - 

subtours and intermediate stops on tours to this location.  A mix of parking and employment, 
at both the zone and parcel level, as well as street connectivity in the neighborhood, attract 
workers and tours for non-work purposes.  Also, parcel-based size variables and TAZ-level 
density variables affect location choice. 

Intermediate stop location (4.2) 

For intermediate stop locations, the main mode used for the tour is already known, and so are 
the stop location immediately toward the tour destination (stop origin), and the tour origin.  
So the choice of location involves comparing, among competing locations, (a) the impedance 
of making a detour to get there, given the tour mode, and (b) the location’s attractiveness for 
the given activity purpose.  The model is a multinomial logit (MNL).   

Trip characteristics used in the model include stop purpose, tour purpose, tour mode, tour 
structure, stop placement in tour, person type, and household characteristics.  The most 
important characteristics are the tour mode and the stop purpose.  The tour mode restricts the 
modes available for the stop, and this affects the availability and impedance of stop locations.  
The availability and attractiveness of stop locations depend heavily on the stop purpose.  
Tour characteristics also affect willingness to travel for the stop, and the tendency to stop 
near the stop or tour origin.  These trip and tour characteristics tend to overshadow the effect 
of personal and household characteristics in this model.  

The main impedance variable is generalized time, as well as its quadratic and cubic forms, to 
allow for nonlinear effects.  It combines all travel cost and time components according to 
assumptions about their relative values.  Generalized time is used, instead of various 
separately estimated time and cost coefficients, because the intermediate stop data is not 
robust enough to support good estimates of the relative values.  Generalized time is measured 
as the (generalized) time required to travel from stop origin to stop location and on to tour 
origin, minus the time required to travel directly from stop origin to tour origin.  It is further 
modified by discounting it according to the distance between the stop origin and the tour 
origin.  The discounting is based on the hypothesis that people are more willing to make 
longer detours for intermediate stops on long tours than they are on short tours.  

Additional impedance variables used in the model include travel time as a fraction of the 
available time window, which captures the tendency to choose nearby activity locations if 
there are tight time constraints on the stop, and proximity variables (inverse distance), which 
capture the tendency to stop near either the stop origin or the tour origin. 

MODE CHOICE MODELS 

Tour main mode (3.3) 

The tour mode choice model determines the main mode for each tour (a small percentage of 
tours are multi-modal), There are eight modes, although some of them are only available for 
specific purposes. They are listed below along with the availability rules, in the same priority 
order as used to determine the main mode of a multi-mode tour: 
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(1) DT- Drive to Transit:  Available only in the Home-based Work model, for tours with 
a valid drive to transit path in both the outbound and return observed tour  

(2) WT- Walk to Transit: Available in all models except for Home-based Escort, for tours 
with a valid walk to transit path in both the outbound and return observed tour 
periods. 

(3) SB: School Bus: Available only in the Home-based School model, for all tours. 

(4) S3- Shared Ride 3+: Available in all models, for all tours. 

(5) S2- Shared Ride 2: Available in all models, for all tours. 

(6) DA- Drive Alone: Available in all models except for Home-based Escort, for tours 
made by persons age 16+ in car-owning households. 

(7) BI- Bike: Available in all models except for Home-based Escort, for all tours with 
round trip road distance of 30 miles or less. 

(8) WK- Walk: Available in all models, for all tours with round trip road distance of 10 
miles or less. 

Transit has less than 1% mode share and Bicycle has less than 2% mode share for all 
purposes except Work and School.  In order to get enough transit and bicycle tours to provide 
reasonable estimates, the home-based non-mandatory purposes of shopping, personal 
business, meal and social/recreation were grouped in a single model, but using purpose-
specific dummy variables to allow for different mode shares for different purposes.   

In general, it was possible to obtain significant coefficients for out-of-vehicle times, but not 
for travel costs or in-vehicle times. This is a typical result for RP data sets, particularly when 
there are few transit observations. As a result, many of the coefficients for cost and in-vehicle 
time were constrained at values that met the following criteria: (1) the in-vehicle time 
coefficients meet the United States Federal Transit Administration (FTA) guidelines, (2) the 
imputed values of time are reasonable and meet FTA guidelines, and (3) the values were kept 
as close as possible to what the initial estimation indicated.  The resulting values of time and 
out-of-vehicle/in-vehicle time ratios are shown in Table 2. The number of transfers was not 
found to be significant in any of the models, however transfer wait time is included in the 
out-of-vehicle time coefficients.  Also, the higher the percentage of time in a Drive to Transit 
path that is spent in the car rather than on transit, the lower the probability of choosing it.  
This is a result often found in other cities as well, which serves to discourage park-and-ride 
choices that include long drives followed by short transit rides. 

Two land use variables came out as significant in many of the models, increasing the 
probability of walk, bike and transit: 

Mixed use density: This is defined as the geometric average of retail and service employment 
(RS) and households (HH) within a half mile of the origin or destination parcel ( = RS * HH / 
(RS + HH)). This value is highest when jobs and households are both high and balanced. 
High values near the tour origin tend to encourage walking and biking, while high values near 
the tour destination more often encourage transit use.  
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Table 2: Tour Mode Choice Level of Service Coefficient Summary 

Model Value of time
($/hr) 

Ratio  
Walk to In-Vehicle 

Ratio  
Wait to In-Vehicle 

Home-Based Work $11.20 2.95 2.50 

Home-Based School $6.00 2.20 2.20 

Home-Based Escort $7.50 3.00 N/A 

Home-Based Other $7.50 2.72 2.72 

Work-Based $7.50 2.84 2.84 

 

Intersection density: This is defined as the number of 4-way intersections plus one half the 
number of 3-way intersections minus the number of 1-way “intersections” (dead ends and cul 
de sacs) within a half mile of the origin or destination parcel. Higher values tend to encourage 
walking for School and Escort tours, where safety for children is an issue, and also to 
encourage walking, biking and transit for Home-Based Other tours. 

A number of different nesting structures were tested. In the nesting structure that was selected 
there are three combined nests: 

(1) Drive to Transit with Walk to Transit 

(2) Shared Ride 2 with Shared Ride 3+ 

(3) Bike with Walk 

These all gave logsum coefficients less than 1.0 but not significantly different from each 
other, so a single estimated nesting parameter applies to all 3 nests (as well as to the 2 
additional “nests” that only have one alternative each: Drive Alone, and School Bus).  The 
estimated logsum parameters are 0.51 for Work, 0.86 for School, and 0.73 for Other.  For 
Work-Based tours, it was not possible to obtain a stable estimate, so a constrained value of 
0.75 (similar to HBOther) was used.  No nesting was used for the Escort model, as it contains 
only 3 alternatives and is a very simple model. 

Trip mode (4.3) 

The trip-level mode is conditional on the predicted tour mode, but now uses a specific OD 
pair and a time anchor, and also the trip mode for the adjacent, previously modeled trip in the 
chain.  The majority of tours use a single mode for all trips, so this model only explains the 
small percentage of trips that are made by modes other than the main mode. The most 
common occurrence of this is a Drive Alone trip that is made as part of a Shared Ride tour 
after the passenger has been picked up or dropped off.  These cases are most common on 
Escort tours, where predicting the trip(s) that is Drive Alone is mainly a function of the half 
tour (away from home or towards home) and the time of day. 



- 11 - 

AUTO AVAILABILITY (1.3) 

This model is applied at the household level, and determines the number of vehicles available 
to the household drivers.  It is structured as a multinomial logit (MNL) with five available 
alternatives:  0, 1, 2, 3, and 4+.  Key variables are the numbers of working adults, non-
working adults, students of driving age, children below driving age and income.  Statistically 
significant policy variables affecting car ownership include mode choice logsums measuring 
accessibility to the workers’ and students’ usual work and school locations, a mode-
destination choice logsum measuring accessibility from home to non-work activities, distance 
from home to the nearest transit stop, parking prices in the home neighborhood, and 
commercial employment in the home neighborhood.  Although the policy variables are 
significant, the model’s auto ownership elasticity with respect to changes in these variables is 
less than 0.1 in nearly all cases and often much lower, the lone exception being very low 
income households. 

TIME OF DAY MODELS 

DaySim employs a method of modeling time of day developed by Vovsha and Bradley 
(2004).  The time of day models explicitly model the 30 minute time periods of arrival and 
departure at all activity locations, and hence for all trips between those locations.  It thereby 
also provides an approximate duration of the activity at each activity location.  The model 
uses 48 half-hour periods in the day—3:00-3:29 AM, 3:30-3:59 AM, …, 2:30 AM-2:59 AM.  
Given the way that the activity diary data was collected, no tour begins before 3:00 AM or 
ends after 2:59 AM.  DaySim includes two types of time-of-day models: 

Tour primary destination arrival and departure time (3.4) 

For each home-based or work-based tour, the model predicts the time that the person arrives 
at the tour primary destination, and the time that the person leaves that destination to begin 
the return half-tour. The tour model includes as alternatives every possible combination of the 
48 alternatives, or 48 x 49 / 2 = 1,716 possible alternatives. The model is applied after the 
tour primary destination and main mode have already been predicted.  Since entire tours, 
including stop outcomes, are modeled one at a time, first for work and school tours and then 
for other tours, the periods away from home for each tour become unavailable for 
subsequently modeled tours. 

Intermediate stop arrival or departure time (4.4) 

For each intermediate stop made on any tour, this model predicts either the time that the 
person arrives at the stop location (on the first half tour), or else the time that the person 
departs from the stop location (on the second half tour). On the second (return) half tour, we 
know the time that the person departs from the tour primary destination, and, because the 
model is applied after the stop location and trip mode have been predicted, we also know the 
travel time from the primary destination to the first intermediate stop. As a result, we know 
the arrival time at the first intermediate stop, so the model only needs to predict the departure 
time from among a maximum of 48 alternatives (the same 30 minute periods that are used in 
the tour models). This procedure is repeated for each intermediate stop on the half tour. On 
the first (outbound) half tour, the stops are simulated in reverse order from the primary 
destination back to the tour origin, so we know the departure time from each stop and only 
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need to predict the arrival time.  As stops within a tour are modeled, the periods occupied by 
each modeled stop become unavailable for subsequently modeled stops and tours. 

A key concept in the time of day models is the “time window”. A time window is a set of 
contiguous time periods that are available for scheduling tours and stops.  When a tour or 
stop is scheduled, the portion of the window that it does not fill is left as two separate and 
smaller time windows.  The time periods at either end of a scheduled sequence of activities 
on a tour are only partially filled, but the time periods in between are completely filled.  It is 
possible to arrive at a tour or stop destination in a given time period if another tour ended in 
that period, and possible to leave a tour or stop destination if another tour began in that 
period, but it is not possible to arrive or depart in a time period that is already completely 
filled. 

Another key aspect is the use of shift variables. These are dummy variables interacted with 
the arrival time and the duration of the alternative.  If the arrival shift coefficient is negative, 
it means that activities tend to be made earlier (because the shift coefficient causes later 
arrival time alternatives to have lower utility), and if it is positive, it means that activities tend 
to be made later. If the duration shift coefficient is negative, it means that activities tend to be 
shorter (because the shift coefficient causes longer duration time alternatives to have lower 
utility), and if it is positive, activities tend to be longer. No departure shift coefficient is 
estimated because the departure shift is simply the sum of the arrival shift and the duration 
shift (e.g. if the arrival shift is an hour earlier and the duration shift is an hour longer, the 
departure shift is 0).  In the models, shift variables interact extensively with other 
characteristics of the person, day activity pattern and tour, as well as time-dependent 
attributes of the network, such as travel times and measures of congestion, to effectively 
represent their influence on time-of-day choice. 

The time of day models also use a variety of variables to represent scheduling pressure, 
conditional on what other activities have already been scheduled or remain to be scheduled 
for the day.  The overall scheduling pressure is given by the number of tours remaining to be 
scheduled divided by the total empty window that would remain if an alternative is chosen. 
The negative effect indicates that people are less likely to choose schedule alternatives that 
would leave them with much to schedule and little time to schedule it in. A similar variable is 
the number of tours remaining divided by the maximum consecutive time window. This is 
also negative, meaning that people with more tours to schedule will tend to try to leave a 
large consecutive block of time rather than two or more smaller blocks.  

Relative travel times across the day also influence time of day choice. The travel time for 
each period is based on the network travel times for the 4 periods of the day – AM peak, 
midday, PM peak, and off-peak. The variable is applied for both the outbound half tour (tour 
origin to tour destination) and the return half (tour destination to tour origin). For auto tours, 
the time is just the in-vehicle time, while transit time is in-vehicle time plus first wait time, 
transfer time, and drive access time. Walk access/egress time is not included, as that does not 
vary by time period.  These variables are not applied for walk, bike or school bus tours. 
Significant travel time effects were found for Work and Other tours and for Intermediate 
Stops, but not for School or Work-based Tours.  

Auto congestion may also cause time shifts within the AM peak and PM periods. For this 
purpose, the variable used was the extra time spent on links where the congested time is over 
20% higher than the free flow time. This extra congested time was converted to shift 
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variables by multiplying by the time difference between the period and the “peak of the 
peak”: 

1. AM shift earlier: If the period is 6 AM to 8 AM, multiply by (8 AM – time) 

2. AM shift later: If the period is 8 AM to 10 AM, multiply by (time – 8 AM) 

3. PM shift earlier:  If the period is 3 PM to 5 PM, multiply by (5 PM – time) 

4. PM shift later: If the period is 5 PM to 7 PM, multiply by (time – 5 PM) 

With this formulation, the more positive the coefficient and the larger the congested time, the 
more that the peak demand is spread away from the peak of the peak. 

For Work tours, in both the AM and PM, the estimation results show a tendency to move the 
work activity earlier as the time in very congested conditions increases. For School tours and 
Work-based subtours, no significant congestion effects were estimated.  For Other tours, 
times in the PM peak were found to shift both earlier and later with high congestion.  

SACSIM EQUILIBRATION 

Concepts 

In the overall system design of SacSim, Figure 1 shows a cyclical relationship between 
network performance and trips: DaySim and the auxiliary trip models use network 
performance measures to model person-trips, which are then loaded to the network, 
determining congestion and network performance for the next iteration.  The model system is 
in equilibrium when the network performance used as input to DaySim and the other trip 
models matches the network performance resulting from assignment of the resulting trips.  
Network performance for this purpose is times, distances, and costs measured zone-to-zone 
along the paths of least generalized cost.  

Trip-based model systems with this same requirement have existed for at least thirty years 
(Evans, 1976), and the theory of system equilibrium for them is well developed now.  Almost 
all convergent trip-based models, at some stage in an iteration process, use the method of 
convex combinations.  This is to update the current best solution of flows (zone-to-zone 
matrices and/or link volumes) with a weighted average of the previous best solution of those 
flows and an alternative set of flows calculated by the new iteration. 

With the unit of analysis in DaySim being households instead of origin-destination pairs, we 
have options that are not normally available to trip-based models.  DaySim need not simulate 
the entire synthetic population in an iteration; it is able to run a selected sample of the 
population.  Since its runtimes are long but proportional to the number of households 
modeled, early system-iterations can be sped up by simulating small samples.   

The SACSIM equilibration procedure employs equilibrium assignment iteration loops (a-
iterations) nested within iterations between the demand and assignment models (da-
iterations).  This is similar to the nested iteration in many trip-based model systems. 
Assignment is run for four time periods, and each one employs multi-class equilibrium 
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assignment, with classes composed of SOV, HOVs not using median HOV lanes, and HOVs 
using them.  In the i-th da-iteration, DaySim is run on a subset of the synthetic population, 
consisting of the fraction 1/si (i.e. 100/si percent) of the households, starting with the mi-th 
household and proceeding uniformly every si households.  The user determines si and mi.  
DaySim scales up the synthesized trips by the factor si before they are combined with the 
estimated external, airport and commercial trips in mode-specific OD matrices for the four 
assignment time periods.  During the n-th a-iteration within the i-th da-iteration, link volumes 
are estimated for the iteration i OD matrices, and combined in a convex combination with 
link volumes from the prior da-iteration, using a user-specified combination factor (or step-
size) iλ .  This is the pre-loading method intended to prevent link volume oscillation between 
da-iterations.  The resulting estimated volumes are then combined with link volumes from the 
prior a-iteration using the TP+-determined step size α .  This is intended to prevent link 
volume oscillation between a-iterations. 

As implemented, the equilibration procedure runs for a user-determined number (I) of da-
iterations.  Within each iteration, the user controls the synthetic population subset used by 
DaySim (via si and mi), the weight ( iλ ) given during assignment to the link volumes 
associated with this iteration’s simulated trips, and the assignment closure criteria (Ni and gi). 
Bowman and Bradley (2006) report the results of testing various combinations of these 
parameters.  

Eventually, certain applications of the activity model may need the equilibrium process to 
achieve higher precision in zone-to-zone times than the prototypical applications provide.  
Since the degree of precision is problem-specific (depends on the population and on 
congestion levels), empirical study should be pursued as needed on where to best find 
improvement, in either: (a) more system iterations with smaller step sizes and/or smaller first 
sample, (b) more simulation passes per household, (c) a smaller tolerance of the assignment’s 
relative gap closure criterion, especially in later system iterations, or (d) some combination of 
these. A separate requirement anticipated for some applications of SacSim is to reduce the 
randomness of trip forecasts beyond what is inevitable from the Monte Carlo process at full 
sampling.  These applications require supersampling, which is running two or more 
simulations of the whole population after equilibrium is adequately achieved, and averaging 
their results.   

CALIBRATION AND VALIDATION 

SacSim calibration and validation work has proceeded in three steps:  preliminary validation, 
base year calibration, prediction validation.   

Preliminary validation 

Preliminary validation involves comparing model estimation and software application results 
to the household survey sample.  It occurred primarily during DaySim model estimation and 
software development.  After each model was estimated, it was applied to the survey data.  
Aggregate results for various subpopulations were checked, as were model sensitivities, to 
detect deficiencies in the model specifications, so they could be corrected.  After each model 
was implemented in the application software, it was again compared to the survey sample to 
find software bugs. 
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Calibration 

A base year validation run consists of running a base year 2000 scenario of the entire model 
system to an equilibrated state, and comparing aggregate results to the best available external 
information about the actual base year characteristics on a typical weekday.  This information 
comes from census data, transit on-board surveys, and screenline and other counts.  
Calibration then involves iteratively adjusting parameters and repeating validation runs until 
the base year prediction adequately matches the external information.  Although all model 
calibration adjustments have a simultaneous impact on the model predictions, it is natural to 
calibrate sequentially from the top to the bottom of the DaySim model hierarchy, because 
adjustments to upper level models will tend to impact lower level model predictions more 
than vice versa.  Bowman and Bradley (2006) provide some further details on the initial 
calibration tests. 

Prediction validation 

Prediction validation involves using SacSim to forecast from a base year of 2000 to a forecast 
year of 2005, and comparing the results to estimates of actual 2005 transport system 
performance.  It also involves using SacSim to forecast under various scenarios and further 
forecast years (i.e. 2032) and comparing its sensitivity to reasonable expectations.  This work 
is now underway, and has yielded interesting preliminary results. 

Although SACSIM development is complete, final calibration and testing of the model is still 
being performed as of December 2006.  The model will be used for adoption of the next 
SACOG metropolitan transportation plan (MTP). 

APPLICATION ISSUES 

The biggest application issue has been the development of forecast year parcel/point datasets 
required by SACSIM.   Development of the model was based on parcel/point data from Year 
2000 surveys and inventories of population, employment and land use.  Application of the 
model was based on synthesized datasets for the model base year (2005) and for all forecast 
years for the MTP. 

The primary parcel/point data source was SACOG’s parcel-based land use database, called 
Place3s.  Place3s is a GIS-based land use scenario generator (Allen, et al. 1996).  Scenarios 
built at parcel level, with land uses characterized by “place type”, which includes 
assumptions about the type, density, and mix of uses.  SACOG uses a palette of about 50 
place types.  Total development levels are controlled by aggregate county-level econometric 
forecasts adopted by the SACOG Board for use in the development of the MTP.  Place3s was 
used to estimate dwelling units and employment (9 sectors) at parcel level. 

Even with the basic demographic variables forecasted at parcel level, other datasets which are 
very important for predicting travel behavior do not come naturally from Place3s, and were 
prepared separately.  These variables include:  small-area demographics needed to control the 
development of synthetic populations; K12 schools, colleges and universities; some sectors of 
employment (e.g. medical employment not associated with hospitals and large medical 
centers); paid off-street parking facilities; transit stops; and street-pattern variables. 



- 16 - 

Demographics to control the development of synthetic populations were built up from the 
Place3s parcel-level estimates for dwelling units.  The control variables for the population 
synthesis are household size (1,2,3,and 4+ persons); workers per household (0,1,2, and 3+ 
workers); income level (5); and age of head-of-household (over/under 55 years).  
Demographic profiles based on control variables for three dwelling unit structure types 
(single family, multi-family 2-4 units, and multi-family 5+ units) were drawn from Year 2000 
Census tabulations for regional analysis districts within the region.  The profiles are applied 
to the Place3s estimates of dwellings by type at traffic analysis zone level.  The resulting files 
are used directly by SACOG’s 4-step travel model (SACMET), and are used as control files 
for the SACSIM population synthesis. 

School locations and types are built up at point-level from a Year 2005 inventory of schools 
to future years by adding future schools.  For K12 schools, future school needs are calculated 
at TAZ-level by tallying growth in school-age children in the synthetic populations.  For 
example, the Year 2035 land use forecasts require about 300 new K12 schools.  Where 
possible, future school sites are identified in local agency general plans and school district 
plans.  In practice, only a minority of future K12 sites are explicitly identified in planning 
documents, and the majority of future K12 sites are manually identified based on the location 
of residential growth and judgement.  Future colleges and universities are based on known 
plans for these facilities. 

Place3s estimates medical employment associated with hospitals and large medical centers.  
All other medical employment associated with smaller clinics, private offices, and other 
medical-related uses are included within estimates of office and service employment sectors.  
Other medical employment is split out from these more aggregate categories based on 
proximity of parcel to the hospitals and large medical centers.  For parcels very near 
hospitals/medical centers, a higher percentage of the total office/service employment is 
medical; as distance increases, the percentage decreases.  Rates for this post-processing were 
based on Year 2005 employment inventories. 

Paid off-street parking facilities are built up at point-level from a Year 2005 inventory in a 
manner similar to the build-up of K12 schools.  The growth in paid off-street parking spaces 
is calculated at TAZ level, based on the growth in employment by density range.  In general, 
paid off-street parking is directly related to density of development:  as the density of 
development on a parcel increases, the likelihood of paid off street parking, and prices 
charged, increases.  The “yields” of paid off-street parking are calculated at TAZ-level based 
on the amount of growth in several density ranges, with facility locations identified based on 
judgement within each TAZ.  The yield rates were computed from a Year 2005 inventory of 
parking facilities, and Year 2005 Place3s development density estimates.  Paid parking is also 
related to special uses, like colleges/universities and hospitals, and facilities are added at 
future locations of these uses. 

Proximity to transit is measured as orthogonal distance from parcel to the nearest transit 
station or stop in SACSIM.  Transit stops are also built up at point level from a Year 2005 
inventory of transit stops.   New future transit stop points are based on a comparison of 
forecast year and Year 2005 transit networks from the travel demand model.  Where there are 
new transit lines are added, new stops are added to the inventory.  In areas with little or no 
change in transit service, the Year 2005 stop inventory is used.  For rail and express bus 
facilities, stations and stops as coded in the travel demand model are used directly.  For fixed 
route bus services, the travel demand model stops under-predict actual stops.  This is because 
zone-based travel models do not include sufficient detail to capture the stop-spacing for local 
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bus routes, especially in urban areas.  In these areas, stops points are synthesized along the 
bus routes and added to the Year 2005 inventory points. 

Street pattern variables are used in several location and mode choice models in SACSIM, and 
are strongly related to non-motorized mode choice.  The key street pattern variables are the 
buffered densities or numbers of intersections of three types:  1-leg intersections (e.g. cul-de-
sacs); 3-leg intersections (e.g. a “T”); and 4+-leg intersections (e.g. a four-way intersection).  
Higher levels of 1-leg intersections are associated with lower likelihood of trip linking and 
non-motorized modes of travel; higher levels of 3- and 4+- leg intersections are associated 
with higher likelihood of trip linking and non-motorized travel modes.  While future densities 
and mixes of use in growth areas are captured in the Place3s land use scenarios, future street 
pattern is not.  Street patterns profiles for growth areas are “borrowed” from Year 2005 
observed street patterns by place type and density level.   

Each one of these data issues required significant time and effort to address.  However, with 
the exception of transit stops, the data are prepared only once for each land use data run, and 
the process is becoming more routinized and efficient.  Virtually all of these issues needs to 
be addressed for zone-based models, but the aggregate nature of the zones allows for the data 
to be developed with less rigor and hand-wringing.  The discipline of developing the datasets 
at parcel/point level simply requires that all the assumptions be laid out explicitly. 
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Table 1. Component Models of DaySim 

 

Model # Model Name Level What is predicted 

1.1 Synthetic Sample Generator Household 

Household size and composition, household  
income, person age, gender, employment 
status, student status 

1.2 Regular Workplace Location Worker Workplace location zone and parcel 

1.3 Regular School Location Student School location zone and parcel 

1.4 Auto Ownership Household Auto ownership 

2.1 Daily Activity Pattern Person-day 
0 or 1+ tours for 7 activity purposes.  0 or 
1+ stops for 7 activity purposes 

2.2 Exact Number of Tours Person-day For purposes with 1+ tours, 1, 2 or 3 tours. 

3.1 Tour Primary Destination Choice (Sub)Tour 
Primary destination zone and parcel (models 
are purpose-specific) 

3.2 Work-Based Subtour Generation Work Tour 
Number and purpose of any subtours made 
during a work tour 

3.3 Tour Main Mode Choice (Sub)Tour 

Main tour mode  

(models are purpose-specific) 

3.4 Tour Time of Day Choice (Sub)Tour 

The time period arriving and the time period 
leaving primary destination  

(models are purpose-specific) 

4.1 Intermediate Stop Generation Half Tour 

Number and activity purpose of any 
intermediate stops made on the half tour, 
conditional on day pattern 

4.2 Intermediate Stop Location Trip 

Destination zone and parcel of  each 
intermediate stop, conditional on tour origin,  
destination, and location of any previous 
stops 

4.3 Trip Mode Choice Trip Trip mode, conditional on main tour mode 

4.4 Trip Departure Time Trip 

Departure time within 30 min. periods, 
conditional on time windows remaining 
from previous choices 
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Table 2: Tour Mode Choice Level of Service Coefficient Summary 

Model Value of time
($/hr) 

Ratio  
Walk to In-Vehicle 

Ratio  
Wait to In-Vehicle 

Home-Based Work $11.20 2.95 2.50 

Home-Based School $6.00 2.20 2.20 

Home-Based Escort $7.50 3.00 N/A 

Home-Based Other $7.50 2.72 2.72 

Work-Based $7.50 2.84 2.84 
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Figure 1:  New SACOG Regional Travel Forecasting Model System 
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