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1. Executive Overview 

Research Problem Statement 

The objective of this research is to empirically test and demonstrate the transferability of 

advanced (activity-based, or “AB”) models between regions.  If these methods are shown to be 

transferable, regions can borrow and adapt activity-based models from other regions, thereby 

avoiding most of the cost and expertise needed to field a large household survey and estimate 

entirely new models.  Such a result could greatly accelerate the adoption of this advanced 

modeling method throughout the United States, especially among small and mid-sized agencies. 

Using current data obtained through the 2008-2009 National Household Travel Survey (NHTS) 

“add-on” program, the principal investigators estimate advanced activity-based models 

simultaneously for six regions, four in California and two in Florida.  Statistical tests are applied 

to identify regional differences in the model coefficients.  The absence of statistically different 

estimates for key model coefficients across regions would provide strong empirical evidence of 

transferability. 

Regions Included in the Study 

This study examines six regions, including four in California and two in Florida, as listed in 

Table 1.1, with summary statistics, including the size of the NHTS sample, in Table 1.2.  

Table 1.1:  Regions included in the transferability study 

REGION AGENCIES INVOLVED 

California Regions  

 Fresno Council of Fresno County Governments (FresnoCOG) 

 Northern San Joaquin Valley 

 (NSJV. Or ‘3county’) 

Merced County Association of Governments (MCAG) 

San Joaquin Council of Governments (SJCOG) 

Stanislaus Council of Governments (StanCOG) 

 Sacramento Sacramento Area Council of Governments (SACOG) 

 San Diego San Diego Association of Governments (SANDAG) 

Florida Regions  

 Jacksonville Florida DOT District 2, North Florida Transportation 

Planning Organization (NFTPO) 

 Tampa Florida DOT District 7 
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Table 1.2:  Basic statistics of the six regions in the transferability study 

 Fresno NSJV Sacramento San Diego Jacksonville Tampa 

NHTS Households 380 660 1,310 6,000 1,050 2,500 

REGION 
Households 288,857 458,731 805,292 1,081,082 551,353 1,361,724 

Sq Miles 6,017 4,913 6,197 4,262 2,532 3,275 

Number of TAZ 1,967 3,758 1,502 4,682 1,309 2,251 

Number of Census Blocks 27,891 39,312 49,282 33,084 30,899 54,310 

Avg Census Block Size (acres) 137.9 78.0 80.3 82.4 56.0 36.3 

Median Census Block Size 

(acres) 
5.6 4.5 5.4 6.7 4.8 5.1 

HH / Sq Mi 48 93 130 254 218 416 

Avg Households/Census 

Block 
10.4 11.7 16.6 34.2 17.8 26.4 

Avg Employment/Census 

Block 
12.7 11.7 19.7 45.9 20.7 26.9 

Employment (Total) 353,216 459,910 969,838 1,519,582 638,195 1,462,137 

     Education 35,768 52,028 73,688 149,540 35,787 106,766 

     Food 22,862 10,836 58,102 90,013 46,619 129,529 

     Government 36,837 16,290 67,103 205,780 72,801 70,147 

     Industrial 68,443 140,303 119,305 202,605 111,102 206,713 

     Medical 36,304 48,081 108,036 101,251 70,395 198,171 

     Office 44,521 54,789 204,288 170,027 112,511 358,637 

     Retail 35,946 55,881 131,781 151,504 87,031 192,973 

     Service 5,393 24,609 202,884 424,454 100,445 98,815 

     Agricultual/Resource/ 

  Construction 67,142 57,093 4,652 24,408 1,504 100,386 

       

Avg commute time  

(2006-2008 ACS) 23.9 30.0 28.5 27.9 28.6 28.4 

Modeled modes  

(in region’s original model) 5 5 10 25 8 11 

No. auto skim periods 4 4 5 6 4 2 

No. transit skim periods 2 2 5 6 2 2 

Network software Cube Cube Cube TransCAD Cube Cube 

Transferability 

Any travel demand model, whether it be a standard “4 step” model or an advanced activity-based 

model, consists of two key components: the input data, and the parameterized relationships used 

to “translate” the input data into output predictions of travel demand.  The critical question 

addressed in this study is whether or not the parameterized relationships in advanced travel 

demand models are transferable.  In discrete choice travel demand models, these relationships 
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are typically in the form of utility functions:  U ia = a a + bx ia + e ia   .  The question is how 

transferable the values of the coefficients represented by a and b are from one regional context to 

another.  The two main approaches available for answering this question are:   

(a) Application-based: Estimate utility coefficients based on observed choices in one region, 

apply that model to data from a different region, and see how well the model predicts 

observed choices in the other region. 

(b)  Estimation-based: Estimate utility coefficients based on observed choices from two 

regions, using the same exact model specification for both regions, and test whether the 

resulting estimated utility coefficients are statistically different from one another.   

The estimation-based approach, which is adopted for this study, has important advantages over 

the application-based approach.  The most obvious advantage is that the estimation-based 

approach allows for explicit statistical tests of the differences in coefficients, and thus the ability 

to address a wide variety of hypotheses regarding transferability.  A related advantage is that the 

estimation-based approach can be used to test the transferability of the coefficients for specific 

types of variables, while the application-based approach can only test the transferability of the 

model as a whole. 

A potential drawback of the estimation-based approach is that it is such a strong statistical test 

that any hypothesis of transferability is likely to be rejected unless the input data from the 

different regions are highly consistent.  In other words, the statistical test will confound the 

effects of data inconsistency with the effects of different underlying relationships.  For this 

reason, this research project places a strong emphasis on data quality and consistency.  As 

discussed in later chapters, the study is designed to meet the necessary data consistency 

condition, using data from the same NHTS survey for all regions, and taking great care to make 

the spatial land use data and network skim data from the various regions as consistent as 

possible.  

Another important data issue affecting the study of transferability relates to the quantity of the 

survey data used to estimate the model coefficients.  If there is not enough data when a model is 

estimated, some important coefficients may be statistically insignificant and others may be 

completely inestimable.  As with the data consistency issue, problems associated with inadequate 

quantity of data tend to confound the tests of transferability.  However, since the quantity of data 

cannot be increased in this study to eliminate the issue, efforts are made to minimize the 

confounding of results arising from inadequate quantity of data.  In particular, the summarization 

of results accounts for inestimability of coefficients arising from small sample sizes.  Also, in 

evaluating the results, efforts are made to point out situations where the effects of data quantity 

might be misinterpreted as transferability effects. 

The summary of findings for this study identifies the hypotheses tested, the conclusions drawn, 

and the limits imposed by unavoidable data issues. 
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Activity-Based Model Framework 

The models estimated in this project are components of the activity-based (AB) model 

framework commonly known as DaySim, which has been used in Sacramento since 2007 and 

Seattle since 2009, and has been enhanced and implemented for use in all of the regions of this 

project except San Diego.  The DaySim framework is used for this study as a matter of 

convenience:  it is the framework that has been developed by the principals in this study.  The 

reader is referred to Chapter 4 for more details about DaySim.  This transferability project 

includes 14 of the 21 different DaySim models, including all of the most important models, so it 

is uniquely comprehensive among existing transferability tests for AB model systems.  The 

DaySim models are listed below, with the models shown in bold font that are included in this 

study: 

Regular Workplace Location 

Regular School Location 

Auto Ownership 

Daily Activity Pattern 

Exact Number of Tours 

Work Tour Primary Destination Choice 

Other Tour Primary Destination Choice 

Work-Based Subtour Generation 

Work Tour Main Mode Choice (two versions tested, as explained in Chapter 4) 

School Tour Main Mode Choice 

Escort Tour Main Mode Choice 

Work-based subtour Main Mode Choice 

Other Tour Main Mode Choice 

Work Tour Time Period Choice 

School Tour Time Period Choice 

Work-based subtour Time Period Choice 

Other Tour Time Period Choice 

Intermediate Stop Generation 

Intermediate Stop Location 

Trip Mode Choice 

Trip Departure Time 

The wide variety of variables in these models includes person and household characteristics, 

Census Block-level land use and accessibility, zone-to-zone accessibility, endogenous variables 

related to the predicted activity pattern and related schedule pressure, endogenous variables 

related to people who work from home, or who use various modes to get to work.  For purposes 

of summarizing results of the transferability tests, each model variable is classified into one of 

the following types (two types if it is an interaction variable): 

1. A-constant 

2. P-person 

3. H-household 

4. D-day pattern 
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5. T-tour/trip 

6. I-impedance 

7. U-land use 

8. W-time window 

9. C-logsum 

10. G-size variable 

11. L-log size multiplier 

Model Estimation and Transferability Testing Approach 

Base Estimation Approach 

The models listed above are estimated using a common, consistent data set spanning all six 

regions.  In particular: 

 The observed choices are taken from a household travel survey, which has been processed 

in such a way as to reflect the assumptions and conditional relationships among choice 

components of the DaySim model system.  There are records representing each household, 

person, household-day, person-day, tour and trip. 

 For each observed choice, relevant information  is drawn from a file of Census Block 

attributes and files of zone-to-zone impedance information (road and transit skims). 

 Estimation of upper level models uses composite variables (logsums) calculated from the 

models of lower level choices. 

The Transferability Testing Process 

The transferability tests are set up and executed using the following sequence of steps: 

(1) For each choice model to be tested, a base model specification is developed, including all 

explanatory variables to be tested.  For this study the SACOG version is used as the base 

specification because it is the most rigorously developed specification within the DaySim 

family and serves as the basis of the other existing DaySim implementations.  Also, the 

current transferability study lacks budget for the development of a new specification to serve 

as the basis of comparison.  Each variable in each model is given a one- or two-letter code 

denoting what type of variable it is. 

(2) For each of the 15 models, the base model estimation data set is created for each of the 6 

regions, giving 90 separate estimation data sets.  This is done using the DaySim software, 

which uses the same model code for both model estimation and application.  The models had 

already been coded into DaySim and tested extensively in application for other projects, 

which helped to avoid errors in setting up the estimation data, and to ensure consistency in 

the data processing across the six regions.  DaySim automatically creates consistent data and 

control files for use by the ALOGIT model estimation software package.  For each of the 90 

base models (15 model types times 6 regions), the base model is estimated using ALOGIT.  
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Any variables that cannot be estimated in the base version are dealt with by leaving the 

variable in the model but constraining the coefficient to a specific value (usually 0). 

(3) A program created for this project reads the ALOGIT estimation results (extension .f12) files 

for the 90 different base runs, and automatically creates new data files and control files to 

estimate 36 different model specifications for each of the 15 models.  For a specified one of 

the 15 model types, the program merges the separate estimation data files for the 6 regions 

into a single combined estimation data file, creates ALOGIT estimation control files for all 

36 models used in the transferability tests, and creates an ALOGIT “batch run” file 

instructing the ALOGIT software to estimate all 36 models in succession. 

(4) After the 36 model runs for all 15 model types are completed successfully, a second program 

created for this project compiles and tabulates all estimation results for further viewing and 

analysis.  It reads in the estimation results (.F12) files, and writes out two types of files: 

a. A single, space-delimited metafile, containing a record for each coefficient in each 

estimated model.  The content of this file is documented in Appendix 2. 

b. Comma-delimited (.csv) files showing all estimation results in tabular form.  This is 

available as a workbook (xlsx format), separate from this report. 

(5) The metadata file from the previous step is analyzed using an SPSS syntax file created for 

this project that creates the tables and charts presented in Chapter 6. 

The model specifications for transferability tests 

As noted above, up to 36 different models are estimated for each model type.  These fall into two 

main types: the “base models”, and the “difference models”. 

Twelve of the models are base models.  Six of them are the region-specific models.  The other 

six fall into four different types: 

 2-state: Using the data from all 6 regions in both states 

 1-state: (a) Using only the data from the 4 California regions, and (b) using only the data 

from the 2 Florida regions 

 2-state+ASC: Using the data from all 6 regions in both states, but using separate 

alternative-specific constants for each region. 

 1-state+ASC: (a) Using only the data from the 4 California regions, and (b) using only 

the data from the 2 Florida regions, but using separate alternative-specific constants for 

each region in that state. 

These six models are used as a basis for comparison for the remaining 24 “difference models”. 

The concept behind the difference models is as follows: 
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 Estimate a model across data from multiple regions (6 regions for the 2-state models, and 

either 4 or 2 regions for the 1-state models). 

 For a single selected region, add a second set of all the coefficients that are in the base 

model.  These are referred to as “difference variables”, because if the coefficient value 

that is estimated across all included regions is the same as the coefficient value that 

represents the single selected region, then the estimated value for the second, region-

specific coefficient will be 0.  The second coefficient essentially measures the difference 

between the correct coefficient value for the selected region and the correct value for the 

sum of all regions except the selected region. 

 Estimating a full model with difference variables gives transferability evidence in two 

ways:  

o The significance of the difference coefficient on each variable provides evidence 

of the transferability of that particular variable between the selected region and 

the other regions included in the model. 

o A chi-squared model fit test between the full difference model and the 

corresponding base model provides evidence on the transferability of the model as 

a whole.  (Note that this is quite a strict test to use for data from different regions.  

It is more commonly used for data from a single region, to test the significance of 

adding or subtracting variables from a model.) 

The 24 difference models include: 

 1-6: Difference variables for each of the 6 regions relative to the 2-state base 

 7-12: Difference variables for each of the 6 regions relative to the 1-state base 

 13-18: Difference variables for each of the 6 regions relative to the 2-state+ASC base 

 19-24: Difference variables for each of the 6 regions relative to the 1-state+ASC base 

Each of the types of specifications, model types, and variable types can provide different types of 

evidence related to our research hypotheses presented in previous chapters.  The following 

chapter presents a careful analysis of the resulting evidence. 

Summary of Findings 

Though it is not possible to make a definitive statement about the transferability of activity-based 

models based on a single study, this study has been able to provide some new and unique 

evidence. Overall, although the strictest statistical test (chi-squared test) usually rejects the 

hypothesis that models based on data from different regions are statistically indistinguishable, it 

is also true that most of the individual coefficients are not significantly different from one region 

to the next.  In addition, this study shows the substantial improvement of estimability that occurs 
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with large survey samples.  Based on these findings, the most important conclusion of this 

study is that, although estimation of models using a large local sample is best, it is better to 

transfer models that are based on a large sample from a comparable region than it is to 

estimate new models using a much smaller local sample.   

However, this conclusion does not mean that metropolitan regions can relegate survey data 

collection and model development to the past, and simply borrow a model from others who have 

gone before.  Even if a comparable region and its model can be found, survey data should 

nevertheless be collected for purposes of calibrating components of the model, such as activity 

and tour generation, that cannot be calibrated using traffic count data.  And this study has only 

scratched the surface in identifying the factors that make two regions comparable, as described in 

the next paragraphs.    

Although small sample sizes limit the ability to draw strong conclusions about comparability 

among the four California regions and two Florida regions included in this study, there is some 

substantial evidence of comparability among them.  This is shown in Figure 1.1, where it can be 

seen that, for all regions, the differences from the 2-state model are insignificant for over 80% of 

the coefficients.  However, Tampa stands out as less comparable than the others, and this study 

did not identify the reason.  The California regions are more comparable within state than across 

states, perhaps because of the presence of Tampa in the two-state comparison.  The issue with 

Tampa draws attention to the likelihood that there may be factors that would cause two regions, 

even two regions within the same state, to be bad candidates for a model transfer. 
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Figure 1.1 

This study did not explore comparability for regions in states other than California and Florida, 

estimability and comparability for a full spectrum of sample sizes—especially samples with 

more than 2,500 households, or comparability in categories other than state boundaries, such as 

urban density, size, or demographic make-up.  For example, university towns or cities with large 

seasonal retirement population may be distinctly different in ways that make transferring from 

other regions inadvisable, and this study lacks evidence to draw conclusions one way or the 

other.  These remain as important avenues for further research. 

On the other hand, there may be good reasons for transferring a model from a region that is NOT 

currently comparable if there is reason to believe that it will be comparable in the future.  For 

example, it may be that a region that is growing rapidly and/or adding new travel options would 

lack the data to develop a model that would serve it well even if it could conduct a very large 

household survey.  The diversity of conditions needed to estimate the coefficients of the model 

simply may not exist within the region.  In a case like that, perhaps a model transfer should be 

considered. 

This study is also limited in its ability to determine what sample size is large enough for local 

estimation, because the largest sample in this study includes only 6,000 households and the rest 

are 2,500 or less.  However, as shown in Figure 1.2, where estimation results for each region are 

compared to the 2-state combined models, the results are clear that a sample of 6,000 
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households provides much better information for estimating AB model coefficients than 

samples of size 2,500 or less.  It is also likely that samples considerably larger than 6,000 would 

substantially improve estimation results, enabling significant coefficient estimates for important 

small population segments. 

 

 
Figure 1.2 

The following sections provide more context to these overall conclusions, as well as additional 

findings about the NHTS, sample size issues, and transferability hypotheses tested in this study. 

Adequacy of the 2009 National Household Travel Survey (NHTS) data for 
estimating activity-based models 

A unique aspect of this project is that identical models are estimated using data from six different 

regions, but all using data from the same household travel survey.  Because the opportunity to 

purchase an add-on sample to the NHTS is available to all state and regional agencies, it may be 

useful to assess how well the data support the estimation of the component models of the 

activity-based model system (the DaySim v.1.8 model system in this case).  The findings are: 

 In terms of survey design, the NHTS 2009 survey supports the estimation of almost all of the 

component models of advanced AB model systems.  Three notable exceptions are student’s 

usual school location, transit pass ownership, and available of free parking at the usual 

workplace, which should be added to future NHTS surveys.  

 In terms of sample design, there are some more serious issues:   

o The sample sizes for most of the individual regions used in this study are not 

adequate to estimate statistically significant parameters for many of the variables 

tested.  This is particularly true for some of the rarer types of households and persons, 

such as low-income households, zero-vehicle households, and persons who use transit 

and bicycle.   
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o There are many households in the sample for which one or more household members 

did not complete the travel diary.  The result is that households with incomplete data 

must be excluded from estimation for some models, which exacerbates any sample 

size problems, particularly among larger households. 

Addressing the above issues would increase the usability of future NHTS data for AB model 

development.  The above findings related to the NHTS data should also be considered in the 

development of other household surveys for use with AB models. 

Issues regarding sample size and composition 

The adequacy of the survey sample size can be judged mainly from (a) how many of the 

coefficients in the models can be estimated with statistically significant precision (i.e. t-statistics 

of 1.9 or higher), and (b) how many of the coefficients can be estimated at all.  The latter issue of 

non-estimable parameters usually arises in the case of variables that apply to only small 

segments of the population and for which no variation in choice behavior can be observed. An 

example is a case in which no households in the lowest income category choose the walk mode, 

so a low-income variable for the walk mode cannot be estimated.   

Overall sample size has a large impact on coefficient estimability, with the inability to estimate a 

coefficient at all decreasing with sample size, and the ability to estimate significant coefficents of 

the correct sign increasing with sample size.  Because the largest sample in this study included 

6,000 households, conclusions about the benefits of samples larger than 6,000 cannot be drawn.  

Nevertheless, what can be concluded is that, among the sample sizes included in this study, much 

is to be gained from larger sample size. 

The variation in results in response to sample size appears to affect all types of models, including 

mode choice, destination choice, time of day choice, tour and trip generation, and auto 

ownership.  The problems associated with small samples arise in all models in the estimation of 

coefficients related to important but small or hard-to-sample segments of the population, such as 

very low or very high income households, households that do not own cars, and young adult 

households.  The effects are most apparent in cases where specific alternatives have a small 

number of observed cases.  

Tests of specific hypotheses regarding model transferability 

In this study, model transferability between regions is tested through the use of region-specific 

“difference models”. Starting with a “base model”, estimated on all regions within both states (or 

else all regions in a single state), additive “difference coefficients” are added for all variables for 

observations from a single region. The difference coefficients thus measure the difference 

between the coefficient estimated only for that specific region and the coefficient estimated for 

all regions except that specific region. If the difference coefficient is not significantly different 

from zero, it is an indication that the model is transferable between the specific region and the 

other regions included in the base model—at least for that particular variable.  This approach 

tends to work best with adequate sample sizes. With small sample sizes, although it is more 

difficult to estimate a local version of the model, it is also more difficult to prove whether or not 



Making advanced travel forecasting models affordable through model transferability 
A Research Project Sponsored by FHWA under the Broad Agency Announcement DTFH61-10-R-00013 

Final Report  
 

 

John L. Bowman, Ph. D., Mark Bradley and Joe Castiglione September 7, 2013 

page 14 

the local version is statistically different from models estimated on other regions, because there 

is less data to use in estimating the difference coefficients and thus they will tend to be less 

significant, regardless of the true transferability.  Therefore, this test is less useful in judging 

variations in sample sizes, and the comparisons tend to be most meaningful along model 

dimensions not defined by region (where sample sizes differ), such as comparisons between 

types of models or between types of variables (including data from all regions without 

differentiating results by region). 

Another way that transferability is tested in this study, rather than looking at each variable 

separately, is to look at the change in model fit as a whole when the region-specific difference 

variables are included. This is done with the standard chi-squared likelihood ratio test.   Such a 

test is typically used to test different model specifications on the same estimation data set, 

whereas in this study it is used to test the same model specification on different estimation data 

sets.  The likelihood ratio test is a rather strict test to use, because it tests whether the two models 

being compared are the same in every respect.  Indeed the hypothesis that the different data sets 

yield “the same model” (in statistical terms) is rejected with fairly high significance in most of 

the cases.  Nevertheless, the results of the likelihood ratio test can be used in a comparative 

manner, finding out which models show the most and the least improvement in model fit due to 

allowing region-specific coefficients. 

Each of the transferability hypotheses raised in Chapter 3 and tested in Chapter 7 is discussed 

below, with attention to the practical implications of the research findings: 

(Hypothesis 1) Variables that apply to population segments defined by characteristics of 

individuals and/or their situational context (i.e., segment-specific variables) will tend to be 

more transferable than variables that are more generic and apply to all individuals.   

Examples of generic variables, as the term is used here, include alternative-specific constants, 

cost and time variables, if they apply equally to all members of the population.  Segment-specific 

variables include the same types of variables (e.g., alternative-specific constants, cost and time 

variables) that apply only to a specific segment of the population, such as females with children 

(i.e., the variable equals zero for all other members of the population).  As the term is used here, 

segment-specific variables also include variables, such as income or age, that differ among the 

members of the population, causing the effect of the coefficient in the utility function to differ 

according to, for example, income or age. 

This hypothesis is supported by the data, with 90% of the estimable coefficients that are 

population-segment-specific showing no significant difference from the base model, compared to 

82% for coefficients that apply to the entire population, as illustrated in Figure 1.3.  Of course, 

estimating coefficients for segment-specific variables requires adequate sample size for each 

segment, which requires larger sample size overall. The smaller effective sample sizes applying 

to these variables in estimation may be part of the reason that fewer significant differences result.   

Nevertheless, the results support the theory that variables with more socio-demographic 

specificity should show more stability across regions. This finding also supports the idea that it 

may be better to transfer activity-based models from a region with a large enough survey sample 
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to include segmentation detail, rather than estimating on a much smaller local survey sample that 

does not allow such detail. 

 

 
Figure 1.3 

(Hypothesis 2) Variables that are segment-specific will tend to be more transferable than 

alternative-specific constants.  

This hypothesis is not supported by the tests. Compared to the segment-specific variables, the 

alternative-specific constants (ASCs) show a slightly lower percent of estimable coefficients 

across all models with significant differences from the base model (9.6% vs. 9.9%, as shown in 

Figure 1.3).  The ASCs are also more estimable, with only 5% of cases not estimable, compared 

to 9% of segment-specific variables.  This finding implies that alternative-specific constants may 

be fairly transferable between regions as well, which would be reassuring in a situation when 

there is very little observed local data at all to use in calibrating the model to local conditions. 

When such data do exist, however, it is still good practice to use local data to re-calibrate the 

alternative-specific constants of a transferred model whenever necessary.  Although data sets 

from surveys such as NHTS may not be adequate for complete re-estimation of an activity-based 

model system, they will typically be adequate for such a simple calibration exercise. 

 (Hypothesis 3) Models that deal with social organization (activity generation and scheduling) 

will tend to be more transferable than models that deal mainly with spatial organization (mode 

choice and location choice).   

The data strongly support this hypothesis.  As shown in Figure 1.4, the models emphasizing 

“spatial organization” result in 16% of coefficients with significant differences across regions 

and 16% non-estimable on single-region data, compared to only 10% and 5% respectively for 

models emphasizing “social organization”.  This conforms to the expectation that different US 
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regions will tend to show stability in general socio-cultural patterns, as those are less influenced 

by the spatial dispersion of opportunities or the availability and quality of particular travel 

modes.  In practical terms, this finding suggests that when transferring an activity-based model 

system across regions, it would be warranted to spend more effort in calibrating and adjusting the 

mode choice and destination choice models than the other models. 

 

 
Figure 1.4 

 (Hypothesis 4) Models for different regions within the same state will tend to be more 

transferable than models for regions in different parts of the country:   

In most cases, the data support this finding (see Figure 1.5), with the California regions showing 

higher transferability for the one-state California base model than for the two-state base model, 

and with Tampa showing higher transferability for the one-state Florida model than for the two-

state model. The exception is that the Jacksonville region shows somewhat less transferability 

with the one-state Florida model (i.e. with Tampa) than with the two-state model.  This suggests 

that in at least some aspects of travel behavior, Jacksonville residents behave more like residents 

of one or more of the California regions than like Tampa residents. 
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Figure 1.5 
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2. Introduction 

Research problem statement 

The objective of this research is to empirically test and demonstrate the transferability of 

advanced (activity-based, or “AB”) models between regions.  If these methods are shown to be 

transferable, regions can borrow and adapt activity-based models from other regions, thereby 

avoiding most of the cost and expertise needed to field a large household survey and estimate 

entirely new models.  Such a result could greatly accelerate the adoption of this advanced 

modeling method throughout the United States, especially among small and mid-sized agencies. 

Using current data obtained through the 2008-2009 National Household Travel Survey (NHTS) 

“add-on” program, the principal investigators estimate advanced activity-based models 

simultaneously for six regions, four in California and two in Florida.  Statistical tests are applied 

to identify regional differences in the model coefficients.  The absence of statistically different 

estimates for key model coefficients across regions would provide strong empirical evidence of 

transferability. 

Regions included in the study 

This study examines six regions, including four in California and two in Florida, as listed in 

Table 2.1 and shown in Figure 2.1. 

Table 2.1:  Regions included in the transferability study 

REGION AGENCIES INVOLVED 

California Regions  

 Fresno Council of Fresno County Governments (FresnoCOG) 

 Northern San Joaquin Valley 

 (NSJV. Or ‘3county’) 

Merced County Association of Governments (MCAG) 

San Joaquin Council of Governments (SJCOG) 

Stanislaus Council of Governments (StanCOG) 

 Sacramento Sacramento Area Council of Governments (SACOG) 

 San Diego San Diego Association of Governments (SANDAG) 

Florida Regions  

 Jacksonville Florida DOT District 2, North Florida Transportation 

Planning Organization (NFTPO) 

 Tampa Florida DOT District 7 
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Figure 2.1 --Regions included in the transferability study 

Organization of this document 

This document discusses the idea of transferability, describes the regions, data, models and 

methods used in the study, and presents the results, as well as supporting documentation. 

Chapter 3 provides a general discussion of issues related to travel demand model transferability.  

It includes specific research hypotheses and questions that are tested and answered using the 

research approach. 

Following the discussion of transferability, the next two chapters provide further background 

information for the study.   Chapter 4 provides background information about the specific 

activity-based travel demand models for which transferability is tested.  Chapter 5 describes the 

regions included in the study and explains the data that is required by the models and how it is 

prepared. 

Chapter 6 describes in detail the research approach used to test the hypotheses set out in Chapter 

3.  It includes a conceptual explanation of the methods used to formulate the models and conduct 

the tests, as well as a description of the mechanics employed to manage the estimation and 

summarization of a very large number of models. 
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Chapter 7 presents the research results, directly addressing the hypotheses and questions laid out 

in Chapter 3.  Chapter 8 draws conclusions, compares this study to two other recetn studies and 

recommends avenues of further research.   

Appendix 1 describes the NHTS survey data.  Appendix 2 is a data dictionary of the data file 

produced in the estimation and testing process containing the information used for the analysis of 

results.  Appendix 3 provides summary statistics for all base and difference models.  Appendix 4 

summarizes estimation results by detailed variable type.  A separate workbook in .xlsx format 

provides detailed estimation results and summary statistics for each model. 
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3. Model Transferability 

Key Components of Travel Demand Models:  Data and Parameterized 
Relationships 

Any travel demand model, whether it be a standard “4 step” model or an advanced activity-based 

model, consists of two key components: the input data, and the parameterized relationships used 

to “translate” the input data into output predictions of travel demand. All travel demand models 

tend to use the same types of input data, including: 

1. Spatial land use data on households, employment, and school enrolment 

2. Road and transit networks, and corresponding zone-to-zone measures of travel times and 

costs (typically referred to as network “skims”) 

3. Data on observed travel choices—typically in the form of travel/activity diary data from a  

sample of households. 

4. Various data on “auxiliary” types of travel demand, such as freight trips, external trips 

to/from areas outside the region, and any special generators such as airports. 

5. Other data used for model validation, such as traffic counts and transit passenger counts. 

The types of parameterized relationships included in travel demand models include: 

1. Models of mode choice (and related network route choice functions)  

2. Models of time of day choice 

3. Models of location choice 

4. Models of tour and/or trip generation 

5. Models of auto ownership and availability 

All applied model systems are built from these same essential elements, with key distinctions 

arising in the level of detail at which they are treated.  For example, most 4-step model systems 

use simple gravity models of trip end location (“distribution”) at the zonal level, while advanced 

activity-based model systems have various types of location models such as usual work and 

school locations, tour primary destinations, and intermediate stop destinations. In addition, some 

advanced models treat location choice at the levels of individual parcels or Census blocks rather 

than more aggregate traffic analysis zones (TAZ). As another example, standard 4-step models 

typically use fixed time of day factors, while more advanced approaches include explicit models 

of activity scheduling and trip departure time choice.  
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Using Model Estimation to Test Transferability of Parameterized 
Relationships 

The critical question addressed in this study is whether or not the parameterized relationships in 

advanced travel demand models are transferable.  In discrete choice travel demand models, these 

relationships are typically in the form of utility functions: 

U ia = a a + bx ia + e ia   ,            

       (1) 

where: 

 U ia  is the utility of individual i for alternative a 

 a a  is an alternative-specific constant for alternative a 

  x ia  is a vector of attributes of the alternative a and/or the individual i 

 b is a vector of utility coefficients corresponding to the variables in vector x 

 e ia   is the “residual error term”, capturing all non-systematic effects that are not captured 

by the other utility components. 

The question is how transferable the values of the coefficients represented by a and b are from 

one regional context to another.  Another way of stating the question is: If individuals in two 

different regions share the same person and household characteristics and face the same sets of 

alternatives (meaning that they have the same vector of explanatory variables in x), will they 

have the same probability of choosing each alternative? 

In reality, one can never hope to find exactly the same choice alternatives in different regions, so 

it is necessary to address the transferability question in a less direct manner.  In practice, the two 

main approaches available are: 

(c)  Application-based: Estimate utility coefficients based on observed choices in one region, 

apply that model to data from a different region, and see how well the model predicts 

observed choices in the other region. Although not typically called a “transferability test”, 

this approach is carried out quite often in practice, when a model from one region is taken 

and re-calibrated to choice data in another region. 

(d)  Estimation-based: Estimate utility coefficients based on observed choices from two 

regions, using the same exact model specification for both regions, and test whether the 

resulting estimated utility coefficients are statistically different from one another.   

The estimation-based approach, which is adopted for this study, has important advantages over 

the application-based approach.  The most obvious advantage is that the estimation-based 

approach allows for explicit statistical tests of the differences in coefficients, and thus the ability 
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to address a wide variety of hypotheses regarding transferability.  A related advantage is that the 

estimation-based approach can be used to test the transferability of the coefficients for specific 

types of variables, while the application-based approach can only test the transferability of the 

model as a whole.  This feature makes the estimation-based approach a much stronger test of 

transferability, because in the application-based approach, just by random chance, a model might 

happen to predict choices quite well even though the individual coefficients in the models are not 

appropriate for the region. 

The Impact of Data on the Transferability Analysis 

A potential drawback of the estimation-based approach, and perhaps the reason why it has not 

been used often in practice, is that it is such a strong statistical test that any hypothesis of 

transferability is likely to be rejected unless the input data from the different regions are highly 

consistent.  In other words, the statistical test will confound the effects of data inconsistency with 

the effects of different underlying relationships.  Data inconsistency can arise from methods of 

collecting the data, the level of aggregation used, the units of measurement used, the 

categorization and coding of survey questions, and so forth.  A necessary condition for model 

transferability is that the data specification be as compatible as possible between regions.  This 

issue applies not only to survey data, but also to other input data related to land use and travel 

supply.  For this reason, this research project places a strong emphasis on data quality and 

consistency.  As discussed in later chapters, the study is designed to meet the necessary data 

consistency condition, using data from the same NHTS survey for all regions, and taking great 

care to make the spatial land use data and network skim data from the various regions as 

consistent as possible.  

Another important data issue affecting the study of transferability relates to the quantity of the 

survey data used to estimate the model coefficients.  If there is not enough data when a model is 

estimated, some important coefficients may be statistically insignificant and others may be 

completely inestimable. 

As with the data consistency issue, problems associated with inadequate quantity of data tend to 

confound the tests of transferability.  However, since the quantity of data cannot be increased in 

this study to eliminate the issue, efforts are made to minimize the confounding of results arising 

from inadequate quantity of data.  In particular, the summarization of results accounts for 

inestimability of coefficients arising from small sample sizes.  Also, in evaluating the results, 

efforts are made to point out situations where the effects of data quantity might be misinterpreted 

as transferability effects. 

On the other hand, this research has the opportunity to address questions about how much sample 

is required for estimating the models required by advanced travel demand model systems 

because the six regions in the study have widely varying survey sample sizes.  These questions 

are important because the high cost of data is one of the big reasons that model transferability is 

attractive.  In this project, the following three questions related to data and estimability are 

raised, and subsequently addressed: 
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Question E1:  What sample size is adequate for local estimation?   

Question E2:  How does combining data samples improve estimability?   

Question E3:  Which models are more estimable at the regional level?   

Transferability Hypotheses Addressed in this Research 

In forming hypotheses about transferability, it is useful to relate back to the generic utility 

equation (1). It is commonly accepted that the more precisely an independent variable in vector x 

is defined, the more likely it is that the corresponding utility coefficient in vector b will be 

transferable across regions. Therefore, coefficients associated with variables that apply to 

population segments defined by the characteristics of the specific person, tour or trip are 

probably more transferable than coefficients associated with variables that apply uniformly to all 

segments of the population.  As an example, consider a coefficient for travel cost. It is well-

established in travel demand modeling (and micro-economic theory) that individuals with lower 

incomes tend to be more cost-sensitive than individuals with higher incomes.  That means that a 

cost coefficient estimated specifically for the lowest income quartile will tend to be more 

negative than cost coefficients that are estimated specifically for other income quartiles. 

Correspondingly, one would expect the coefficient for a variable defined as “travel cost, for 

persons with household income below $20,000” to be more transferable than one for a variable 

that is defined as “travel cost, for all persons”. In the latter case, an estimated coefficient would 

depend somewhat on the income distribution in the region, while in the former case the income 

distribution is already controlled for in the variable definition
1
.  As another example, one would 

expect zones with high levels of employment to be, by definition, more likely to be chosen as 

usual workplace locations.  Adding more detail, one expects zones with high numbers of retail 

and  service jobs to be more attractive as work locations for lower income workers, while zones 

with more office and medical employment tend to be more attractive as work locations for higher 

income workers. 

Following from the discussion above, one might expect that coefficients from an advanced 

activity-based model will be more transferable than coefficients from a more aggregate trip-

based model. Activity-based models tend to include a greater variety of explanatory variables 

regarding person and household characteristics, whereas standard trip-based models typically 

only include one or two segmentation variables such as household size, income or car ownership. 

Furthermore, trip-based models only include a small number of trip purposes, with little or no 

information about the tour context of non-home-based trips. In contrast, most activity-based 

models deal explicitly with both the tour and trip context of each trip, as well as incorporating 

                                                 
1
 This a good example of how transferability and data quantity issues interact.  Specifying multiple income 

categories should make the model more transferable, but because each coefficient is estimated from only 

the portion of sample in its income category, a small sample will tend to make the estimated coefficients 

less significant.  If the estimated values across two regions happen to be similar, their differences may 

register as insignificant simply because the sample is small.  The models may appear to be transferable 

when in reality the sample is too small to identify significant difference that are actually present.  



Making advanced travel forecasting models affordable through model transferability 
A Research Project Sponsored by FHWA under the Broad Agency Announcement DTFH61-10-R-00013 

Final Report  
 

 

John L. Bowman, Ph. D., Mark Bradley and Joe Castiglione September 7, 2013 

page 25 

information on the full day’s activity schedule of the individual and other household members.  

As an example, consider a mode choice model for a work-based tour (a chain of two or more 

trips that begin at a person’s workplace and return back to that same place during the same 

workday).  In activity-based models, one can capture the effect that the mode used for a work-

based tour is highly related to the mode that the person uses to commute between home and work 

on that same day.  Such variables cannot be incorporated in an aggregate trip-based model, and 

as a result, that model will include fewer systematic effects that can be explained by the model.  

This project tests transferability only for disaggregate, activity-based models; the hypothesis that 

they are more transferable across regions than aggregate trip-based models is not addressed.  

However, at the outset of the project the expectation was that the activity-based models would 

have a reasonable chance of being transferable across regions, thus making it worthwhile to carry 

out formal tests, while the expectation was not so high for standard trip-based models.   

Furthermore, the research question is much more timely for activity-based models, as many 

large, medium and even small public agencies consider whether or not to adopt these methods 

and, if so, to what extent an existing activity-based model can be transferred from another region. 

The transferability question cannot be answered definitively on the basis of this single study, 

although it does provide valuable evidence. Also, it is unlikely that there will ever be a single 

“yes or no” answer in any case.  It may be that certain types of variables and coefficients, or 

entire component models, are good candidates for transferring from one region to another, while 

other types of variables and/or models may be better  re-estimated or re-calibrated based on local 

data.  It may also be possible to say something about the geographic extent of transferability (i.e. 

that transferability is greater between regions in the same part of the country or between regions 

of similar size) , although to deal in a comprehensive way with that issue would clearly require 

additional studies using more data sets from more regions. 

Based on the discussion above, four hypotheses are identified and tested in the project.  For each 

hypothesis, one or more specific questions is asked, which the subsequent analysis attempts to 

answer.  

(Hypothesis 1) Variables that apply to population segments defined by characteristics of 

individuals and/or their situational context (i.e., segment-specific variables) will tend to be more 

transferable than variables that are more generic and apply to all individuals.  The reasons 

behind this hypothesis are discussed at some length above. 

Question H1:  Are coefficients defined by individual characteristics or population segments 

more transferable then those defined for the entire population?   

(Hypothesis 2) Variables that are segment-specific will tend to be more transferable than 

alternative-specific constants (the ‘a’ coefficient in equation 1). This is because alternative-

specific constants (ASCs) tend to be “catch-all” coefficients for all effects not captured by the 

rest of the systematic utility (the x and b vectors in equation 1), and thus are less predictable from 

one context to another. This is an extension of the logic behind (H1).   
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Question H2:  Are coefficients defined by population segments more transferable than 

alternative specific constants? 

(Hypothesis 3) Models that deal with social organization (activity generation and scheduling) 

will tend to be more transferable than models that deal mainly with spatial organization (mode 

choice and location choice).  The spatial attributes that determine mode and location choices are 

more likely to be influenced by local variations in the types of travel modes available, the 

historical development of settlement patterns, and possible differences in how the spatial data has 

been prepared. Models of activity generation and scheduling, on the other hand, deal with 

behavior that appears similar across regions—people have to sleep, eat, go to work, go to school, 

shop, do errands, care for children, etc., and they have 24 hours per day to accomplish this.  

Question H3.1:  Which models are more transferable across states?  

Question H3.2:  Are models that deal with social organization more transferable across states 

than those that deal mainly with spatial organization?   

Question H3.3:  Which models are more transferable within California? 

Question H3.4:  Within California, are models that deal with social organization more 

transferable than those that deal mainly with spatial organization? 

Question H3.5:  Which models are more transferable within Florida? 

Question H3.6:  Within Florida, are models that deal with social organization more transferable 

than those that deal mainly with spatial organization? 

(Hypothesis 4) Models for different regions within the same state will tend to be more 

transferable than models for regions in different parts of the country:  Differences in climate, 

historical development, economic prosperity, lifestyle, and so forth may give rise to somewhat 

different activity patterns in different parts of the country, even after controlling for all other 

segmentation and situational variables.  (Note: It would be possible to pose similar hypotheses 

related to the size and urbanization level of different regions, but a test of such hypotheses may 

require a larger number of regions.) 

Question H4.1:  Can a region use models developed from a state or multi-state sample? 

Question H4.2:  Are California models more transferable within California than they are across 

California and Florida? 

Question H4.3:  Are Florida models more transferable within Florida than they are across 

California and Florida? 

Question H4.4:  Is a region's model essentially the same as the combined within-state or two-

state model?   
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Finally, this research project does not deal with temporal transferability of models, as all of the 

survey data is from a single year. It is likely that model would be more transferable to a different 

year in the same region than to a different region in the same year.  This is because there may be 

“self selection” effects that draw people with different travel preferences to live in different 

regions. For example, someone who does not like to drive but is not averse to using transit may 

be more likely to settle in a large urban region, while someone with the opposite preferences may 

be more likely to live in a more rural region.  Unless a region changes drastically, one would not 

expect those same “self selection” differences to arise within the same region over time.  
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4. Activity-Based Model Framework 

The models estimated in this project are components of the activity-based (AB) model 

framework commonly known as DaySim, which has been used in Sacramento since 2007 and 

Seattle since 2009, and has been enhanced and implemented for use in all of the regions of this 

project except San Diego.  The DaySim framework is used for this study as a matter of 

convenience:  it is the framework that has been developed by the principals in this study. 

The following description, diagram and table of the existing Sacramento model system provide a 

good sense of the framework
2
  

Figure [4.1] is a flow diagram showing the relationships among DaySim’s component models, which 

are also listed in Table [4.1]. The models themselves are numbered hierarchically in the table…  The 

hierarchy embodies assumptions about the relationships among simultaneous real world outcomes.  

In particular, outcomes from models higher in the hierarchy are treated as known in lower level 

models.  It places at a higher level those outcomes that are thought to be higher priority to the 

decision maker.  The model structure also embodies priority assumptions that are hidden in the 

hierarchy, namely the relative priority of outcomes on a given level of the hierarchy.  The most 

notable of these are the relative priority of tours in a pattern, and the relative priority of stops on a 

tour.  The formal hierarchical structure provides what has been referred to by Vovsha, Bradley and 

Bowman (2004)
3
 as downward vertical integrity. 

Just as important as downward integrity is the upward vertical integrity that is achieved by the use of 

composite accessibility variables to explain upper level outcomes.  Done properly, this makes the 

upper level models sensitive to important attributes that are known only at the lower levels of the 

model, most notably travel times and costs.  It also captures non-uniform  cross-elasticities caused by 

shared unobserved attributes among groups of lower level alternatives sharing the same upper level 

outcome. 

This transferability project includes the model types shown in bold in Table 4.1.These are 14 of 

the 21 different models in DaySim, including all of the most important models.   

                                                 
2
 From SACSIM:  An applied activity-based model system with fine-level spatial and temporal 

resolution,by  Mark Bradley, John L. Bowman and Brice Griesenbeck, 2010, Journal of Choice Modeling.  

Available at www.jbowman.net. 

3
 Vovsha, Peter, Mark A. Bradley and John L. Bowman (2004) Activity-based travel forecasting models in 

the United States:  Progress since 1995 and Prospects for the Future , presentation at the EIRASS 

Conference on Progress in Activity-Based Analysis, May 28-31, 2004, Vaeshartelt Castle, Maastricht, The 

Netherlands 
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Figure 4.1: DaySim Flow Diagram 
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Table 4.1. Component Models of DaySim  

Model Name Level What is predicted Model 

Type** 

Regular Workplace Location Worker Workplace location zone and parcel Spatial 

Regular School Location Student School location zone and parcel Spatial 

Auto Ownership Household Auto ownership Social 

Daily Activity Pattern Person-day 0 or 1+ tours for 7 activity purposes.  0 or 

1+ stops for 7 activity purposes 

Social 

Exact Number of Tours Person-day For purposes with 1+ tours, 1, 2 or 3 tours. Social 

Work Tour Primary Destination Choice 

Other Tour Primary Destination Choice 

(Sub)Tour Primary destination zone and parcel  Spatial 

Work-Based Subtour Generation Work Tour Number and purpose of any subtours made 

during a work tour 

Social 

Work Tour Main Mode Choice * 

School Tour Main Mode Choice 

Escort Tour Main Mode Choice 

Work-based subtour Main Mode Choice 

Other Tour Main Mode Choice 

(Sub)Tour Main tour mode  Spatial 

Work Tour Time Period Choice 

School Tour Time Period Choice 

Work-based subtour Time Period Choice 

Other Tour Time Period Choice 

(Sub)Tour The time period arriving and the time 

period leaving primary destination  

 

Social 

Intermediate Stop Generation Half Tour Number and activity purpose of any 

intermediate stops made on the half tour, 

conditional on day pattern 

Social 

Intermediate Stop Location Trip Destination zone and parcel of  each 

intermediate stop, conditional on tour 

origin,  destination, and location of any 

previous stops 

Spatial 

Trip Mode Choice Trip Trip mode, conditional on main tour mode Spatial 

Trip Departure Time Trip Departure time within 30 min. periods, 

conditional on time windows remaining 

from previous choices 

Social 

   * Two different versions of this model were tested, as explained below. 

   **As used in Hypothesis 3 (see Chapter 3)  

Table 4.2, split across two pages, provides a more detailed picture of what types of explanatory 

variables are included in each of the model types that are part of the DaySim system.  It is clear 

from the table that the models include several types of variables that are not typically included in 

standard 4-step model systems.  These include: 

 A wide variety of person and household characteristics. 

 A variety of parcel level land use and accessibility variables.  

 Various zone-level accessibility variables. 
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 Endogenous variables related to the predicted activity pattern and related schedule 

pressure 

 Endogenous variables related to people who work from home, or who use various modes 

to get to work 
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Table 1- Part 1: Variables included in    

Sacramento DaySim models                    

(P = predicted, X = explanatory)
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Household characteristics

Household size X X X X X X X

Household number of workers X X X X

Household income X X X X X X X X X X X

Household includes children X X X X X X X

Household includes people age 65+ X X X X X X X

Household is non-family household X X

Household number of driving age people X X X X X X

Household has no cars P X X X X

Household has fewer cars than workers P X

Household has fewer cars than adults P X X X X X

Housing unit type X

Person characteristics

Full time worker X X X X X X X

Part time worker X X X X X X X

Non-working adult X X X X X X

University student X X X X X X X

Driving age child X X X X X X X X X X X

Child age 5-15 X X X X X X X X

Child age under 5 X X X X X X X X

Age is 65 or older X X X X X X

Age is 51-65 X X

Age is 26-35 X X

Age is 18-25 X X

Gender X X X X X X

Usual workplace is home P X

Parcel-level land use variables

Service employment (density) X X X X X X

Educational employment (density) X X X X

Government employment (density) X X X X

Office employment (density) X X X X

Retail employment (density) X X X X X

Restaurant employment (density) X X X X X

Medical employment (density) X X X X X

Industrial employment (density) X X X

Total employment density X X X

Household density X X X X

University student enrollment (density) X X X X

K-12 student enrollment (density) X X X X X

Mixed use balance X X X X X X  

Table 4.2 
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Table 1- Part 2: Variables included in    

Sacramento DaySim models                     

(P = predicted, X = explanatory)

R
e

s
id

e
n

ti
a

l 
lo

c
a

ti
o

n

U
s

u
a

l 
w

o
rk

 l
o

c
a
ti

o
n

U
s

u
a

l 
s

c
h

o
o

l 
lo

c
a

ti
o

n

A
u

to
 o

w
n

e
rs

h
ip

D
a

y
 a

c
ti

v
it

y
 p

a
tt

e
rn

W
o

rk
-b

a
s
e

d
 t

o
u

r 
g

e
n

e
ra

ti
o

n

T
o

u
r 

d
e

s
ti

n
a

ti
o

n
 c

h
o

ic
e

T
o

u
r 

m
o

d
e

 c
h

o
ic

e

T
o

u
r 

ti
m

e
 o

f 
d

a
y

 c
h

o
ic

e

S
to

p
 f

re
q

u
e

n
c

y
 a

n
d

 p
u

rp
o

s
e

In
te

rm
e

d
ia

te
 s

to
p

 l
o

c
a

ti
o

n

T
ri

p
 m

o
d

e
 c

h
o

ic
e

T
ri

p
 t

im
e

 o
f 

d
a

y
 c

h
o

ic
e

Parcel-level accessibility variables

Parking density X X X

Average parking price X X X X

Street intersection density X X X X X X X

Distance to nearest transit stop  X X X X X

Zone-level accessibiliy variables

Auto and transit costs X X X X X

Auto, transit and non-motorized times X X X X X

Transit connectivity/availability X X X X X

Auto time on very congested links X X

Driving distance X X X X X

Mode choice accessibility logsum X X X X X

Mode/destination accessibility logsums X X X

Intermediate stop accessibility logsums X X

Endogenous activity pattern variables

Number of home-based tours in pattern P X X X X X

Pattern has multiple tours for the purpose P X X X

Pattern has stop(s) for the purpose P X X

Pattern includes work or school tour P X X

Purpose of tour P X X X X X X X

Tour is work-based subtour P X X X X X X

Intermediate stop purpose X P X X X

Number of intermediate stops on half tour P X X X

Outbound or return tour direction X X X X

Endogenous location, mode, TOD variables

Work tour is not to usual workplace X P

Tour mode is auto, transit, etc. P X X X

Mode used to get to work P X

Tour time periods of the day  P X X X X

Unscheduled time remaining in the day X P X X X

Trip mode is auto, transit, etc. P X

Trip time period of the day P  

Table 4.2 
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For purposes of summarizing results of the transferability tests, each model variable is classified 

into one of the following types (two types if it is an interaction variable): 

1. A-constant 

2. P-person 

3. H-household 

4. D-day pattern 

5. T-tour/trip 

6. I-impedance 

7. U-land use 

8. W-time window 

9. C-logsum 

10. G-size variable 

11. L-log size multiplier 

 

Table 4.3 shows a cross tabulation of the model coefficients by model type and variable type, 

accounting for interaction variables that are two types.  

 

Table 4.3. Model Coefficients by Model Type and Variable Type  

Variable Type

Model Type (mtype) A
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Usual work location 14 17 6 0 0 9 18 0 6 14 1 48

Auto ownership 4 0 14 0 0 4 4 0 2 0 0 24

Person-day tour generation 28 76 46 0 0 0 1 0 2 0 0 126

Exact number of tours 13 34 22 23 0 0 0 0 8 0 0 86

Work tour time of day 27 9 6 13 9 4 0 10 0 0 0 69

Work tour mode (detailed LOS) 5 9 12 0 0 14 20 0 0 0 0 58

Work tour mode (combined LOS) 5 3 9 4 0 3 7 0 0 0 0 31

 WB subtour generation 8 0 2 2 0 0 1 0 1 0 0 14

School tour mode 5 7 12 0 0 3 6 0 0 0 0 32

Other tour destination 12 2 2 0 44 29 14 1 5 12 1 62

Other HB tour time of day 25 12 0 17 29 4 0 10 0 0 0 86

Other HB tour mode 5 3 11 4 7 3 8 0 0 0 0 41

Intermediate stop generation 7 5 4 11 55 0 1 20 0 0 0 100

Intermediate stop location 9 2 3 0 45 35 19 1 0 9 1 66

Trip time of day 25 5 0 2 10 2 0 3 0 0 0 45

Total 192 184 149 76 199 110 99 45 24 35 3

As Primary Variable 157 159 112 74 113 67 99 45 24 35 3 888

As Interaction Variable 35 25 37 2 86 43 0 0 0 0 0  
 

In general, the 14 selected models are transferred “as is” from the latest version of DaySim that 

was recently updated for SACOG.  The SACOG version is used as the basis because it is the 

most rigorously developed specification within the DaySim family and serves as the basis of the 

other existing DaySim implementations.  Also, the current transferability study lacks budget for 

the development of a new specification to serve as the basis of comparison.  A few minor 
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changes are made, as follows, in most cases these are simplifications to make the models 

somewhat easier to estimate and test: 

 The auto ownership model specification is simplified somewhat 

 The size variable functions in the location choice models are generally simplified a bit to 

improve estimability of the models on the smaller data sets. 

 The DailyActivityPattern model is simplified so that it still predicts 0 or 1+ tours for the 

7 different purposes, but does not predict 0 or 1+ stops. (This reduces the number of 

alternatives in the model from 2,080 to 64, and reduces the number of coefficients 

considerably, making the model much more practical for making many testing runs. 

 The IntermediateStopGeneration model alternative availability is no longer constrained 

by the results of the DailyActivityPattern, to be consistent with that adjusted model which 

no longer predicted if stops were made or not. 

 The drive-to-transit (park and ride) alternative was eliminated from the Work Tour Mode 

Choice model, because there were few, if any, observed park and ride tours for most 

regions, and because all regions did not have park and ride lot files ready in time for the 

project.  

 None of the base model specifications included nesting coefficients for nested logit 

significantly different from 1.0, even the mode choice models.  So, to make the test run 

process more tractable, those models were estimated as MNL rather than NL. 

 The logsums calculated from mode and destination choice models and used as 

explanatory variables in other models are calculated from the original SACOG version of 

the mode and destination choice models, rather than from the new version being 

estimated.   

 

One model is tested in a more detailed version.  The mode choice models in DaySim use 

generalized cost functions with pre-specified weights on the various time and cost coefficients, 

based on the recent SHRP 2 C04 study.  A more detailed version of the Work Tour Main Mode 

Choice model is also tested that allows separate coefficients to be estimated for each of the travel 

time and cost coefficients. This extra test brings the total number of models tested to 15. 
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5. The Regions and Their Data 

Table 5.1 shows basic statistics of the six regions in the study.   This table indicates that there is a 

fair amount of variation in the number of NHTS households available in each region.  At one 

extreme, San Diego has a fairly robust sample of 6,000 households, while at the other end the 

Fresno dataset includes only 380 households.   

Broadly, the six regions can be grouped into two primary classes by household and employment 

size.  San Diego, Tampa and Sacramento are larger regions, each with approximately 1 million 

households, and between 1 million and 1.5 million jobs.  Jacksonville, Northern San Joaquin 

County (NSJV) and Fresno are smaller, typically with 0.5 million households and employment.  

Household density varies widely, ranging from 48 households per square mile in Fresno to over 

400 in Tampa.  In Fresno and Northern San Joaquin Valley, agriculture and industry are major 

sources of employment, whereas in other regions, government, office and service employment 

are more important.  In concept, the AB models can control for these differences, although in 

practice, large differences might affect transferability. 

In terms of their total geographic extent, the six regions are more comparably sized, although the 

Jacksonville and Tampa regions are somewhat smaller than the California regions.  Despite this 

relative comparability of size, the degree of spatial resolution in the original regional models 

varies by region, with San Diego incorporating the most detailed zone system with 4,700 TAZs 

covering 4,300 square miles, or less than one square mile per TAZ to Fresno, which 2,000 TAZs 

covering 6,000 square miles.  A potential cause of non-transferability of models estimated and 

applied at the TAZ level is variation across regions in the size of the TAZ. 

In order to control for this variation, the project team developed all data and performed all model 

estimation using the “microzone” geographic resolution.  Microzones are essentially Census 

Blocks, with minor modifications to ensure that all microzones “nest” within the existing 

regional TAZ structure.  This nesting is important because the network impedances used in 

model estimation are at the TAZ level due to issues associated with building network skims at 

the microzone level.   Throughout this report, the terms “Census Block” and “microzone” are 

used interchangeably because in most cases they are the same.  Preparation of model estimation 

datafiles at the Census Block level was facilitated by the fact that the original DaySim 

implementations for Sacramento, Fresno, Tampa and Jacksonville all used parcel-level 

household, employment, and enrollment data that could be easily aggregated to Census Blocks.  

However, availability of parcel-level information is not required in order to develop Census 

Block-based models.  The project team developed a tool that disaggregates TAZ level 

information to Census Blocks using Census and Longitudinal Employer-Household Dynamics 

(LEHD) data.  This tool was used to develop the datafiles for the Northern San Joaquin Valley 

region,  In San Diego, the household, employment, and enrollment data was provided at the level 

of Master Geographic Reference Areas (MGRAs), which have a resolution comparable to 

Census blocks.  The Census Block data prepared for each of the regions includes essential 

information on housing, employment by sector, enrollment by school type, as well as detailed 

information on urban form, transit access, and proximity buffers.   
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To the greatest extent possible, this effort seeks to build upon existing model development 

efforts and practices, and therefore must rely upon the existing TAZ structure for network skim 

methods and resolution.  In addition to geographic resolution, skims are also distinguished by the 

amount of temporal detail or time periods they represent, as well as the amount of transportation 

sub-modal detail they represent.  Most of the regions use at least 4 time periods for representing 

the changes in auto impedances by time of day, but the majority only use two time periods (peak 

and off peak) to represent changes in transit services.  Most of the regions employ between 5 and 

10 submodes in mode choice and network assignment, although San Diego incorporates 

significantly more submodal detail.  In order to have a set of skims by mode and time period that 

was defined consistently across all the regions, the project team developed a simplified set of 

skims for each region.  These included skims of walk and bike, single occupancy and high 

occupancy vehicles, and a generalized transit mode.   

Observed average commute travel times derived from the 2006-2008 American Community 

Survey are reported in Table 5.1, while Figure 5.1 illustrates the observed distributions of these 

travel times for the six regions.  Interestingly, Table 5.1 shows that the Northern San Joaquin 

counties have the highest average travel times, although Figure 5.1 illustrates that it also has the 

highest share of very short commutes and the highest share of very long commutes.  These long 

commutes are likely workers travelling the long distance to the San Francisco Bay Area for 

employment.  It is also striking that the average commute travel times and the distribution of 

commute travel times is remarkably similar across the four largest regions (San Diego, Tampa, 

Sacrament, and Jacksonville).  The AB model accounts for residents who work outside the 

region, so the otherwise similar commute travel time distribution might enhance transferability. 
 

Figure 5.1:  Commute Travel Time Distribution by Region 

 

Source: 2006-2008 American Community Survey 
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Table 5.1:  Basic statistics of the six regions in the transferability study 

 Fresno NSJV Sacramento San Diego Jacksonville Tampa 

NHTS Households 380 660 1,310 6,000 1,050 2,500 

REGION 
Households 288,857 458,731 805,292 1,081,082 551,353 1,361,724 

Sq Miles 6,017 4,913 6,197 4,262 2,532 3,275 

Number of TAZ 1,967 3,758 1,502 4,682 1,309 2,251 

Number of Census Blocks 27,891 39,312 49,282 33,084 30,899 54,310 

Avg Census Block Size (acres) 137.9 78.0 80.3 82.4 56.0 36.3 

Median Census Block Size 

(acres) 
5.6 4.5 5.4 6.7 4.8 5.1 

HH / Sq Mi 48 93 130 254 218 416 

Avg Households/Census 

Block 
10.4 11.7 16.6 34.2 17.8 26.4 

Avg Employment/Census 

Block 
12.7 11.7 19.7 45.9 20.7 26.9 

Employment (Total) 353,216 459,910 969,838 1,519,582 638,195 1,462,137 

     Education 35,768 52,028 73,688 149,540 35,787 106,766 

     Food 22,862 10,836 58,102 90,013 46,619 129,529 

     Government 36,837 16,290 67,103 205,780 72,801 70,147 

     Industrial 68,443 140,303 119,305 202,605 111,102 206,713 

     Medical 36,304 48,081 108,036 101,251 70,395 198,171 

     Office 44,521 54,789 204,288 170,027 112,511 358,637 

     Retail 35,946 55,881 131,781 151,504 87,031 192,973 

     Service 5,393 24,609 202,884 424,454 100,445 98,815 

     Agricultual/Resource/ 

  Construction 67,142 57,093 4,652 24,408 1,504 100,386 

       

Avg commute time  

(2006-2008 ACS) 23.9 30.0 28.5 27.9 28.6 28.4 

Modeled modes  

(in region’s original model) 5 5 10 25 8 11 

No. auto skim periods 4 4 5 6 4 2 

No. transit skim periods 2 2 5 6 2 2 

Network software Cube Cube Cube TransCAD Cube Cube 
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6. Model Estimation and Transferability Testing Approach  

Base Estimation Approach 

The models described in Chapter 4 are estimated using a common, consistent data set spanning 

all of the regions described in Chapter 5.  In particular: 

 The observed choices are taken from a household travel survey, which has been processed 

in such a way as to reflect the assumptions and conditional relationships among choice 

components that are depicted in Figure 4.1.  There are records representing each household, 

person, household-day, person-day, tour and trip. 

 For each observed choice, relevant information  is drawn from a file of ‘microzone’ 

attributes and files of zone-to-zone impedance information (road and transit skims). As 

described previously, the microzones are equivalent to Census blocks, except for cases 

where the region’s zone (TAZ) system are inconsistent with Census block boundaries, in 

which case some blocks are sub-divided along the TAZ boundaries. 

 Estimation of upper level models use composite variables (logsums) calculated from the 

models of lower level choices. 

There are two important differences between the common estimation data used for this study and 

the data sets used  to estimate models for the various agencies: 

 The observed choices all come from the 2008-2009 National Household Travel Survey 

(NHTS).  This provides a uniformity that allows the data sets to be combined for estimation 

and improves the uniformity of definitions across regions.  In estimation, it is still possible 

to identify which region each observation is from, enabling the estimation of region-

specific and state-specific coefficients, the primary method for identifying regional and 

state-level differences in the model estimation results (as described in the following 

section). 

 Since each region has its own geography, network, and  network model software (used to 

generate the skim matrices), the spatial land use attributes and  network impedance 

information for the regional subsets are drawn from those separate data sets before 

combining into a single database for model estimation.  As discussed earlier, this could 

potentially introduce differences across regions that could cause differences in model 

estimation results across regions that would be impossible to distinguish from behavioral 

differences across the populations.  This is problematic because if the models prove to be 

non-transferable, it is not possible to tell conclusively whether it is caused by differences in 

the way people behave or differences in the impedance and zonal data.  While this problem 

is impossible to avoid completely, it is mitigated by two factors.  First, the consistent use of 

Census blocks for microzones, and the use of consistent buffering methods to generate 
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“neighborhood” and density variables means that the land use data is not much affected by 

differences in the regions’ zone systems. Second, only a subset of variables and models 

depend on the travel time and  distance measures from the network skims, and the mode 

choice models use pre-specified weights on those variables (taken from the SHRP 2 C04 

study) rather than estimating new coefficient on those variables. Thus, any inconsistencies 

in the network assignment and skimming methods should not greatly affect the 

transferability results. (A more detailed version of the Work Tour Mode Choice model was 

also tested, specifically to look at the transferability of travel time and cost coefficients.) 

Transferability Testing Approach 

The process 

The transferability tests were set up and executed using the following sequence of steps: 

(1) For each choice model to be tested, a base model specification was developed, including all 

explanatory variables to be tested.  As described earlier, in most cases this specification was 

kept the same as the recently revised DaySim-SACOG specification, except for a few 

specific instances where the model structure or specification was simplified somewhat to 

improve estimability.  

(2) As described above, each variable in each model was given a one- or two-letter code 

denoting what type of variable it is.  This coding aided in automatically classifying variables 

during later steps in the process. 

(3) For each of the 15 models, the base model estimation data set was created for each of the 6 

regions, giving 90 separate estimation data sets.  This step was done using the DaySim 

software framework, which uses identical model code for both model estimation and 

application. Because the models (excluding any modifications) had already been coded into 

DaySim and tested extensively in application for other projects, this process was important 

for both (a) avoiding errors in setting up the estimation data, and (b) ensuring consistency in 

the data processing across the six regions.  

(4) DaySim automatically creates consistent data and control files for use by the ALOGIT model 

estimation software package.  For each of the 90 base models (15 model types times 6 

regions), the base model was estimated using ALOGIT.  In some cases, the models were not 

estimable at this stage.  The most common reasons for that were: 

a. There was no variation in an independent variable for a specific choice alternative, so 

the coefficient would go to positive or negative infinity. This was most common in 

cases where there were very few observed choices for an alternative (e.g. the bike and 

transit modes in the mode choice models, or extremely late or early periods in the 

time of day models), or in cases where there were very few observations with a 

modeled characteristic (e.g. 0-car households or very low income households in the 

smallest (Fresno) data set).  
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b. There were other estimation issues due to very high co-linearity in the variables. This 

was most common for the land use variables, and tended to have most affect in the 

size variable functions for the location choice models. 

Any variables that could not be estimated in the base version were dealt with by leaving 

the variable in the model but constraining the coefficient to a specific value (usually 0). 

(5) A program was created to read in the ALOGIT estimation results (extension .f12) files for the 

90 different base runs, and to automatically create new data files and control files to estimate 

36 different model specifications for each of the 15 models.  For a specified one of the 15 

model types, the program performs the following main tasks: 

a. Merges the separate estimation data files for the 6 regions into a single combined 

estimation data file, ensuring that the data record structure is exactly the same for 

every observation. 

b. Creates ALOGIT estimation control files for all 36 models used in the transferability 

tests.  These are listed under variable ‘Mspec’ in the Appendix 2, and described in 

more detail in the following paragraphs.  

c. Creates an ALOGIT “batch run” file instructing the ALOGIT software to estimate all 

36 models in succession. 

This automated procedure proved very efficient in performing the large number of needed 

estimation runs, and has the further advantage that it can be re-used if it is ever decided to add 

further data from additional regions into the study. 

(6) After the 36 model runs for all 15 model types were completed successfully, a second 

program was written to compile and tabulate all estimation results for further viewing and 

analysis.  This program reads in the estimation results (.F12) files, and writes out two types 

of files: 

a. Comma-delimited (.csv) files showing all estimation results in tabular form, including 

model summary statistics, plus the labels, coefficients, and t-statistics for all 

coefficients. These .csv files were then imported into Excel, where they were pasted 

into a standard tabular format for viewing, and combined into a single workbook.  

That workbook is included separately with this report. 

b. A single, space-delimited metafile, containing the results for every model and 

coefficient estimated in the project in a single file.  The content of this file is 

documented in Appendix 2. 

(7) The metadata file from the previous step was analyzed in SPSS to create the tables and charts 

presented in the following chapter. 
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The model specifications for transferability tests 

As noted above, up to 36 different models were estimated for each model type.  These fall into 

two main types: the “base models”, and the “difference models”. 

There were twelve base models estimated.  Six of them are the region-specific based models 

described in Step 4 above.  These were also re-estimated as part of the sequence of  36 runs, but 

were not used in the formal transferability tests.  They were used mainly for the analysis of 

parameter estimability reported in the next chapter, particularly as it relates to sample size. 

Six additional base models were estimated as well, falling into four different types: 

 2-state: Using the data from all 6 regions in both states 

 1-state: (a) Using only the data from the 4 California regions, and (b) using only the data 

from the 2 Florida regions 

 2-state+ASC: Using the data from all 6 regions in both states, but using separate 

alternative-specific constants for each region. 

 1-state+ASC: (a) Using only the data from the 4 California regions, and (b) using only 

the data from the 2 Florida regions, but using separate alternative-specific constants for 

each region in that state. 

These six models were used as a basis for comparison for the remaining 24 “difference models”. 

The concept behind the difference models is as follows: 

 Estimate a model across data from multiple regions (6 regions for the 2-state models, and 

either 4 or 2 regions for the 1-state models). 

 For a single selected region, add a second set of all the coefficients that are in the base 

model.  These are referred to as “difference variables”, because if the coefficient value 

that is estimated across all included regions is the same as the coefficient value that 

represents the single selected region, then the estimated value for the second, region-

specific coefficient will be 0.  The second coefficient essentially measures the difference 

between the correct coefficient value for the selected region and the correct value for the 

sum of all regions except the selected region. 

 Estimating a full model with difference variables gives transferability evidence in two 

ways:  

o The significance of the difference coefficient on each variable provides evidence 

of the transferability of that particular variable between the selected region and 

the other regions included in the model. 
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o A chi-squared model fit test between the full difference model and the 

corresponding base model provides evidence on the transferability of the model as 

a whole.  (Note that this is quite a strict test to use for data from different regions.  

It is more commonly used for data from a single region, to test the significance of 

adding or subtracting variables from a model.) 

For a simple example of a difference model, imagine a logit model that only has two alternatives 

and two independent variables.  The base model has the utility functions: 

   V(1) = 0 

   V(2) = a  + b1 . x1  + b2.x2 

The difference model would then have the utility functions: 

   V(1) = 0 

   V(2) = a  + b1.x1  + b2.x2     +  R.(a’  + b1’.x1 + b2’.x2) . 

where R is a dummy variable that is 1 for the selected “difference region” and 0 for all other 

regions 

The second half of the V(2) equation is a copy of the first half, but the coefficients a’, b1’ and 

b2’ are only estimated on the observations for the selected region where R=1.   So, for that 

selected region, the resulting coefficients for x1 and x2 are (b1+b1’) and (b2+b2’) and the 

resulting estimate for the alternative specific constant is (a+a’).  The primed coefficients thus 

measure the differences between the original coefficients and the resulting, combined 

coefficients for the selected region.   

Consider the California data with 4 regions.  The base model for the “1-state+ASC” case would 

be written as: 

   V(1) = 0 

   V(2) = a  + b1 . x1  + b2.x2  + (a’
2
.R

2
 + a’

3
.R

3
 + a’

4
.R

4
) 

This specification adds a difference variable on the alternative-specific constant for each of the 4 

regions except one, which effectively allows each of the four regions to have its own constant. 

The difference model for region 4, relative to this base model is then: 

   V(1) = 0 

   V(2) = a  + b1.x1  + b2.x2   + (a’
2
.R

2
 + a’

3
.R

3
 + a’

4
.R

4
)  +  R

4
.( b1’.x1 + b2’.x2) . 

Because there was already a difference coefficient on the constant a for region 4, only difference 

variables for x1 and x2 need to be added.  Also, because the region-specific constants are 
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allowed, the base estimates of b1 and b2 could change as well, which could in turn affect the 

values of the difference coefficients b1’ and b2’. 

To allow for the testing of these different types of effects, 24 difference models were estimated: 

 1-6: Difference variables for each of the 6 regions relative to the 2-state base 

 7-12: Difference variables for each of the 6 regions relative to the 1-state base 

 13-18: Difference variables for each of the 6 regions relative to the 2-state+ASC base 

 19-24: Difference variables for each of the 6 regions relative to the 1-state+ASC base 

Each of the types of specifications, model types, and variable types can provide different types of 

evidence related to our research hypotheses presented in Chapter 3.  The following Chapter 

presents a careful analysis of the resulting evidence. 
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7. Results 

This Chapter reports the results of the model estimation procedures described in Chapter 6, 

addressing the questions developed in Chapter 3, first related to data and estimability, and then 

related to transferability. 

Comparisons of Coefficient Significance and Estimability 

The questions of coefficient estimability and significance are addressed by examining the 

estimability and significance of the coefficients of each separately estimated regional model, as 

well as the one-state and two-state models.  Also, each estimable coefficient is identified as 

having the same or different sign as the corresponding coefficient estimated from the entire two-

state sample.  Thus, each model coefficient falls into one of five categories: 

Significant, with the same sign as in the two-state model 

Insignificant, with the same sign as in the two-state model 

Insignificant, with different sign than in the two-state model 

Significant, with different sign than in the two-state model 

Not estimable (but its counterpart in the two-state model is estimable) 

From the standpoint of estimability, the best category is on top, and it gets worse moving down 

the list, assuming that the two-state sample is the most likely to have the correct sign because of 

its large size.  Having the same sign is better than having a different sign.  If the sign is the same, 

it is better for the estimate to be significant, and if the sign is different, it is better for the estimate 

to be insignificant.  The worst case is if a coefficient that is estimable in the two-state sample is 

not estimable in the smaller sample. 

 Table 7.0 and Figure 7.0 show the significance of the coefficient estimates for all fifteen model 

types in the two-state base models.  The size variables of the location choice models are 

excluded from Table 7.0 and Figure 7.0 because their nonlinear form in the model make their 

significance measures incomparable to the other coefficients. 
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Table 7.0 Coefficients by model type and significance in the base two-state models  

(excluding size coefficients) 

Model Type Significant Insignificant

Total 

Number

Usual work location 68% 32% 34

Auto ownership 83% 17% 24

Person-day tour generation 73% 27% 126

Exact number of tours 40% 60% 86

Work tour time of day 72% 28% 69

Work tour mode (detailed LOS) 40% 60% 58

Work tour mode (combined LOS) 61% 39% 31

 WB subtour generation 79% 21% 14

School tour mode 59% 41% 32

Other tour destination 88% 12% 50

Other HB tour time of day 76% 24% 86

Other HB tour mode 68% 32% 41

Intermediate stop generation 87% 13% 100

Intermediate stop location 68% 32% 57

Trip time of day 76% 24% 45

Total 69% 31% 853  
 

Figure 7.0 
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For the subsequent estimability results, the coefficients are evaluated in comparison to this two-

state base.  Also, data from only fourteen of the fifteen model types are included; the work tour 

mode choice model with detailed impedance variables is excluded because in the two-state 

model, which serves as the basis for evaluation of the smaller models’ signs, it includes several 

coefficients with the wrong sign.  

Note that the results for the detailed work mode choice model support the idea that very few RP 

data sets will support the accurate estimation of detailed travel time and cost coefficients.  Since 

there have been numerous careful SP and RP studies related to this, including the SHRP 2 C04 

synthesis study, it appears that it will nearly always be better to transfer travel time and cost 

coefficients (and related co-variant effects) from such prior research rather than attempting to 

estimate completely new coefficients that are subject to a great deal of error and uncertainty.  

Tables 1-a through 1-n in Appendix 3 show a detailed summary of the estimation results, with a 

table for each of the fourteen relevant model types.  Each table shows the percentage of 

coefficients that fall in each of the five categories listed above, for each of the nine “base” 

models—the two-state base mode, each of the two states separately, and the six regions 

separately.  Appendix 4 shows summaries of estimation results by coefficient type.   

In the remainder of this Chapter, the results are summarized in different ways to address the 

different research questions. The results described in the next few sections are derived from the 

same information used to create the more detailed tables in Appendix 3, but aggregated along 

different categories to answer particular research hypotheses. 

Significance and estimability by number of survey households 

Question E1:  What sample size is adequate for local estimation?   

For this question, Table 7.1 and Figure 7.1 summarize the results by combining all model types 

for each region, and combining regions into four survey size categories.  As can be seen in the 

table and figure, the ability to estimate statistically significant coefficients increases substantially 

as sample size increases from under a thousand to as many as 6000.  Although these results don’t 

definitively say what sample size is adequate, the large improvement between Tampa results 

with 2500 households and the SANDAG results with 6000 suggests that samples much smaller 

than 6000 should be discouraged.  Furthermore, although it is impossible from these results to 

know how much improvement would come from regional samples greater than 6000, the large 

difference between Tampa and SANDAG also gives a hint that increasing above 6000 could 

yield even more improvement. 
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Table 7.1 

<1000 

fresno & 

3county

1000-1500 

sacog & 

jacksnvl

2500 

tampa

6000 

sandag

Significance and sign

significant, same sign 27% 39% 46% 65%

insignificant, same sign 41% 41% 34% 27%

insignificant, other sign 20% 14% 14% 7%

significant, other sign 1% 1% 1% 0%

not estimable 11% 5% 5% 0%  
 

Figure 7.1 

 
 

Significance and estimability by geography 

Question E2 :  How does combining data samples improve estimability?   

For this question, Table 7.2 and Figure 7.2 summarize by again combining results for all model 

types, but keeping results for each region separate and also showing results for the one-state and 

two-state models.  Table 7.2 also shows the number of survey households for each model.  In 

most cases, combining samples across regions within California and Florida substantially 

improves the ability to estimate coefficients, to achieve the same sign as the two-state sample, 

and to get statistically significant coefficient estimates.   However, the comparison of results for 

SANDAG and California shows little improvement when adding data from other California 

regions to the SANDAG sample, suggesting that if a region has a sample as large as SANDAG’s, 

adding data from other regions may not be beneficial.  This stands in contrast to Fresno, with the 

smallest survey sample, where estimability, sign and significance are all substantially worse than 

in the California and two-state models. 
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Table 7.2 

sandag sacog fresno 3county tampa jacksnvl calif florida cal&fla

Number of survey 

households 6002 1311 381 657 2517 1335 8351 3852 12203

Significance and sign

significant, same sign 65% 39% 25% 28% 46% 40% 68% 53% 71%

insignificant, same sign 27% 44% 42% 40% 34% 37% 27% 31% 29%

insignificant, other sign 7% 13% 20% 20% 14% 14% 5% 10% 0%

significant, other sign 0% 1% 1% 2% 1% 1% 0% 1% 0%

not estimable 0% 3% 13% 10% 5% 7% 0% 4% 0%  
 

Figure 7.2 
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Significance and estimability by type of model component 

Question E3:  Which models are more estimable at the regional level?   

For this question the results are summarized by combining results across states, but looking at 

three different categorizations of model type.  Table 7.3 and Figure 7.3 look at the model’s level 

in the model system hierarchy.  Table 7.4 and Figure 7.4 look at models by the type of choice 

represented by the model.  Here, the models classified as ‘social organization’ include auto 

ownership and those that define the day in terms of the number and purposes of tours and 

intermediate stops.  Table 7.5 and Figure 7.5 also look at type of choice but in more broadly 

defined categories of timing and social organization vs spatial organization, as used to address 

transferability hypothesis 3.  

From the perspective of model hierarchy, the trip and long term models are more estimable at the 

regional level, followed by the tour models and lastly the person-day models.  From the 

perspective of model type, the mode choice models are least estimable.  Using the categorization 

of hypothesis three, which contrasts models of social organization and timing from those of 

spatial organization (mode and destination), the models of spatial organization are less estimable. 

(Note however, in Table 7.0, that the average for the person-day models is brought down quite 

significantly by the value for the Exact Number of Tours model, but that the Person Day Tour 

Pattern model, which is far more important model in determining forecasts, has a much higher 

percentage of significant variables (73% vs. 40%). The Exact Number of Tours model only 

explains cases where people make multiple tours for the same purpose during a single day, which 

is relatively rare, so such a model has less information to inform the coefficient values.)  
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By level in model hierarchy 
Table 7.3 
long term person-day tour trip

Number of estimated parameters 513 1908 2898 1809

Significance and sign

significant, same sign 56% 36% 49% 58%

insignificant, same sign 28% 45% 33% 29%

insignificant, other sign 11% 14% 11% 10%

significant, other sign 3% 1% 1% 1%

not estimable 2% 5% 7% 2%  
 

Figure 7.3 

 

 

By type of model 
Table 7.4 

social organization destination mode scheduling

Number of estimated parameters 3150 1242 936 1800

Significance and sign

significant, same sign 46% 52% 39% 54%

insignificant, same sign 38% 30% 33% 33%

insignificant, other sign 12% 13% 13% 9%

significant, other sign 1% 2% 0% 1%

not estimable 3% 3% 14% 4%  
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Figure 7.4 

 

 

By hypothesis 3 category 
Table 7.5 

mode & 

destination

social org & 

scheduling

Number of estimated parameters 1011 2429

Significance and sign

significant, same sign 46% 49%

insignificant, same sign 32% 36%

insignificant, other sign 13% 11%

significant, other sign 1% 1%

not estimable 8% 3%  
 

Figure 7.5 
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Comparison of Estimated Coefficients 

This section compares regional models in several different ways using the four following 

difference model specifications:  

1. Two-state base with difference coefficients for the named region 

2. One-state base with difference coefficients for the named region 

3. Two-state base with ASCs for all regions and difference coefficients for the named 

region 

4. One-state base with ASCs for all regions and difference coefficients for the named region 

Some comparisons use only one base for comparison, while others use all four. 

The comparisons include estimation  result data from all fifteen model types, including the work 

tour mode choice model with detailed impedance variables, which was excluded from the above  

analysis of significance and estimability.   

Most of the comparisons summarize the results by identifying the percentage of  coefficients in 

each of three categories:  

1.  Regional model coefficient insignificantly different from the larger model’s coefficient 

2.  Regional model coefficient significantly different from the larger model’s coefficient 

3.  Model coefficient can be estimated in the larger model but not in the regional model 

In some cases it is useful to look at all three categories.  In other cases it is more useful to focus 

only on coefficients that can be estimated at both the regional and larger geography, comparing 

the percentages of insignificant and significant differences; this is one way to remove 

confounding effects caused by differences in degree of estimability across regions. 

Tables 2-a through 2-n in Appendix 3 show a detailed summary of the difference model results, 

with a table for each of the fourteen relevant model types. Each table shows the percentage of 

coefficients that fall in each of the three categories listed above, for each of the 24 base model 

type/region combinations (the four base model types above times six regions). Appendix 4 

provides a summary of difference model results by detailed variable type. 

The results described in the next few sections are derived from the same information used to 

create the tables in Appendix 3, but aggregated along different categories to answer particular 

research hypotheses. 

Differences between regional and two-state models by type of coefficient 

This section compares the regional models to the two-state base, summarizing the results for 

three major types of coefficients.  It addresses the two following questions arising from 

hypotheses formed in the early stages of the project:  

Question H1:  Are coefficients defined by individual characteristics or population segments 

more transferable then those defined for the entire population?   
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Yes, Figure 7.7b shows that, after controlling for differences of estimability across the 

coefficient types,  substantially more of the coefficients defined by individual characteristics or 

population segments were insignificantly different between the regional and 2-state models, 

compared to those defined on the entire population.  

Question H2:  Are coefficients defined by population segments more transferable than 

alternative specific constants?   

No, Figure 7.7b also indicates that ASCs are just as transferable as coefficients defined by 

population segments. 
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Table 7.7 

Parameter type

insignificant 

difference

significant 

difference

not 

estimable

Number of 

parameters

entire population 73% 16% 10% 2309

alt specific constant 85% 9% 5% 942

individual or population segment 82% 9% 9% 1838  
 

Figure 7.7a 

 
 

Figure 7.7b 
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Differences between regional and two-state models, and between regional and 
one-state models by type of model component 

This section compares the regional models to the two-state base, summarizing the results for 

various types of models, from the perspectives of the model’s level in the model hierarchy, the 

type of choice represented by the model, and a categorization scheme aimed at answering the 

third hypothesis raised early in the project.  As it turns out, the corresponding questions for the 

comparisons of regions to their corresponding one-state models have the same answers, so they 

are addressed together here, and separate Tables and Figures are provided which show that the 

answers are the same. 

Three questions are addressed:   

Question H3.1:  Which models are more transferable across states? 

Question H3.3:  Which models are more transferable within California? 

Question H3.5:  Which models are more transferable within Florida? 

As shown in Figures 7.8b, 7.9b, and 7.10b, from the perspective of model hierarchy, the person 

day models are more transferable, followed by the tour, trip and long-term models.  From the 

perspective of model type, the destination choice models are least transferable and the other 

types are similar.  

Question H3.2:  Are models that deal with social organization more transferable than those 

that deal mainly with spatial organization? 

Question H3.4:  Within California, are models that deal with social organization more 

transferable than those that deal mainly with spatial organization? 

Question H3.6:  Within Florida, are models that deal with social organization more 

transferable than those that deal mainly with spatial organization? 

In this analysis, the models classified as ‘social organization’ include auto ownership and those 

that define the day in terms of the number and purposes of tours and intermediate stops. They 

exclude models that determine destination, mode and timing of tours and stops.  Figures 7.8b, 

7.9b and 7.10b show that social organization is similar in transferability to mode and timing 

choice, but more transferable than destination choice.  When the social organization category is 

combined with timing choice and separated from the combined mode and destination choice 

category, social organization and timing models are more transferable. 
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Differences between regional and two-state models 
 

Table 7.8 
insignificant 

difference

significant 

difference

not 

estimable

Number of 

parameters

Level long term 74% 23% 3% 342

person-day 86% 8% 6% 1262

tour 76% 10% 14% 2279

trip 78% 18% 4% 1206

Type social organization 85% 10% 5% 2090

destination 71% 25% 4% 828

mode 65% 7% 27% 971

scheduling 84% 10% 6% 1200

Hypothesis 3 mode & destination 68% 16% 16% 1799

social org & scheduling 85% 10% 5% 3290  
 

Figure 7.8a 

 
 

Figure 7.8b 
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Differences between regional and California models 
 

Table 7.9 
insignificant 

difference

significant 

difference

not 

estimable

Number of 

parameters

Level long term 79% 18% 3% 228

person-day 85% 8% 8% 839

tour 80% 7% 13% 1519

trip 80% 16% 4% 804

Type social organization 85% 9% 6% 1391

destination 76% 21% 3% 552

mode 71% 6% 23% 647

scheduling 86% 7% 7% 800

Hypothesis 3 mode & destination 73% 13% 14% 1199

social org & scheduling 86% 8% 6% 2191  
 

Figure 7.9a 

 
 

Figure 7.9b 
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Differences between regional and Florida models 
 

Table 7.10 
insignificant 

difference

significant 

difference

not 

estimable

Number of 

parameters

Level long term 77% 18% 5% 114

person-day 85% 9% 6% 422

tour 71% 9% 20% 760

trip 76% 18% 6% 402

Type social organization 85% 11% 5% 698

destination 75% 19% 7% 276

mode 52% 7% 40% 324

scheduling 82% 12% 6% 400

Hypothesis 3 mode & destination 63% 13% 25% 600

social org & scheduling 84% 11% 5% 1098  
 

Figure 7.10a 

 
 

Figure 7.10b 
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Differences between regional estimates and those from combined one-state and 
two-state samples by region 

This section compares each region’s models to all four larger base models, focusing on separate 

results for each region.  The model specifications that include ASCs for all regions in the base 

model are included because they might more closely resemble how a transferred model might be 

used in practice, where some of the ASCs would be calibrated to meet base year aggregate 

control values for the region.  However, most of the conclusions in this section could be drawn 

regardless of whether ASCs for each region are included in the base model.  Three questions are 

addressed: 

Question H4.1:  Can a region use models developed from a state or multi-state sample? 

Figure 7.11b shows that, among coefficients that can be estimated at both levels, the percentage 

of significantly different coefficients ranges between 8% and 19%.  Whether any or all of these 

levels is acceptable or not is a matter of judgment.  However, as shown in Figure 7.11a, for most 

of the regions with smaller samples, such as Fresno, (survey sizes are noted in Table 7.11), a 

similar or greater percentage of coefficients was not estimable using only the region’s sample.  

This highlights a trade-off that occurs when a region has the choice between using a small 

regional sample or a much larger multi-region sample:  the quality of the model developed from 

a small regional sample is severely compromised, resulting in a lot of inestimable or insignificant 

coefficients, but the regional fit of a model estimated from a multi-region sample is imperfect.  It 

is probably better to transfer a good model based on a sample of 6000 or more households than 

to develop a local model based on a sample as small as 2000 or less households. 

Question H4.2:  Are California models more transferable within California than they are 

across California and Florida? 

Yes, as shown in Table 7.11 and Figure 7.11b, the percentage of insignificant differences 

between the regional model and the California model is the same or greater, and the percentage 

of significant differences is the same or smaller, than when the regional model is compared to the 

2-state model.  However, the differences are fairly small, and for the three-county region they are 

barely measurable. 

Question H4.3:  Are Florida models more transferable within Florida than they are across 

California and Florida? 

The answer differs for Tampa and Jacksonville.  As with the California regions, and again 

looking at Table 7.11 and Figure 7.11b, Tampa’s differences from the 2-state model are greater 

than they are from the Florida model.  However, Jacksonville’s results are more similar to the 2-

state model than to the Florida model, suggesting that Jacksonville’s model is more similar to the 

California models than to the Tampa model. One possible reason for this is that Tampa has a 

larger fraction of retired and seasonal residents compared to Jacksonville. (See Appendix 1 

comparing the data from the various regions.) 



Making advanced travel forecasting models affordable through model transferability 
A Research Project Sponsored by FHWA under the Broad Agency Announcement DTFH61-10-R-00013 

Final Report  
 

 

John L. Bowman, Ph. D., Mark Bradley and Joe Castiglione September 7, 2013 

page 61 

 
Table 7.11 

Base model type

insignificant 

difference

significant 

difference

not 

estimable

Number of 

survey 

households

sandag 2 state 85% 14% 1% 6002

1 state 87% 11% 2%

2 state & ASC 89% 10% 1%

1 state & ASC 90% 8% 2%

sacog 2 state 85% 12% 3% 1311

1 state 87% 10% 3%

2 state & ASC 87% 9% 4%

1 state & ASC 88% 8% 4%

fresno 2 state 74% 9% 17% 381

1 state 75% 8% 17%

2 state & ASC 72% 7% 21%

1 state & ASC 72% 7% 21%

3county 2 state 76% 11% 13% 657

1 state 76% 11% 13%

2 state & ASC 75% 9% 17%

1 state & ASC 76% 8% 17%

tampa 2 state 74% 18% 9% 2517

1 state 76% 12% 12%

2 state & ASC 75% 14% 11%

1 state & ASC 74% 11% 15%

jacksnvl 2 state 79% 10% 11% 1335

1 state 76% 12% 12%

2 state & ASC 79% 7% 14%

1 state & ASC 74% 11% 15%  
 

Figure 7.11a 
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Figure 7.11b 

 

Summaries of Likelihood Ratio Tests of Model Equivalence 

In contrast to the preceding sections, which give summaries based on comparisons of individual 

coefficients, this section summarizes likelihood ratio tests, each of which evaluates whether a 

particular regional model is identical to its associated larger model. 

For a likelihood ratio test, two models, one a restricted version of the other, are estimated by the 

method of maximum likelihood.  If the two models are essentially the same, then the additional 

estimated coefficients in the unrestricted version will be statistically insignificant and there will 

be little difference between the final likelihood values of the two models.  Under the null 

hypothesis that the models are the same, the likelihood ratio statistic will have a chi-squared 

distribution with the number of degrees of freedom equal to the difference in the number of 

estimated coefficients between the unrestricted and restricted models; that is, 

 , where  is the loglikelihood measure from maximum likelihood 

estimation, R is the restricted model, U is the unrestricted model, and q is the number of degrees 

of freedom.  This statistic can be used to find the probability, under the null hypothesis, that the 

difference between estimation results of U and R would be as great as those observed, or, in 

other words, the degree of confidence that the two models are the same.  Conversely, it provides 

the probability that there is at least some difference between the two models. 
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For the summary reported in this section, each test consists of a pair of model runs for one of the 

15 model types (auto ownership, work tour mode choice, etc).  The unrestricted model is one of 

four base models with a full set of difference coefficients for a named region: 

1. Two-state base with difference coefficients for the named region 

2. One-state base with difference coefficients for the named region 

3. Two-state base with ASCs for all regions and difference coefficients for the named 

region 

4. One-state base with ASCs for all regions and difference coefficients for the named region 

 

The restricted model is the same model specification but without the difference coefficients for 

the named region. 

Table 7.12 summarizes the results of these tests.  For each region and base model type, it 

tabulates the percentage of test results falling into each of three categories, representing low, 

medium and high significance of the differences.  It also gives the number of estimated model 

pairs contributing to the summary tabulation for each base model type (spanning all regions), and 

the number of survey households in each region.  Figures 7.12a through 7.12d provide the 

significance of differences in graphical form, one figure for each base model type. 

The primary purpose of generating this summary is to address the following question for the 

various regions: 

Question H4.4:  Is the region's model essentially the same as the combined within-state or 

two-state model?   

It is clear from the length of the dark bands in the figures that for all states and base model types, 

the confidence exceeds 95% for a substantial portion of the models that the region’s model is not 

identical to the base model estimated using combined data across the larger geography.  On the 

other hand, for a substantial portion of the models, represented by the medium grey bands, the 

confidences ranges only between 75 and 95%, and for another substantial group, represented by 

the lightest bands, the confidence that the region’s model is not identical to the larger 

geography’s model is under 75%.  It is notable that the confidence that the region’s model is 

different is positively correlated with the region’s survey sample size.  For a region with a small 

sample size, such as Fresno with only 381 households, the sample lacks the information needed 

to confidently distinguish it from the other regions, regardless of whether or not it really is 

different.  This corroborates an earlier conclusion that it is probably better for a region that could 

only afford a small sample to transfer a model than to develop one from a small sample.  In 

contrast, for a region with a large sample size, such as SANDAG, the sample contains the 

information needed to confidently distinguish it from the other regions.  This is true even though 

its large size gives it the most influence over the estimation results of the restricted model. 

Comparing results for the four different base model specifications sheds some light on preferable 

approaches for transferring models.  First, comparing the 2-state  results in Figure 7.12a with the 

1-state results in Figure 7.12b reveals that, for all regions, the region’s model is as similar or 

more similar to the 1-state model than it is to the 2-state model.  The same holds true when 

comparing Figures 7.12c and 7.12d, with the exception of Jacksonville, corroborating previous 
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evidence that the Jacksonville model may be more similar to the California models than to the 

Tampa model.  Nevertheless, most of the evidence here is that transferability is greater within 

state than across states. 

Comparing the 2-state results in Figure 7.12a with the 2-state results where the base includes 

region-specific ASCs shows a greater similarity to the base in all regions when the base accounts 

for regional differences in the ASCs.  This suggests that if a shared-data approach is used for 

model estimation, it may be good practice to estimate region-specific ASCs.  It also suggests 

that, if a region is adopting a model that has been estimated on another region’s data, it would be 

good practice to calibrate the ASCs, to the extent that aggregate data in the borrowing region is 

available for the calibration. 
Table 7.12 

Base model type

Significance of 

differences sandag sacog fresno 3county tampa jacksnvl

Number of 

estimated model 

pairs

2 state Low (under 75%) 7% 21% 29% 0% 13% 20% 13

Medium (75-95%) 27% 29% 43% 29% 7% 27% 23

High (over 95%) 67% 50% 29% 71% 80% 53% 51

1 state Low (under 75%) 20% 21% 43% 14% 33% 27% 23

Medium (75-95%) 20% 29% 36% 29% 13% 20% 21

High (over 95%) 60% 50% 21% 57% 53% 53% 43

2 state & ASC Low (under 75%) 33% 33% 42% 25% 17% 50% 24

Medium (75-95%) 8% 17% 33% 25% 17% 8% 13

High (over 95%) 58% 50% 25% 50% 67% 42% 35

1 state & ASC Low (under 75%) 33% 33% 42% 33% 36% 33% 25

Medium (75-95%) 8% 25% 33% 17% 9% 17% 13

High (over 95%) 58% 42% 25% 50% 55% 50% 33

Number of survey households 6002 1311 381 657 2517 1335  
 

Figure 7.12a                                                               Figure 7.12b 

           
 

Figure 7.12c                                                             Figure 7.12d 
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It is possible to summarize the results of the likelihood ratio tests in other ways to cast light on 

previously addressed questions.  Table 7.13 and Figures 7.13a through 7.13d summarize the 

results by four model types, to provide another look at the following question: 

Question H3.2:  Are models that deal with social organization more transferable than those 

that deal mainly with spatial organization? 

As can be seen in both the table and Figures 7.13c and 7.13d, the destination choice models are 

excluded from the summaries in the two cases where the base model includes region-specific 

alternative-specific constants because destination choice models do not have alternative-specific 

constants. 

In both Figures 7.13a and 7.13b, it can be seen that the destination choice models have the 

greatest statistical difference between the region and the larger one-state and two-state models, 

followed fairly closely by the mode choice models.  The social organization and scheduling 

models are much more similar across geographic levels.  This result is different than the earlier 

result based on summarization of individual coefficients (see Table 7.8 and Figure 7.8b), which 

suggested that the mode choice models are nearly as transferable as the scheduling and social 

organization models.  

Not surprisingly, when comparisons are made across the four base model types, summarizing by 

model type shows a similar pattern as summarizing by region:  the regional models are more 

similar to the one-state model base than to the two-state base, and they are more similar to the 

base models with region-specific ASCs than to those without region-specific ASCs.  
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Table 7.13 

Base model type

Significance of 

differences

social 

organization destination mode scheduling

Number of 

estimated model 

pairs

2 state Low (under 75%) 20% 7% 8% 22% 13

Medium (75-95%) 33% 13% 21% 33% 23

High (over 95%) 47% 80% 71% 44% 51

1 state Low (under 75%) 27% 13% 17% 50% 23

Medium (75-95%) 33% 7% 29% 17% 21

High (over 95%) 40% 80% 54% 33% 43

2 state & ASC Low (under 75%) 40% 0% 21% 39% 24

Medium (75-95%) 10% 0% 21% 28% 13

High (over 95%) 50% 0% 58% 33% 35

1 state & ASC Low (under 75%) 40% 0% 17% 53% 25

Medium (75-95%) 10% 0% 33% 12% 13

High (over 95%) 50% 0% 50% 35% 33  
 

Figure 7.13a                                                                    Figure 7.13b 

         4 
 

Figure 7.13c                                                                  Figure 7.13d 
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8. Conclusions 

Summary of Findings 

Though it is not possible to make a definitive statement about the transferability of activity-based 

models based on a single study, this study has been able to provide some new and unique 

evidence. Overall, although the strictest statistical test (chi-squared test) usually rejects the 

hypothesis that models based on data from different regions are statistically indistinguishable, it 

is also true that most of the individual coefficients are not significantly different from one region 

to the next.  In addition, this study shows the substantial improvement of estimability that occurs 

with large survey samples.  Based on these findings, the most important conclusion of this 

study is that, although estimation of models using a large local sample is best, it is better to 

transfer models that are based on a large sample from a comparable region than it is to 

estimate new models using a much smaller local sample.   

However, this conclusion does not mean that metropolitan regions can relegate survey data 

collection and model development to the past, and simply borrow a model from others who have 

gone before.  Even if a comparable region and its model can be found, survey data should 

nevertheless be collected for purposes of calibrating components of the model, such as activity 

and tour generation, that cannot be calibrated using traffic count data.  And this study has only 

scratched the surface in identifying the factors that make two regions comparable, as described in 

the next paragraphs.    

Although small sample sizes limit the ability to draw strong conclusions about comparability 

among the four California regions and two Florida regions included in this study, there is some 

substantial evidence of comparability among them.  However, Tampa stands out as less 

comparable than the others, and this study did not identify the reason.  The California regions are 

more comparable within state than across states, perhaps because of the presence of Tampa in the 

two-state comparison.  The issue with Tampa draws attention to the likelihood that there may be 

factors would cause two regions, even two regions within the same state, to be bad candidates for 

a model transfer. 

This study did not explore comparability for regions in states other than California and Florida, 

estimability and comparability for a full spectrum of sample sizes—especially samples with 

more than 2,500 households, or comparability in categories other than state boundaries, such as 

urban density, size, or demographic make-up.  For example, university towns or cities with large 

seasonal retirement population may be distinctly different in ways that make transferring from 

other regions inadvisable, and this study lacks evidence to draw conclusions one way or the 

other.  These remain as important avenues for further research. 

On the other hand, there may be good reasons for transferring a model from a region that is NOT 

currently comparable if there is reason to believe that it will be comparable in the future.  For 

example, it may be that a region that is growing rapidly and/or adding new travel options would 
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lack the data to develop a model that would serve it well even it could collect a very large 

household survey.  The diversity of conditions needed to estimate the coefficients of the model 

simply may not exist within the region.  In a case like that, perhaps a model transfer should be 

considered. 

This study is also limited in its ability to determine what sample size is large enough for local 

estimation, because the largest sample in this study includes only 6,000 households and the rest 

are 2,500 or less.  However, the results suggest that sample sizes of less than 6,000 households 

should be discouraged.  It is also very likely that samples considerably larger than 6,000 

would substantially improve estimation results, enabling significant coefficient estimates for 

important small population segments. 

The following paragraphs provide more context to these overall conclusions, as well as 

additional findings about the NHTS, sample size issues, and transferability hypotheses tested in 

this study. 

Adequacy of the 2009 National Household Travel Survey (NHTS) data for 
estimating activity-based models 

A unique aspect of this project is that identical models are estimated using data from six different 

regions, but all using data from the same household travel survey.  Because the opportunity to 

purchase an add-on sample to the NHTS is available to all state and regional agencies, it may be 

useful to assess how well the data support the estimation of the component models of the 

activity-based model system (the DaySim v.1.8 model system in this case). The following 

findings can be helpful in the implementation of future NHTS surveys, as well as other 

household surveys designed for use with AB models: 

 In terms of survey design, the NHTS 2009 survey supports the estimation of almost all of the 

component models of DaySim. The exceptions are: 

o Most AB model systems have a longer term model of students’ usual school 

locations, and NHTS 2009 did not ask this question. Although it is possible to impute 

this information for students who actually went to school during the travel day, this 

may be a biased sample of all students. 

o DaySim 1.8 has models of transit pass ownership and of the availability of free 

parking at the usual workplace, both of which are useful in predicting mode choice. 

Neither of these variables was collected in NHTS 2009, but could be added in future 

surveys by adding fairly simple questions. 

 In terms of sample design, there are some more serious issues:  

o The sample sizes for most of the individual regions used in this study are not 

adequate to estimate statistically significant parameters for many of the variables 

tested. This is particularly true for some of the rarer types of households and persons, 

such as low-income households, zero-vehicle households, and persons who use transit 
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and bicycle. These issues arise in many household travel surveys, not just NHTS.  For 

NHTS, the use of equal subsamples for every day of the week means that 28% of 

travel days are on weekends, and are not useful for the typical regional models of 

weekday travel. It should be considered to devote a smaller percentage of the sample 

to weekends, unless models of weekend travel are important for the region. 

o There are many households in the sample for which one or more household members 

did not complete the travel diary.  In the case of children under age 5, this was by 

design, and is not a major problem for modeling, since the large majority of travel 

and activities of those children can be imputed from the joint trips they make with the 

adults in the household—assuming that all adults complete the travel diaries. In the 

2009 NHTS data, however, there are many cases in which one or more household 

adults did not complete a travel diary.  As a result, it is not possible to explicitly 

model all joint travel and activities in the household.  This is not a major problem for 

the DaySim 1.8 model system, which does not contain models that explicitly link the 

joint tours and trips across household members, but it would be a problem with later 

versions of DaySim that do contain such models.  Vovsha et al.(2011) also report 

such issues when using the NHTS data for estimating AB models for Phoenix and 

Tucson.  The result is that households with incomplete data have to be excluded from 

estimation for some models, which further exacerbates any sample size problems 

(particularly among larger households).  For the next NHTS, a more strict definition 

of data for a “complete” household should be considered. 

Issues regarding sample size and composition 

The adequacy of the survey sample size can be judged mainly from (a) how many of the 

coefficients in the models can be estimated with statistically significant precision (i.e. t-statistics 

of 1.9 or higher), and (b) how many of the coefficients can be estimated at all.  The latter issue of 

non-estimable parameters usually arises in the case of variables that apply to only small 

segments of the population and for which no variation in choice behavior can be observed. An 

example is a case in which no households in the lowest income category choose the walk mode, 

so a low-income variable for the walk mode cannot be estimated.   

In regard to overall sample size, only the San Diego region, with roughly 6,000 households 

seems to be adequate to estimate statistically significant coefficient values for the majority of 

variables in most models.  The next largest sample is for the Tampa region, with only about 

2,500 households. The percent of coefficients in all (base) models with significant estimates of 

the expected sign fell from 65% for San Diego to 46% for Tampa, and then to 39% for 

Jacksonville and Sacramento (sample sizes of 1,000-2,000 HH) , and to 27% for Fresno and 

Northern San Joaquin Valley (less than 1,000 HH).  The percent of parameters that are not 

estimable at all goes up as sample size goes down, with 0% for San Diego, rising to 11% for 

Fresno, the region with the smallest sample.   From this analysis it cannot be concluded  that 

samples larger than 6,000 households are of little or no value, for two reasons.  First, the only 

variables considered in this study are those included in the DaySim v1.8 models, which were 

originally specified using data from a local Sacramento region survey of roughly 5,000 

households.  A larger sample would have almost certainly yielded models with additional 
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significant coefficients.  The second reason is that this study does not include any samples of size 

larger than 6,000, so it provides no empirical evidence about larger sample sizes.  In this study, 

no regions are included with a sample size in between 2,500 and 6,000 households, which is a 

fairly large gap.  Thus, it is also difficult to say how much improvement a sample of, say, 4,000 

would provide compared to a sample of 2,500.  One way in which this research can usefully be 

extended is to include a number of additional regions with varying sample sizes that cover the 

range from 2,500 to 6,000 more completely (while simultaneously covering states in more parts 

of the US).  It would also be desirable to test estimability and transferability with sample sizes in 

excess of 6,000.  Nevertheless, what can be concluded is that, among the sample sizes included 

in this study, much is to be gained from larger sample size. 

As an alternative to transferring models from other regions, an option is to combine survey data 

from similar regions.  For example, the Sacramento, Fresno and Northern Joaquin regions are all 

in fairly close geographic proximity to each other, and combining data from those three areas 

would yield a sample of 2,500 households, similar to the sample size for Tampa. Note that this 

does not require combining the regions’ zone systems, networks, etc. into a “megaregion”, but it 

does require at least merging the data sets after they have been prepared for estimation, as was 

done for this project.  However, the current study provides only limited information about what 

constitutes “similar” for purposes of combining data.  By explicitly evaluating differences of 

individual regions’ results from combined one-state and two-state samples it only provides 

information about defining ‘within state’ as a basis of similarity, and the results are mixed, as 

described below.  A practical issue in combining data across regions is that the process can be 

time-intensive and complex, which might place it beyond the scope of many regional modeling 

efforts.  

The variation in results in response to sample size appears to affect all types of models, including 

mode choice, destination choice, time of day choice, tour and trip generation, and auto 

ownership.  The problems associated with small samples arise in all models in the estimation of 

coefficients related to important but small or hard-to-sample segments of the population, such as 

very low or very high income households, households that do not own cars, and young adult 

households.  The effects are most apparent in cases where specific alternatives have a small 

number of observed cases.  In the tour mode choice models, for example, there are very few 

cases in which people chose the transit and bicycle modes, particularly in the Florida regions and 

the more rural California regions with smaller sample sizes.  The actual mode shares for transit 

and bicycle in those regions tend to be quite small, and, even though some oversampling was 

done in NHTS to include more households from neighborhoods likely to have higher transit and 

non-motorized mode usage, the resulting shares for those modes in the NHTS data for the 

selected regions is still very low. (In future NHTS efforts, it may be worth the effort to 

oversample even more heavily in such neighborhood areas, and/or to reconsider the areas that 

should be oversampled. Areas around universities and other areas with a high proportion of 

young, single households may be advantageous, both to get a wider variety of mode choice 

behavior, and to counteract the typical survey sampling bias towards older households.)    
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Tests of specific hypotheses regarding model transferability 

In this study, model transferability between regions is tested through the use of region-specific 

“difference models”. Starting with a “base model”, estimated on all regions within both states (or 

else all regions in a single state), additive “difference coefficients” are added for all variables for 

observations from a single region. The difference coefficients thus measure the difference 

between the coefficient estimated only for that specific region and the coefficient estimated for 

all regions except that specific region. If the difference coefficient is not significantly different 

from zero, it is an indication that the model is transferable between the specific region and the 

other regions included in the base model—at least for that particular variable.  This approach 

tends to work best with adequate sample sizes. With small sample sizes, although it is more 

difficult to estimate a local version of the model, it is also more difficult to prove whether or not 

the local version is statistically different from models estimated on other regions, because there 

is less data to use in estimating the difference coefficients and thus they will tend to be less 

significant, regardless of the true transferability.  Therefore, this test is less useful in judging 

variations in sample sizes, and the comparisons tend to be most meaningful along model 

dimensions not defined by region (where sample sizes differ), such as comparisons between 

types of models or between types of variables (including data from all regions without 

differentiating results by region). 

Another way that transferability is tested in this study, rather than looking at each variable 

separately, is to look at the change in model fit as a whole when the region-specific difference 

variables are included. This is done with the standard chi-squared likelihood ratio test.   Such a 

test is typically used to test different model specifications on the same estimation data set, 

whereas in this study it is used to test the same model specification on different estimation data 

sets.  The likelihood ratio test is a rather strict test to use, because it tests whether the two models 

being compared are the same in every respect.  Indeed the hypothesis that the different data sets 

yield “the same model” (in statistical terms) is rejected with fairly high significance in most of 

the cases.  Nevertheless, the results of the likelihood ratio test can be used in a comparative 

manner, finding out which models show the most and the least improvement in model fit due to 

allowing region-specific coefficients. 

Each of the transferability hypotheses raised in Chapter 2 and tested in Chapter 6 are discussed 

below, with attention to the practical implications of the research findings: 

(Hypothesis 1) Variables that apply to population segments defined by characteristics of 

individuals and/or their situational context (i.e., segment-specific variables) will tend to be 

more transferable than variables that are more generic and apply to all individuals.   

This hypothesis is supported by the data, with 82% of the variables that are population-segment-

specific showing no significant difference from the base model, compared to 73% for variables 

that apply to the entire population.  Looking at it the other way around, 27% of full-population 

variables show significant cross-region differences or are not estimable, compared to only 18% 

for  segment-specific variables, a relative difference of 50%.  
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Of course, estimating segment-specific variables requires adequate sample size for each segment, 

which requires larger sample size overall. The smaller effective sample sizes applying to these 

variables in estimation may be part of the reason that fewer significant differences result.   

Nevertheless, the results support the theory that variables with more socio-demographic 

specificity should show more stability across regions. This finding also supports the idea that it 

may be better to transfer activity-based models from a region with a large enough survey sample 

to include segmentation detail, rather than estimating on a much smaller local survey sample that 

does not allow such detail. 

(Hypothesis 2) Variables that are segment-specific will tend to be more transferable than 

alternative-specific constants.  

This hypothesis is not supported by the tests. Compared to the segment-specific variables, the 

alternative-specific constants (ASCs) show the same percent of variables across all models with 

significant differences from the base model (9%).  The ASCs are also more estimable, with only 

5% of cases not estimable, compared to 9% of segment-specific variables.  

This finding implies that alternative-specific constants may be fairly transferable between 

regions as well, which would be reassuring in a situation when there is very little observed local 

data at all to use in calibrating the model to local conditions. When such data do exist, however, 

it is still good practice to use local data to re-calibrate the alternative-specific constants of a 

transferred model whenever necessary.  Although data sets from surveys such as NHTS may not 

be adequate for complete re-estimation of an activity-based model system, they will typically be 

adequate for such a simple calibration exercise (which can usually be done by manually 

adjusting the constants and comparing the observed versus predicted choice shares, rather than 

using formal model estimation methods). 

 (Hypothesis 3) Models that deal with social organization (activity generation and scheduling) 

will tend to be more transferable than models that deal mainly with spatial organization (mode 

choice and location choice).   

The data strongly support this hypothesis. The models emphasizing “spatial organization” result 

in 16% of variables with significant differences across regions and 16% non-estimable on single-

region data, compared to only 10% and 5% respectively for models emphasizing “social 

organization”.  This conforms to the expectation that different US regions will tend to show 

stability in general socio-cultural patterns, as those are less influenced by the spatial dispersion 

of opportunities or the availability and quality of particular travel modes.  

In practical terms, this finding suggests that when transferring an activity-based model system 

across regions, it would be warranted to spend more effort in calibrating and adjusting the mode 

choice and destination choice models than the other models. Vovsha et al (2011) also report that 

destination/location choice models can show different results across regions, particularly with the 

sensitivity to travel distance, so calibration to local data on trip distance distributions is 

recommended, unless the model is transferred from a region with very similar geography and 

dispersion of employment and population. 
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 (Hypothesis 4) Models for different regions within the same state will tend to be more 

transferable than models for regions in different parts of the country:   

In most cases, the data support this finding, with the California regions showing higher 

transferability for the one-state California base model than for the two-state base model, and with 

Tampa showing higher transferability for the one-state Florida model than for the two-state 

model. The exception is the Jacksonville region, which shows somewhat less transferability with 

the one-state Florida model than with the two-state model. This suggests that in at least some 

aspects of travel behavior, Jacksonville residents behave more like residents of one or more of 

the California regions than like Tampa residents.  

While this study is ambitious in using data from six different regions, findings such as this one 

make it evident that six regions in two states is still a quite limited number to work with if one 

wishes to generalize about transferability within versus between states or different types of 

regions. For this reason, it would be advisable to extend the current study to additional regions, 

as mentioned in the overall summary above and described in the suggestions for further research 

below. 

It is important to recognize that all of the transferability findings above are inter-related in the 

sense that the level of detail in the specification of the models being tested can substantially 

influence the findings.  For example, the finding for Hypothesis 1 suggests that if one were to 

test the transferability of a “stripped down” version of the DaySim models that included far 

fewer variables that are segmented by activity purpose and household and person characteristics, 

then it is likely that those models would be assessed as somewhat less transferable than the ones 

tested here.  The inclusion of segment-specific detail tends to influence the “social organization” 

models the most, so the finding for Hypothesis 3 that such models appear more transferable than 

“spatial organization” models is due in part to the inclusion of those variables that capture the 

similarities in how certain types of households and persons  tend to engage in and schedule 

activities.  Similarly, if such variables were not included in the models, then differences across 

regions in the prevalence of different household, person, and tour characteristics would tend to 

be captured in the alternative-specific-constants instead of the omitted variables, so the finding 

for Hypothesis 2 might change as well. In general, the AB model systems in use in the US 

include more of this type of behavioral detail than most 4-step models do, so they will also tend 

to be more suitable for transferring to other regions.  

Comparison To Two Recent Transferability Studies 

In this section, the research conducted in this project is compared to the research of Vovsha, et al 

(2011)
4
 and Sikder and Pinjari (2012)

5
, both of which use an estimation-based approach to test 

                                                 
4
 Vovsha, P, S Gupta, J Freedman, W Sun and V Livshits (2011)  Workplace Choice Model: Comparison 

of Spatial Patterns of Commuting in Four Metropolitan Regions, Presented at the 91st Annual Meeting of 

the Transportation Research Board, January 2012, Washington, D.C. 
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the transferability of components of activity-based (AB) model systems.  The comparison 

touches on research method and scope, as well as on the research findings. 

Vovsha, et al 

Vovsha, et al compare estimation results of one closely related pair of models for four 

metropolitan regions in the United States.  The models constitute the choice of work location via 

(1) the binary choice between working at home and working away from home, and (2) the traffic 

analysis zone of the work location, given that it is not at home.  The four regions are San Diego, 

Tucson, Phoenix and Chicago.  Except for the estimation of the home-vs-away binary choice 

model using a joint Phoenix-Tucson data set, in which the only region-specific coefficient tested 

is the alternative-specific constant, the authors rely on informal comparison of model coefficients 

estimated separately for the four regions. 

Vovsha, et al, acknowledge the need for more rigorous statistical testing using pooled data sets, 

and this is one of the big differences between their work and this project.  In this project, models 

are estimated using combined data sets across multiple regions in two states, testing for 

differences of a region’s models from the other regions within its state, and from a combined 

two-state data set.  In addition, this project examines fourteen different model components, rather 

than one.  It also conducts formal tests for differences for all model coefficients, not just 

alternative-specific constants, using tests for differences in individual coefficients as well as 

difference tests for each model as a whole. 

Vovsha, et al, report substantial differences in the model estimation results across regions and 

conclude that, for the work location choice, estimation using local data is important.  Despite the 

differences in scope and rigor of testing, their conclusion is consistent with this project’s finding 

that the location choice models are the least transferable of the various types of models in an AB 

model system. 

Sikder and Pinjari 

Sikder and Pinjari examine spatial transferability of an activity generation and duration model 

among regions within Florida, and between Florida and California.  The model predicts jointly 

the amount of time spent out-of-home for each of eight activity purposes, and corresponds most 

closely to the person-day tour generation model in this study.  It uses the same NHTS survey 

data that is used in this project.  It relies primarily on demographic characteristics and a few 

simple spatial attributes to explain behavior, without considering the effect of travel conditions 

for the out-of-home activities, which is a major difference from the models tested in this project.  

Their study deals only with adults who are not employed rather than the entire population.  Since 

their study deals only with one model, and for a limited subset of the population, it is unable to 

draw broad conclusions about transferability of entire model systems. 

                                                                                                                                                             
5
 Sikder, S and A R Pinjari (2012) Spatial Transferability of Person-Level Daily Activity Generation and 

Time-Use Models:  An Empirical Assessment, Presented at the 92nd Annual Meeting of the Transportation 

Research Board, January 2013, Washington, D.C. 
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The authors estimate the model for each of three regions in Florida, for a combined Florida data 

set, and for a combined California data set.  They transfer each of the three regional Florida 

models to the other two regions and two additional Florida regions in two different ways:  (1) 

without making any changes, and (2) after re-estimating the models on the new region’s data 

allowing only the alternative-specific constants to change.  They transfer models between Florida 

and California in the same way, using the state-wide combined data samples.  This method of 

conducting pairwise comparisons contrasts with the current project’s approach of comparing a 

region’s model to that of combined one-state and two-state models.  Their approach provides 

more information about transferability between two specific regions.  For example, their pairwise 

comparisons with five Florida regions enable them to say that the model transfers better among 

urban regions than it transfers from urban to rural regions.  On the other hand, the pairwise 

approach provides less information about the suitability of using pooled data to supply the model 

for a region, and also less information about the similarity of a particular region’s model to 

another state.  In particular, although their study determines that there are substantial differences 

between the Florida and California models, and provides evidence that the Tampa model is the 

most different from the other Florida regional models, it is unable to detect that Jacksonville’s 

model is more similar to the California model than it is to the Tampa model, as is found in the 

current project. 

Sikder and Pinjari use several statistical measures to evaluate transferability.  These include one 

measure based on the likelihood function and two measures based on estimated shares, all of 

which compare the measure for the borrowing region to that for the donor region when the model 

is applied to the estimation data set.  They also include two measures of the magnitude of change 

in model results when the values of a major input variable in the estimation data set are changed.  

Here also, the measures compare the magnitude of the change for the borrowing region to that 

for the donor region.  These last two sensitivity measures enable the authors to draw conclusions 

that cannot be drawn in the current project, which does not include sensitivity tests in model 

application.  In particular, they find that, although re-estimating the constants in the transferred 

model improves its fit with the borrowing region’s estimation data, it does not help, and 

sometimes even hurts, the transferred model’s predictive performance when the input data 

changes.  This leads them to emphasize the importance of testing model sensitivity in the 

investigation of model transferability. 

Suggestions for Further Research 

Several opportunities exist to extend the research of this project in order to provide additional 

valuable information about the transferability of advanced travel demand models.  The first 

natural extension would be to increase the number of states and regions included, selecting two 

or more regions with substantial NHTS samples from each of several additional states.  This 

would lead to more robust answers to the hypotheses and questions already addressed.  It would 

provide stronger statistical support for the conclusions, helping to clarify which answers are 

particular to California and Florida and which are more general. It would provide more evidence 

about the benefit of increasing sample sizes in the range between 2,500 and 6,000 households 

(the gap between the two largest samples in this study—Tampa and San Diego).  It also would 
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provide stronger evidence about the advisability of estimating models using multi-state samples 

and transferring model specifications across state lines versus doing so only within a state. 

Based on identification of the largest add-on samples from the 2009 NHTS, it is advisable to add 

data for at least two regions in at least three of the states/areas listed below, with the most likely 

candidate regions in parenthesis: 

 New York state (Albany, Rochester, Syracuse) 

 Texas (Dallas, Austin, San Antonio) 

 Midwest (Omaha NE; Cedar Rapids IA; Indianapolis IN) 

 South (Greensboro NC; Charlotte NC; Nashville TN) 

This would bring the total number of regions used to at least 12, with at least 2 in each of 5 

states/areas of the US. 

A second natural extension would be to pool regions for combined estimation and transferability 

testing according to categories other than state lines.  This would help determine the best criteria 

for matching donor and borrower region, or for pooling data.  Many categorization schemes 

might be good candidates, and careful thought would need to be given in the selection of 

candidates to test.  One attractive categorization to test is based on urban density or size or a 

combination of density and size.  One or more categorizations could be based on demographic 

distribution, using a statistic such as median household income or proportion of population over 

or under a certain age.  Another could be based on the degree of availability or use of public 

transit in the region. 

A third extension would be to enhance technical aspects of the estimation and testing approach 

used in the study.  Two desired technical enhancements are known at this time: 

Differences in model scale: Model scale relates to the absolute size of the coefficients. Because 

utility functions have no natural units, all estimated coefficients are normalized relative to the 

residual error term (e in Chapter 3, equation 1).  If there is more unexplained, residual “error” 

in the choices from one region relative to the others, then all estimated coefficients for that 

region will tend to be smaller (in absolute value) than for the other regions.  If almost all of the 

difference coefficients for a region are in the same direction (for example, all of the coefficients 

are significant with the opposite sign from the base coefficient), then that is a strong indication 

of scale difference.  Although it would be very difficult to estimate scale difference coefficients 

simultaneously with all of the other coefficients, it would be possible to “pre-scale” the data by 

some proportion prior to estimation to test whether this change makes the model appear much 

more transferable. 

Logsum coefficients: It would be very difficult to apply the additive difference coefficient 

approach to structural model coefficients such as the logsum coefficients in nested logit (NL) 

models.  NL is most typically used for mode choice models.  In that case, different modes may 
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be available in different regions, which further complicates matters.  Nesting is also used in 

other types of models to isolate “special” alternatives, such as the “stay at home” alternative in 

tour generation models, the “work at home” alternative in work location models, and the “home 

school” alternative in school location models.  For nested models, the most feasible approach to 

test the transferability of logsum coefficients may be to estimate a completely separate model 

on each data set and simply compare the estimated coefficients.  Another approach may be to 

estimate the nested logit models sequentially as two MNL models and test transferability 

separately for them. 

Given that the evidence is mounting that location choice models are the least transferable, a 

fourth extension would be to develop and test the transferability of alternate model specifications 

for the location choice models.  This could help identify the causes of the inferior transferability 

as well as techniques to improve it while preserving the quality of the specification.  A 

breakthrough in this area could increase the potential for transferring entire model systems on a 

widespread basis and provide some guidelines for dealing with the location choice models in that 

context. 

A fifth research extension would be to conduct model application tests for various scenarios of 

changed input data.  For each scenario and each region, the tests would involve applying the 

entire AB model system several times, once using the region’s own estimation results, and once 

each for estimation results from several pooled data sets (one-state, two-state, and any other 

pooling categorizations that had been implemented, such as urban density as described above).  

The scenario sensitivity of the various specifications would be compared  to evaluate the forecast 

quality of the various transfer categories.  In doing this, the sensitivity of standard trip outputs 

would be measured, as well as tour-level and day-level outcomes relevant to the scenario being 

examined. 

All of the above avenues of research are especially promising as extensions of the existing 

research because they can naturally build on data, software and techniques that are already in 

place. 
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Appendix 1:  Detailed NHTS data summaries  

This appendix provides an initial analysis of the 2008-09 NHTS data from the California and 

Florida add-on samples, with particular focus on the six regions that will be compared in the 

model transferability tests.  (This analysis combines results for Fresno with those for the northern 

three-county region of the San Joaquin Valley). 

The data was first prepared by processing the household, person and trip records to form 

additional records on travel tours and person travel days.  This appendix looks at the data at all of 

those different levels.  A series of tables and graphs are provided, with description and 

comments. 
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Household variables 

Tables 1-3: Observations by Day of Week and Region: These tables, like many other ones in this appendix, divide the columns by region: 

Sacramento: The SACOG region, including Sacramento, Yolo, Yuba, Sutter, Placer and El Dorado counties. 

San Joaquin: The Northern San Joaquin Valley, including Fresno, Stanislaus, San Joaquin and Madera counties. (All four are separate single-

county MPO’s.) 

San Diego: The SANDAG region, including only San Diego county. 

Jacksonville: The North Florida TPO region, including Duval, St. Johns, Nassau and Clay counties. (A sub-region of Florida DOT Region 2.) 

Tampa: The Florida DOT Region 7, including Hillsborough, Piniellas, Pasco, Citrus and Hernando counties.  

For comparison purposes, we also include two other “regions”, the rest of California and the rest of Florida, respectively.  

The “total” row of Table 1 shows that San Diego is the largest region with 6,000 surveyed households, while Tampa is the second largest with 

2,500 households.  The Jacksonville, Sacramento and San Joaquin regions all have in the range 1,000-1,300 households, while the rest of the 

state includes 12,000-13,000 households for both CA and FL.  These relative totals are in line with the relative sizes of the actual populations 

in the regions, with the exception of SANDAG, which paid for a higher sampling rate in the CA add-on sample. 

A comparison of the columns shows that roughly the same number of households had survey travel days on each of the seven days of the 

week. When the NHTS household weights are applied in Table 3, the total percent in each day becomes identical at 14.3%, indicating that the 

weights were calculated in part to even the sample across days of the week, although the fractions do not change very much relative to Table 

2. 

For the “longer term” models of auto ownership and usual workplace location, we can use all of the survey households in estimation. For 

models at the level of person-days, tours or trips, on the other hand, we will need to screen out the households with weekend travel days to 

focus only on weekdays. For the next series of tables,  however, we include all households, because there is no systematic relationship 

between household types and days of the week (and there is no separate NHTS household weight for weekdays only). 
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Table 1: Day of Week by Region (unweighted) 

Count 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

dow Sunday 188 164 860 155 373 1888 1811 5439 

Monday 186 124 897 189 369 1858 1695 5318 

Tuesday 182 154 813 177 346 1881 1767 5320 

Wednesday 184 144 856 154 341 1825 1706 5210 

Thursday 190 145 879 157 363 1870 1771 5375 

Friday 188 158 835 157 355 1779 1735 5207 

Saturday 193 149 862 151 367 1773 1745 5240 

Total 1311 1038 6002 1140 2514 12874 12230 37109 

 

Table 2: Day of Week by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

dow Sunday 14.3% 15.8% 14.3% 13.6% 14.8% 14.7% 14.8% 14.7% 

Monday 14.2% 11.9% 14.9% 16.6% 14.7% 14.4% 13.9% 14.3% 

Tuesday 13.9% 14.8% 13.5% 15.5% 13.8% 14.6% 14.4% 14.3% 

Wednesday 14.0% 13.9% 14.3% 13.5% 13.6% 14.2% 13.9% 14.0% 

Thursday 14.5% 14.0% 14.6% 13.8% 14.4% 14.5% 14.5% 14.5% 

Friday 14.3% 15.2% 13.9% 13.8% 14.1% 13.8% 14.2% 14.0% 

Saturday 14.7% 14.4% 14.4% 13.2% 14.6% 13.8% 14.3% 14.1% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 3: Day of Week by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

dow Sunday 14.2% 13.8% 14.0% 14.5% 14.8% 14.4% 14.2% 14.3% 

Monday 14.5% 13.3% 14.4% 16.7% 14.1% 14.3% 14.1% 14.3% 

Tuesday 12.0% 14.3% 13.3% 16.1% 12.1% 14.6% 14.6% 14.3% 

Wednesday 15.5% 14.9% 13.4% 14.7% 14.2% 14.2% 14.3% 14.3% 

Thursday 14.3% 14.7% 14.9% 12.6% 14.9% 14.2% 14.3% 14.3% 

Friday 14.2% 14.8% 14.2% 13.9% 14.6% 14.3% 14.2% 14.3% 

Saturday 15.2% 14.1% 15.7% 11.6% 15.3% 14.1% 14.3% 14.3% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

Tables 4 and 5: Observations by Household Size and Region:  Looking first at the unweighted numbers in Table 4, all regions look similar 

in terms of household size distribution, except for Tampa and the Rest of Florida, which contain more 1-person households and fewer large 

households. Jacksonville also contains fewer large households.  In general, we can expect Florida to have more senior households, which tend 

to be smaller.  The fractions change considerably with weighting in Table 5, indicating that there were different sampling and/or non-response 

rates by household size. The gap between states remains, however, with the Florida regions having more 1-person households and fewer with 

4 or more people.   San Joaquin has the fewest single person households. 
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Table 4: Household Size by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hhtot 1 person 23.8% 21.2% 23.8% 22.1% 28.2% 23.1% 25.7% 24.4% 

2 people 42.9% 42.1% 40.6% 48.3% 50.5% 40.6% 49.6% 44.6% 

3 people 14.3% 13.8% 14.6% 14.0% 10.7% 15.0% 11.7% 13.5% 

4 people 12.4% 11.3% 12.8% 10.3% 6.9% 13.3% 8.6% 11.1% 

5+ people 6.6% 11.7% 8.1% 5.3% 3.6% 8.0% 4.4% 6.5% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 5: Household Size by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hhtot 1 person 29.0% 22.6% 25.9% 29.4% 31.0% 25.3% 28.8% 26.9% 

2 people 31.5% 29.7% 31.6% 34.2% 37.6% 29.7% 36.8% 32.5% 

3 people 15.6% 14.7% 15.9% 16.6% 14.6% 16.8% 14.8% 15.9% 

4 people 15.2% 14.9% 14.9% 12.1% 10.8% 16.0% 12.6% 14.5% 

5+ people 8.6% 18.2% 11.6% 7.7% 6.0% 12.1% 7.0% 10.3% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Tables 6 and 7: Observations by Workers in Household and Region:  Tampa and the Rest of FL have more 0-worker HH than the other 

regions, although the weighting in Table 7 reduces the percent of 0-workers households considerably. (Survey response rates tend to be 

highest among senior and non-working households, and the weighting adjusts for that, among other things.)     San Joaquin has more 0-worker 

households than the other CA regions. 

 

Table 6: Workers in Household by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

workers No workers 38.9% 39.1% 36.6% 40.2% 51.7% 35.8% 46.9% 41.0% 

1 worker 32.6% 35.1% 36.3% 36.3% 29.6% 36.7% 31.9% 34.4% 

2 workers 24.5% 22.2% 22.7% 21.0% 16.8% 23.2% 18.5% 21.1% 

3+ workers 4.0% 3.7% 4.3% 2.5% 1.9% 4.3% 2.7% 3.5% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 7: Workers in Household by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

workers No workers 27.8% 30.0% 25.3% 28.4% 32.6% 25.1% 31.8% 27.8% 

1 worker 41.2% 40.7% 44.5% 45.8% 41.4% 44.6% 42.6% 43.6% 

2 workers 26.0% 23.6% 24.9% 22.5% 22.9% 25.0% 21.7% 23.8% 

3+ workers 5.0% 5.7% 5.3% 3.3% 3.2% 5.4% 3.9% 4.8% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Tables 8 and 9: Observations by Household Type and Region:  Here we created a 10-category indicator of household type, based on size, 

worker status, and presence of children of different ages. One striking number is that the percent of single worker households is almost twice 

as high in the weighted table as in the unweighted table, while the number of two person senior households is less than half as high. The 

weighting also increases the percent of households with children.  There are very few single student households, even after weighting. 

(Presumably the weighting does not reflect group quarters such as dormitories.)    Tampa and the Rest of FL region have more senior 

households than the other regions—particularly with 2 persons.  Jacksonville, however, has fewer senior HH than the other FL regions. In 

Table 9, San Joaquin has the highest percentage of “traditional” family households with children under 16.  In fact, compared to Tampa, San 

Joaquin has over twice as high a percent of households with children under age 5.   

Table 8: Household Type by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hhtype single worker 7.6% 6.4% 7.7% 7.2% 6.2% 8.0% 7.1% 7.5% 

single senior 11.7% 11.6% 12.5% 11.7% 17.5% 11.3% 14.8% 13.1% 

single non-worker 4.3% 3.3% 3.3% 3.1% 4.5% 3.6% 3.6% 3.6% 

single student .2%  .2% .2% .0% .2% .1% .1% 

two workers 11.7% 9.0% 9.7% 9.9% 8.9% 9.6% 8.7% 9.4% 

two seniors 11.1% 11.3% 10.0% 11.5% 17.0% 10.1% 16.6% 12.8% 

other two person/no kids 18.8% 20.4% 19.4% 25.2% 23.3% 19.0% 22.6% 20.8% 

three+ person/no kids 6.1% 8.2% 7.0% 6.3% 5.3% 7.6% 6.2% 6.8% 

single adult with kids 2.1% 2.2% 1.9% 1.9% 1.4% 2.2% 1.7% 1.9% 

adults with kids under 5 8.2% 10.6% 9.8% 7.4% 4.1% 8.7% 5.2% 7.4% 

adults with kids under 16 13.0% 13.4% 13.8% 11.6% 8.4% 14.4% 9.8% 12.2% 

adults with kids all 16+ 5.3% 3.8% 4.7% 4.1% 3.3% 5.3% 3.4% 4.4% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 9: Household Type by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hhtype single worker 15.4% 10.3% 14.1% 15.9% 15.8% 13.9% 14.3% 14.1% 

single senior 9.2% 8.6% 8.8% 9.3% 11.3% 7.9% 11.3% 9.2% 

single non-worker 4.1% 3.7% 2.8% 4.0% 3.8% 3.3% 3.0% 3.2% 

single student .4%  .2% .2% .1% .2% .1% .2% 

two workers 11.1% 7.5% 9.6% 10.0% 11.1% 8.8% 8.7% 9.0% 

two seniors 5.4% 5.9% 5.2% 4.4% 8.4% 4.6% 8.5% 6.1% 

other two person/no kids 13.5% 15.1% 14.8% 16.9% 16.8% 14.2% 17.3% 15.3% 

three+ person/no kids 6.3% 9.6% 7.6% 7.3% 6.7% 8.6% 7.7% 8.1% 

single adult with kids 3.4% 2.9% 2.8% 3.6% 2.3% 3.3% 3.0% 3.1% 

adults with kids under 5 11.5% 15.7% 13.8% 11.6% 7.6% 12.4% 8.6% 11.2% 

adults with kids under 16 14.3% 17.0% 15.0% 12.8% 12.1% 16.8% 13.5% 15.3% 

adults with kids all 16+ 5.6% 3.8% 5.2% 4.0% 4.1% 6.0% 4.0% 5.1% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Tables 10 and 11: Observations by Own vs. Rent and Region:  The most striking thing here is not the difference between regions, but that 

the percent of renting households is more than twice as high after weighting is applied in Table 11.  Renting is noticeably less common in FL 

than in CA, although the percentages for Sacramento and Jacksonville are similar, in the middle range. 

Table 10: Own/Rent by Region (unweighted) 

% within region 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hownrent own 84.3% 81.0% 79.4% 88.8% 90.4% 79.8% 90.3% 84.4% 

rent 15.7% 19.0% 20.6% 11.2% 9.6% 20.2% 9.7% 15.6% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 11: Own/Rent by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hownrent own 64.2% 59.7% 56.4% 65.4% 70.0% 56.3% 70.0% 61.7% 

rent 35.8% 40.3% 43.6% 34.6% 30.0% 43.7% 30.0% 38.3% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

 

Tables 12 and 13: Observations by Residence Type and Region:   The fraction of households living in single family detached housing is 

highest in Sacramento, San Joaquin and lowest in San Diego. Weighting decreases this fraction for all regions.  Overall, this data item looks 

suspect, and will not be tested in the choice models in any case, as it is rarely available for travel demand forecasting models.  
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Table 12: Residence Type by Region (unweighted) 

% within region 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hrestype single family detached 82.0% 82.6% 69.9% 78.1% 69.8% 73.0% 70.0% 72.0% 

duplex/rowhouse 14.4% 13.1% 25.8% 13.4% 19.0% 22.7% 20.9% 21.5% 

apartment/condo 3.4% 4.2% 4.0% 8.2% 10.9% 3.9% 8.6% 6.1% 

mobile home .1%  .0% .1% .0% .1% .1% .1% 

dorm/rented room      .0%  .0% 

Other   .1%   .1% .1% .1% 

missing .1% .1% .1% .2% .2% .2% .2% .2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 13: Residence Type by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hrestype single family detached 71.3% 72.8% 56.2% 67.6% 63.0% 59.1% 61.3% 61.1% 

duplex/rowhouse 25.5% 23.2% 39.8% 26.0% 29.0% 37.4% 32.1% 34.1% 

apartment/condo 3.0% 3.9% 3.5% 6.4% 7.8% 3.2% 6.3% 4.5% 

mobile home .0%  .1% .1% .0% .0% .1% .0% 

dorm/rented room      .0%  .0% 

other   .3%   .2% .1% .1% 

missing .1% .0% .1% .1% .1% .2% .2% .2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Tables 14 and 15: Observations by Car Ownership and Region: This is the dependent variable for the auto ownership models. Weighting 

increases the number of 0-vehicle and 1-vehicle households substantially. The Florida regions have the most 1-car households—probably 

many of them senior households. Sacramento has the fewest  0-vehicle HH, and San Joaquin the most, although the difference is not large.   

Table 14: Car Ownership by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

cars no cars 3.4% 5.2% 4.9% 4.0% 5.3% 4.9% 4.5% 4.7% 

1 car 25.7% 27.7% 26.8% 27.3% 39.3% 26.4% 34.9% 30.2% 

2 cars 40.3% 39.2% 39.9% 43.3% 38.4% 40.6% 40.4% 40.3% 

3 cars 19.6% 18.3% 17.5% 17.8% 12.7% 17.9% 14.3% 16.4% 

4+ cars 11.0% 9.5% 10.9% 7.5% 4.3% 10.2% 6.0% 8.4% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 15: Car Ownership by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

cars no cars 5.4% 7.9% 6.3% 7.2% 6.3% 8.1% 6.7% 7.4% 

1 car 32.5% 32.6% 32.4% 36.9% 42.1% 31.5% 40.1% 34.9% 

2 cars 38.0% 35.4% 39.3% 39.5% 38.3% 37.5% 37.9% 37.7% 

3 cars 15.0% 15.8% 13.6% 10.2% 9.7% 14.4% 10.9% 13.1% 

4+ cars 9.1% 8.2% 8.5% 6.1% 3.5% 8.5% 4.4% 7.0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Tables 16 and 17: Observations by Income Group and Region:  Weighting shifts the incomes lower somewhat. Only 8 percent of 

household have missing income data, which is a fairly low percentage.  San Joaquin has the highest percentage of low-income households 

(almost 30% under $25,000 in Table 17), while Sacramento and San Diego have the highest percentages of high-income HH (about 20% over 

$100,000, similar to the Rest of CA).  The lower income in San Joaquin may help to explain its higher percentage of 0-vehicle HH, mentioned 

above. 

Table 16: Income Group by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

inccat $0 - 24,999 17.1% 22.4% 16.6% 18.2% 24.1% 17.6% 22.1% 19.5% 

$25,000 - 49,999 20.8% 26.7% 22.4% 23.3% 28.5% 21.4% 26.3% 23.8% 

$50,000 - 99,999 32.3% 27.3% 28.3% 29.9% 25.2% 27.1% 27.0% 27.4% 

$100,000 and over 23.6% 16.8% 25.3% 20.3% 13.0% 26.4% 15.1% 21.1% 

missing 6.2% 6.9% 7.4% 8.3% 9.1% 7.4% 9.5% 8.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 17: Income Group by Region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

inccat $0 - 24,999 23.0% 29.2% 22.6% 22.5% 24.6% 24.3% 25.4% 24.6% 

$25,000 - 49,999 22.7% 26.6% 24.6% 27.2% 29.7% 22.6% 26.5% 24.5% 

$50,000 - 99,999 30.3% 24.1% 26.9% 28.4% 25.3% 25.6% 26.2% 26.0% 

$100,000 and over 19.5% 13.6% 20.3% 15.3% 13.3% 21.5% 13.3% 18.1% 

missing 4.5% 6.4% 5.6% 6.7% 7.1% 6.0% 8.6% 6.8% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Tables 18 and 19: Regional Sample Means on Household Variables:  The relative mean values indicate several of the same things found 

by looking at the relative distributions: 

Sacramento and San Diego have the highest incomes, and San Joaquin the lowest. 

Sacramento has the highest car ownership, and Florida is lower than California, particularly Tampa. 

Tampa and the rest of FL (but not Jacksonville) have the fewest workers per HH and the most seniors per HH. 

San Joaquin has the most children per HH in all age categories, and Tampa the least. 

Table 18: Regional Sample Means (unweighted) 

StatisticsReportMean 

 
region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

Car ownership 2.16 2.05 2.10 2.00 1.74 2.08 1.85 1.99 

  Income (non-missing) 66,360 56,527 66,690 62,7666 52,380 67,013 55,723 61,859 

Household size  2.38 2.59 2.45 2.30 2.10 2.47 2.19 2.34 

 Full time workers .71 .70 .72 .69 .53 .74 .60 .67 

Part time workers .22 .20 .21 .16 .15 .21 .16 .19 

University students .04 .05 .04 .03 .02 .04 .02 .03 

Other adults age 65+ .47 .49 .48 .51 .69 .46 .66 .55 

Other adults age <65 .47 .54 .48 .50 .42 .50 .42 .46 

Children age 16+ .07 .07 .07 .06 .05 .08 .05 .06 

Children age 5-15 .30 .40 .32 .25 .18 .32 .21 .27 

Children age 0-4 .11 .15 .13 .10 .06 .12 .07 .10 
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Table 19: Regional Sample Means (weighted) 

Statistics=Mean 

 
region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

Car ownership 1.95 1.89 1.92 1.73 1.63 1.89 1.68 1.82 

  Income (non-missing) 59,610 50,560 59,586 55,653 52,007 59,731 52,209 56,720 

Household size 2.48 2.94 2.62 2.39 2.28 2.67 2.36 2.55 

 Full time workers .81 .79 .83 .80 .75 .85 .75 .81 

Part time workers .27 .25 .25 .18 .20 .24 .21 .23 

University students .04 .05 .05 .04 .02 .06 .03 .05 

Other adults age 65+ .31 .33 .31 .30 .42 .30 .44 .35 

Other adults age <65 .45 .60 .51 .50 .41 .55 .43 .50 

Children age 16+ .08 .10 .08 .08 .07 .10 .06 .08 

Children age 5-15 .36 .58 .40 .31 .29 .42 .31 .38 

Children age 0-4 .17 .22 .18 .17 .11 .17 .12 .15 

 

Person Variables 

Tables 20-22: Observations by Person Type and Region:  Now, we look at observations at the person level rather than the household level.  

Person type is an 8-category variable, created based on age, student status, and employment status. It is one of the key variables used for 

segmentation in the travel models.  

Tables 20 and 21 show the same results we would expect from the preceding discussion, with Tampa having the most seniors and seniors 

being weighted down in all of the regions, and San Joaquin having the most children and Tampa the fewest.  NHTS also provides a separate 

person weight, which corrects for that fact that there are missing person records in some households.  Because children under age 5 did not fill 

in travel diaries, these children were removed from the NHTS weighting process (and later data sets), so have person weights of 0. Comparing 



Making advanced travel forecasting models affordable through model transferability 
A Research Project Sponsored by FHWA under the Broad Agency Announcement DTFH61-10-R-00013 

Final Report  
 

 

John L. Bowman, Ph. D., Mark Bradley and Joe Castiglione September 7, 2013 

page 93 

the weights between Tables 21 and 22, all person types were weighted upward somewhat in the person-level corrections except for adults age 

65+ (seniors), who are weighted downward even further (because non-response rates were lowest in that group). 

NOTE: NHTS provided us with age information on all of the persons who are missing from the person (and trip) data files because they did 

not provide travel-day data.  That additional information was used to correct the household composition and type variables reported above. 

However, they did not provide employment status or student status data on those missing persons, so it is not possible to always have a 

correct count of the number of workers or students in each household. 

Table 20: Person Type by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pptyp full time worker 32.2% 29.8% 32.4% 32.7% 27.2% 32.8% 29.4% 31.2% 

part time worker 9.8% 8.3% 9.3% 7.5% 7.7% 9.4% 8.0% 8.8% 

other adult age 65+ 20.4% 19.9% 20.2% 22.9% 34.0% 19.6% 31.0% 24.3% 

other adult age<65 16.3% 16.6% 15.7% 18.4% 17.5% 15.9% 15.8% 16.1% 

college student 1.8% 1.9% 1.8% 1.3% .9% 2.0% 1.2% 1.6% 

child age 16+ 2.7% 2.2% 2.5% 2.0% 2.1% 2.8% 1.9% 2.4% 

child age 5-15 11.8% 14.7% 12.3% 10.3% 7.8% 12.2% 9.3% 11.1% 

child age 0-4 5.1% 6.5% 5.8% 5.0% 2.9% 5.2% 3.4% 4.6% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 21: Person Type by Region (weighted by Household Weight) 

% within region 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pptyp full time worker 35.4% 30.8% 35.4% 36.7% 35.7% 35.7% 35.1% 35.4% 

part time worker 11.7% 9.8% 10.8% 8.5% 9.6% 10.3% 9.7% 10.1% 

other adult age 65+ 13.2% 12.0% 12.5% 12.9% 19.3% 11.7% 19.2% 14.3% 

other adult age<65 14.4% 15.7% 14.4% 17.0% 14.5% 15.3% 13.9% 14.9% 

college student 2.0% 2.0% 2.3% 1.7% 1.2% 2.4% 1.5% 2.0% 

child age 16+ 2.7% 2.7% 2.6% 3.0% 2.6% 3.1% 2.1% 2.8% 

child age 5-15 13.1% 18.4% 14.2% 12.4% 11.8% 14.3% 13.2% 13.9% 

child age 0-4 7.4% 8.5% 7.8% 7.8% 5.3% 7.1% 5.4% 6.7% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 22: Person Type by Region (weighted by Person Weight) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pptyp full time worker 39.2% 34.7% 39.1% 36.8% 37.5% 39.1% 37.5% 38.4% 

part time worker 13.5% 11.3% 12.2% 9.2% 9.5% 11.2% 9.8% 10.8% 

other adult age 65+ 10.7% 9.5% 9.7% 9.0% 14.8% 9.4% 14.4% 11.1% 

other adult age<65 15.1% 16.8% 15.5% 16.8% 14.9% 16.4% 14.4% 15.7% 

college student 3.5% 3.5% 4.1% 2.9% 2.3% 3.7% 2.6% 3.3% 

child age 16+ 3.3% 3.2% 3.3% 3.6% 3.4% 3.8% 2.6% 3.4% 

child age 5-15 14.7% 20.9% 16.0% 13.7% 13.3% 16.3% 13.8% 15.5% 

child age 0-4         

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Tables 23-24: Observations by Gender and Region:  There are more males in the sample than females in all regions, although most of that 

difference disappears with person weighting in Table 24. Children under age 5 in the CA data are missing gender information, but they also 

have a person weight of 0, so are not included in the weighted table.  

Table 23: Gender by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pgend missing 5.1%* 6.5%* 5.8%*   5.2%*  3.2%* 

male 44.4% 44.2% 44.2% 45.6% 46.2% 44.8% 46.3% 45.2% 

female 50.5% 49.2% 50.0% 54.4% 53.8% 50.0% 53.7% 51.5% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

* all cases of missing data on gender are for children under age 5, for whom no travel diary data was collected 

 

Table 24: Gender by Region (weighted by Person Weight) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pgend male 49.7% 50.4% 50.2% 49.1% 49.1% 49.9% 49.2% 49.7% 

female 50.3% 49.6% 49.8% 50.9% 50.9% 50.1% 50.8% 50.3% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Person-Day Travel Variables 

We now move on to look at summary variables of the respondents’ travel on the survey diary day. Some models in Activity-Based model 

systems operate at the person-day level, so it is useful to look at the data at this level.  Because we are looking at this data mainly in terms of 

estimating the models and less to find differences between the regions, all of the tables in this section are unweighted.  

Table 25: Mean number of tours/person by purpose and day of week: This table shows why it is not a good idea to group data from 

weekends and weekdays together in a model of travel patterns. Saturday and Sunday are clearly different from the other days, with only about 

20% as many work or school or medical tours, and also fewer serve passenger (pick up or drop off) tours, but more tours for all other 

purposes (particularly on Sunday for “personal business”, which includes going to church).  In contrast, there are no large differences between 

the tour rates for weekdays Monday through Friday. 

 Table 25: Mean number of tours/person by purpose and day of week (unweighted) 

Statistics=Mean 

 
dow 

Sunday Monday Tuesday Wednesday Thursday Friday Saturday Total 

Home-based work  .06 .30 .32 .32 .31 .30 .09 .24 

Home-based school .02 .11 .13 .13 .12 .10 .01 .09 

Home-based serve passenger .08 .14 .16 .15 .14 .15 .09 .13 

Home-based personal-business .25 .09 .11 .11 .10 .09 .12 .12 

Home-based shopping .29 .27 .26 .25 .24 .28 .40 .28 

Home-based meal .11 .06 .07 .07 .08 .10 .13 .09 

Home-based social visit .13 .07 .07 .08 .10 .09 .15 .10 

Home-based recreation .17 .17 .16 .16 .15 .17 .21 .17 

Home-based medical .01 .07 .07 .07 .06 .05 .01 .05 

Total home-based tours 1.13 1.28 1.34 1.33 1.30 1.34 1.24 1.28 

Work-based subtours .00 .05 .05 .06 .05 .05 .01 .04 
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For the remaining tables in this appendix, we have excluded all weekend travel days, and used only the weekday travel information that will 

be used for model estimation. 

Tables 26 and 27: Weekday travel day begins and ends at home by Region and Day of Week: Most applied models of day activity 

patterns assume that a person begins and ends their day at home. Yet, in reality that is not always the case.  In the NHTS data, about 93% of 

the travel days begin and end at home. There is very little difference by region, with the lowest fraction is in San Joaquin (91.7%) and the 

highest in Jacksonville (93.4%).   The differences are somewhat larger by day of week, with Friday having a larger percentage of travel days 

ending away from home (e.g. people going away for the weekend). 

Table 26: Weekday travel day begins and ends at home by Region (unweighted) 

% within region 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

behome does not begin or end at 

home 

2.1% 2.4% 1.7% 2.1% 1.6% 2.1% 2.2% 2.1% 

begins away from home 1.8% 2.7% 1.8% 1.3% 1.4% 2.1% 1.5% 1.8% 

ends away from home 3.4% 3.2% 3.4% 3.2% 3.9% 3.1% 2.9% 3.2% 

begins and ends at home 92.6% 91.7% 93.0% 93.4% 93.1% 92.6% 93.3% 92.9% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 27: Weekday travel day begins and ends at home by Day of Week (unweighted) 

% within dow 

 
Dow 

Total Monday Tuesday Wednesday Thursday Friday 

behome does not begin or end at 

home 

1.9% 2.1% 2.1% 1.8% 2.4% 2.1% 

begins away from home 2.1% 1.6% 1.5% 1.7% 2.3% 1.8% 

ends away from home 2.5% 2.5% 2.6% 3.0% 5.3% 3.2% 

begins and ends at home 93.5% 93.8% 93.8% 93.5% 90.1% 92.9% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 28: Person-days with weekday travel days, begin and end at home: For the remaining tables in this section, we include only travel 

days that begin and end at home, as these will be the sample for the person-day-level models that we test. This table shows the unweighted 

sample size for those models by person type and region.  As is typical, the samples for college students and high school students are the 

“thinnest”, so we may not be able to tell much about the transferability of models for those groups.   

Table 28: Person-days with full weekday travel diaries, begin and end at home (unweighted) 

Count 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pptyp full time worker 621 447 2848 531 844 6199 4714 16204 

part time worker 179 139 827 117 244 1813 1314 4633 

other adult age 65+ 390 310 1854 399 1132 3838 5204 13127 

other adult age<65 304 252 1417 294 575 3056 2615 8513 

college student 29 30 153 20 20 377 186 815 

child age 16+ 50 34 225 34 71 520 312 1246 

child age 5-15 215 229 1100 178 235 2337 1464 5758 

Total 1788 1441 8424 1573 3121 18140 15809 50296 

 

Tables 29 and 30: Weekday travel days by response type and region and person type: Not all travel diary information is provided from a 

diary by the person who made the trips. Sometimes travel is reported by proxy by another household member, and sometimes the data is 

reported only by recall when the person did not use travel diary. Both of these differences can affect the completeness and quality of the travel 

data. The tables show that there are 54% of cases where the person used the diary and reported their own travel to the interviewer. There are 

18% of cases where the person used the diary, and then another person reported that data by proxy, and 19% of cases where a person reported 

their own travel by recall (and not from the diary). The most suspect cases are the 9% where data is reported by recall and by proxy—one 

person reporting from memory what another person did on the travel day.   Table 30 shows the percentages by person type. Children under 16 

generally did not fill out travel   diaries, and high-school children used the diary in about one half of cases. For both groups, in about one third 

of cases their travel was reported by proxy.  There is less difference among the adult types.  Seniors used proxy more often, perhaps because 
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they spent the travel day together so that they knew what the other person did. The differences by region in Table 29 are less pronounced.  

San Joaquin has slightly higher percentages on all the proxy and recall categories—probably because this region has the most children. 

Table 29: Response type by Region (unweighted) 

% within region 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

rtype used diary, no proxy 53.7% 49.1% 55.0% 55.4% 58.4% 52.1% 55.5% 54.1% 

used diary, by proxy 17.7% 18.9% 16.6% 17.5% 17.4% 18.1% 18.2% 17.8% 

did not use diary, no proxy 19.3% 21.2% 19.3% 19.1% 16.2% 20.1% 17.5% 18.9% 

did not use diary, by proxy 9.3% 10.8% 9.2% 7.9% 8.0% 9.6% 8.8% 9.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

Table 30: Response type by Person Type (unweighted) 

% within pptyp 

 

pptyp Total 

full time 

worker 

part time 

worker 

other adult 

age 65+ 

other adult 

age<65 

college 

student 

child age 

16+ 

child age 5-

15  

rtype used diary, no proxy 65.3% 69.1% 57.4% 60.0% 48.7% 30.5% .3% 54.1% 

used diary, by proxy 15.7% 16.4% 24.3% 24.2% 20.2% 19.0% .2% 17.8% 

did not use diary, no proxy 15.1% 11.1% 9.4% 9.5% 24.5% 35.0% 67.2% 18.9% 

did not use diary, by proxy 4.0% 3.4% 8.9% 6.3% 6.5% 15.5% 32.3% 9.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 31: Mean reported tours and stops per person-day by response type (full time workers only):   One interesting question is 

whether the use of proxy and recall influences the data quality. In Table 31, we control by person-type by only including the person-days of 

full time workers.  The results show a clear difference in the number of tours and stops reported for each response type, with fewer trips when 

reported by proxy, particularly in combination with not using the diary.  The causality of this finding is not obvious—it could be that people 

with simpler travel patterns (or who stayed home all day) had less need to use the diary, or that it was simpler to report them by proxy.  

However, there were very few full time workers who stayed home all day on the diary day, so it is likely that there is also some effect of the 

response type on the completeness of the data. We will control for these differences when estimating the models. 

Table 31: Mean reported tours and stops per person-day by response type (full time workers only) (unweighted) 

Statistics=Mean,pptyp=full time worker 

 

rtype 

used diary, no 

proxy 

used diary, by 

proxy 

did not use 

diary, no proxy 

did not use 

diary, by proxy Total 

Home-based work  .85 .71 .86 .61 .82 

Home-based school .01 .01 .01 .00 .01 

Home-based serve passenger .13 .12 .09 .06 .12 

Home-based personal-business .08 .06 .05 .04 .07 

Home-based shopping .18 .14 .13 .09 .17 

Home-based meal .07 .05 .05 .03 .06 

Home-based social visit .05 .04 .05 .03 .05 

Home-based recreation .14 .10 .11 .05 .13 

Home-based medical .03 .02 .02 .02 .03 

Total home-based tours 1.55 1.26 1.38 .93 1.45 

Work-based subtours .18 .10 .14 .04 .16 

Intermediate stops on tours 1.49 1.08 1.06 .48 1.32 
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Table 32 and 33: Number of home-based tours during travel day by person type and region: These tables show the distribution of the 

number of home-based trip chains, each with two or more trips, are made during the day. People with 0 tours did not leave home during the 

diary day. By person type, the number of “stay at home” days is highest for seniors (25%) and other non-working adults (22%) and lowest for 

full-time workers (5%). Multiple tour making (2+ tours in the day) is highest for part time workers and college students.  The differences by 

region in Table 33 are much smaller.   In general, the percentage of “stay at home” days is somewhat higher for FL than for CA.  

Table 32: Home-based tours during travel day by person type (unweighted) 

% within pptyp 

 

pptyp 

Total full time worker part time worker 

other adult age 

65+ 

other adult 

age<65 college student child age 16+ child age 5-15 

Hbtours 0 5.4% 8.3% 25.1% 21.8% 9.1% 10.1% 10.9% 14.4% 

1 57.2% 42.6% 43.4% 38.1% 47.0% 53.0% 57.2% 48.7% 

2 27.5% 30.4% 21.7% 23.2% 30.9% 28.3% 26.2% 25.5% 

3 7.2% 12.8% 7.2% 11.2% 9.9% 7.6% 5.0% 8.2% 

4 2.0% 4.6% 2.0% 3.7% 2.7% .6% .7% 2.4% 

5 .5% 1.0% .4% 1.4% .4% .3% .0% .6% 

6 .1% .2% .1% .4%    .2% 

7 .0% .1% .0% .1%    .0% 

8 .0% .0%  .0%    .0% 

10   .0%     .0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 33: Home-based tours during travel day by region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

hbtours 0 13.1% 14.3% 13.3% 15.5% 16.0% 13.7% 15.5% 14.4% 

1 48.2% 50.0% 47.9% 48.0% 47.8% 49.0% 49.1% 48.7% 

2 26.2% 24.1% 27.3% 24.9% 24.4% 25.3% 24.9% 25.5% 

3 8.6% 7.9% 8.4% 9.0% 8.5% 8.5% 7.6% 8.2% 

4 3.2% 2.8% 2.3% 2.0% 2.4% 2.5% 2.1% 2.4% 

5 .6% .5% .7% .5% .6% .6% .5% .6% 

6 .1% .2% .1% .1% .1% .2% .2% .2% 

7  .1% .0%  .2% .0% .1% .0% 

8   .0%   .0% .0% .0% 

10       .0% .0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 34 and Figure 1: Mean reported tours and stops per person-day by person type:  The differences in tours by purpose by the person 

types are logical, with students mainly making school tours, workers mainly making work tours, and other adults mainly making shopping 

and other discretionary tours. Serve passenger tours are highest for part time workers and younger non-working adults. Workers tend to make 

the most “extra” intermediate stops on tours (1.32 per day), while children make the fewest stops. 

  

Table 34: Mean reported tours and stops per person-day by person type (unweighted) 

Statistics=Mean 

 

pptyp 

full time 

worker 

part time 

worker 

other adult 

age 65+ 

other adult 

age<65 

college 

student 

child age 

16+ 

child age 

5-15 Total 

Home-based work  .82 .55 .01 .03 .11 .08 .00 .33 

Home-based school .01 .04 .01 .03 .64 .72 .69 .12 

Home-based serve passenger .12 .25 .09 .33 .17 .05 .08 .15 

Home-based personal-business .07 .12 .14 .14 .08 .06 .06 .10 

Home-based shopping .17 .31 .40 .40 .20 .12 .10 .27 

Home-based meal .06 .08 .11 .09 .07 .05 .05 .08 

Home-based social visit .05 .08 .11 .11 .09 .10 .10 .09 

Home-based recreation .13 .18 .19 .20 .13 .17 .17 .17 

Home-based medical .03 .07 .13 .10 .03 .03 .02 .07 

Total home-based tours 1.45 1.68 1.20 1.43 1.51 1.37 1.27 1.38 

Work-based subtours .16 .04 .00 .00 .00 .00 .00 .05 

Intermediate stops on tours 1.32 1.32 .92 1.07 .91 .72 .64 1.07 
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Figure 1: Mean reported tours and stops per person-day by person type (unweighted) 
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Table 35 and Figure 2:  Mean reported tours and stops per person-day by region:  The differences across regions are much smaller than 

across person types, and are likely due to differences in person-type distribution across the regions—as indicated by more school tours in San 

Joaquin (by children) and more shopping tours in Tampa (by seniors).  

 

Table 35: Mean reported tours and stops per person-day by region (unweighted) 

Statistics=Mean 

 
pptyp 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

Home-based work  .35 .34 .34 .31 .28 .34 .30 .33 

Home-based school .14 .16 .14 .11 .08 .14 .09 .12 

Home-based serve passenger .17 .18 .17 .14 .12 .17 .12 .15 

Home-based personal-business .10 .08 .09 .12 .12 .10 .11 .10 

Home-based shopping .27 .27 .27 .28 .30 .26 .28 .27 

Home-based meal .08 .07 .08 .08 .10 .08 .08 .08 

Home-based social visit .08 .10 .08 .09 .09 .08 .09 .09 

Home-based recreation .19 .12 .19 .16 .18 .16 .16 .17 

Home-based medical .05 .06 .06 .07 .09 .06 .09 .07 

Total home-based tours 1.43 1.38 1.41 1.36 1.36 1.40 1.34 1.38 

Work-based subtours .06 .05 .06 .05 .04 .06 .05 .05 

Intermediate stops on tours 1.12 1.09 1.07 1.08 1.03 1.08 1.06 1.07 
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Figure 2: Mean reported tours and stops per person-day by region (unweighted) 
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Tour variables 

Tables 36 and 37: Weekday tour main purpose by region:  Table 36 shows the absolute number of weekday tour records by main purpose 

in the different regions.  These will be used as the basis for tour-level model estimation.  The lowest number of tours is for medical visits in 

the smaller regions, while the largest numbers of home based tours are for work and shopping.  The distribution of tours by purpose shown in 

Table 37 shows very little difference across the regions.  One noticeable difference is a low percentage of recreation tours and a high 

percentage of school  tours in San Joaquin,  both perhaps due to a higher percentage of children.  

Table 36: Weekday Tour Purpose by Region (unweighted) 

Count 

 
Region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pdpurp Work 656 511 2993 519 918 6608 5051 17256 

School 248 233 1210 177 255 2639 1463 6225 

serve passenger 313 287 1499 227 398 3285 2043 8052 

personal business 186 120 819 198 389 1953 1856 5521 

shopping 525 420 2381 460 993 5037 4760 14576 

Meal 190 135 864 174 350 1896 1643 5252 

social visit 154 151 727 143 303 1458 1544 4480 

recreation 350 180 1658 264 575 3135 2666 8828 

Medical 85 88 506 118 292 1152 1427 3668 

Total 2707 2125 12657 2280 4473 27163 22453 73858 
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Table 37: Weekday Tour Purpose by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

pdpurp Work 24.2% 24.0% 23.6% 22.8% 20.5% 24.3% 22.5% 23.4% 

School 9.2% 11.0% 9.6% 7.8% 5.7% 9.7% 6.5% 8.4% 

serve passenger 11.6% 13.5% 11.8% 10.0% 8.9% 12.1% 9.1% 10.9% 

personal business 6.9% 5.6% 6.5% 8.7% 8.7% 7.2% 8.3% 7.5% 

shopping 19.4% 19.8% 18.8% 20.2% 22.2% 18.5% 21.2% 19.7% 

Meal 7.0% 6.4% 6.8% 7.6% 7.8% 7.0% 7.3% 7.1% 

social visit 5.7% 7.1% 5.7% 6.3% 6.8% 5.4% 6.9% 6.1% 

recreation 12.9% 8.5% 13.1% 11.6% 12.9% 11.5% 11.9% 12.0% 

Medical 3.1% 4.1% 4.0% 5.2% 6.5% 4.2% 6.4% 5.0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

Tables 38-40: Weekday tour main mode by region:  Here we look at the main mode used on a tour.  The main mode is specified according 

to a hierarchy, with walk the lowest and “other” the highest, with the order of hierarchy as shown in the tables, from bottom to top. So, a walk 

trip can be part of any tour, but an “other mode” trip can only be part of an “other mode” tour.  There are very few transit tours, particularly 

for drive-access to transit, and particularly in the regions other than San Diego. There are very few bicycle or school bus tours in those regions 

as well.   Overall, almost 85% of tours are by car, roughly half of those SOV and half HOV. There is a somewhat higher percentage of walk 

trips in CA and a higher percentage of school bus trips in FL, but overall the differences are quite small.    

Table 40 shows that most transit tours use local bus, with some by commuter bus, commuter rail and light rail.  The accuracy of the NHTS 

submode coding is questionable, as there should be many more light rail tours relative to commuter rail in the Sacramento region.  
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It is clear that we will not be able to test transferability of models across regions with respect to transit mode choice, and probably not for bike 

and school bus mode choice. We will be able to say more about walk mode choice and car occupancy choice. 

Table 38: Weekday Tour Main Mode by Region (unweighted) 

Count 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

tmodetp Walk 300 228 1418 213 441 3259 2008 7867 

Bike 56 25 137 39 53 378 307 995 

drive alone 1075 806 5126 1001 1943 10703 9729 30383 

shared ride 2 631 536 3011 545 1227 6549 6065 18564 

shared ride 3+ 541 455 2535 398 662 5103 3581 13275 

walk to transit 25 23 190 7 17 569 144 975 

drive to transit 14 3 13 1 1 70 21 123 

school bus 30 22 106 60 76 241 392 927 

Others 35 27 121 16 53 291 206 749 

Total 2707 2125 12657 2280 4473 27163 22453 73858 
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Table 39: Weekday Tour Main Mode by Region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

tmodetp Walk 11.1% 10.7% 11.2% 9.3% 9.9% 12.0% 8.9% 10.7% 

Bike 2.1% 1.2% 1.1% 1.7% 1.2% 1.4% 1.4% 1.3% 

drive alone 39.7% 37.9% 40.5% 43.9% 43.4% 39.4% 43.3% 41.1% 

shared ride 2 23.3% 25.2% 23.8% 23.9% 27.4% 24.1% 27.0% 25.1% 

shared ride 3+ 20.0% 21.4% 20.0% 17.5% 14.8% 18.8% 15.9% 18.0% 

walk to transit .9% 1.1% 1.5% .3% .4% 2.1% .6% 1.3% 

drive to transit .5% .1% .1% .0% .0% .3% .1% .2% 

school bus 1.1% 1.0% .8% 2.6% 1.7% .9% 1.7% 1.3% 

Others 1.3% 1.3% 1.0% .7% 1.2% 1.1% .9% 1.0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 40: Weekday Tour Transit Sub-mode by Region (unweighted) 

Count 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

tpathtp n/a 2668 2099 12454 2272 4455 26524 22288 72760 

local bus 19 18 146 7 17 451 115 773 

light rail 2 0 24 0 1 71 13 111 

commuter bus 7 7 22 0 0 70 23 129 

commuter rail 10 1 10 1 0 46 14 82 

Ferry 1 0 1 0 0 1 0 3 

Total 2707 2125 12657 2280 4473 27163 22453 73858 
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Table 41 and Figure 3: Mean number of trips per weekday tour by main purpose and region: Each tour has at least two trips, and may 

have more if there intermediate stops made along the way. The mean number of stops varies mainly by purpose, with work and serve 

passenger tours having the most (about 3.0 trips per tour), and meal and recreation tours having the least (about 2.3 trips per tour).  There is 

no clear pattern by region, with all regions having an average very close to 2.7 trips per tour. 

  

Table 41: Mean number of trips per weekday tour by Tour Main Purpose and Region (unweighted) 

Pdpurp region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

dimension1 

Work 2.9726 2.9569 3.0057 3.0270 2.9303 2.9660 2.9547 2.9695 

School 2.5645 2.4335 2.5678 2.6893 2.3961 2.5873 2.6152 2.5785 

serve passenger 2.9872 2.9756 2.9226 2.9427 3.1181 2.9431 3.1669 3.0076 

personal business 2.5323 2.9333 2.4921 2.3788 2.4833 2.5765 2.5178 2.5369 

Shopping 2.8667 2.6476 2.7564 2.9065 2.7986 2.7272 2.8256 2.7774 

Meal 2.3632 2.6222 2.3785 2.2874 2.5143 2.3766 2.4108 2.3997 

social visit 2.5649 2.5762 2.4209 2.3846 2.5710 2.5316 2.4333 2.4804 

Recreation 2.2229 2.2056 2.2720 2.2235 2.2139 2.2769 2.2772 2.2668 

Medical 2.7294 2.8409 2.7925 2.9746 2.9897 2.8229 2.9720 2.8931 

Total 2.7156 2.7228 2.6928 2.7193 2.7033 2.7041 2.7334 2.7124 
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Figure 3: Mean number of trips per weekday tour by Tour Main Purpose and Region (unweighted) 
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Table 42 and Figure 4: Mean number of trips per weekday tour by main mode and region:  There are significant differences in trips per 

tour by mode, with walk and bike tours having less than 2.2 trips, on average, and shared ride tours having almost 3.0 trips per tour. There are 

larger variations in the transit, school bus and other modes by region, perhaps due to the small sample sizes.   It is a common finding that auto 

tours are most conducive to making extra stops, particularly for picking up and dropping off passengers.  

Table 42:  Mean number of trips per weekday tour by Tour Main Mode and Region (unweighted) 

Tmodetp region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

dimension1 

Walk 2.1300 2.0658 2.0472 2.0329 2.0295 2.0770 2.0403 2.0601 

Bike 2.1964 2.0400 2.2044 2.2564 2.0377 2.1931 2.1531 2.1729 

drive alone 2.6428 2.7159 2.6908 2.6813 2.6547 2.6789 2.6764 2.6783 

shared ride 2 2.8399 2.8116 2.7977 2.9138 2.9470 2.8484 2.9334 2.8750 

shared ride 3+ 2.9963 3.0374 2.9314 2.9598 2.9154 2.9445 2.9863 2.9576 

walk to transit 3.1200 2.3043 2.6579 2.4286 3.0588 2.8348 2.7083 2.7774 

drive to transit 2.2143 2.3333 2.5385 3.0000 3.0000 2.7714 2.9048 2.7561 

school bus 2.8000 2.2727 2.8302 2.7333 2.3026 2.6639 2.5765 2.6160 

Others 3.2571 2.5926 3.0248 2.4375 2.8302 3.1340 2.8544 2.9893 

Total 2.7156 2.7228 2.6928 2.7193 2.7033 2.7041 2.7334 2.7124 
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Figure 4:  Mean number of trips per weekday tour by Tour Main Mode and Region (unweighted) 
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Trip variables 

Tables 43 and 44 and Figures 5 and 6: Observed weekday trip distribution by hour of day and region: The time of day models at the 

tour and trip levels are based on the departure times of trips during the day.  These tables and graphs show the departure time distribution 

across the day, with both weighted and unweighted tables. (NHTS trip-level weights are used for the weighted tables.)  San Joaquin and the 

Rest of CA show the most pronounced peaking in the AM and PM peaks, with Tampa showing the least peaking.  These differences may be 

due to a different mix of trip and tour purposes, arising from the different person types in the regions. Jacksonville and Sacramento show the 

most pronounced midday peak at around noon.  The use of weighting does not change the shape or ordering of the curves noticeably between 

Figures 5 and 6. 

Table 43: Observed weekday trip distribution by hour of day and region (unweighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

xhour 4 am .1% .1% .0% .3% .1% .1% .0% .1% 

5 am .6% .6% .6% .5% .4% .5% .4% .5% 

6 am 2.1% 1.8% 1.6% 2.2% 1.3% 1.5% 1.5% 1.6% 

7 am 4.3% 4.7% 5.3% 4.9% 5.0% 4.5% 4.6% 4.7% 

8 am 7.3% 8.8% 7.5% 6.8% 5.7% 8.4% 6.6% 7.5% 

9 am 5.9% 5.1% 5.8% 5.6% 5.9% 5.5% 6.0% 5.8% 

10 am 5.5% 5.5% 5.7% 5.8% 7.2% 5.5% 6.3% 5.9% 

11 am 6.8% 5.9% 6.2% 5.9% 7.6% 6.1% 7.1% 6.5% 

12 pm 7.8% 7.5% 7.5% 8.6% 8.1% 7.5% 7.9% 7.7% 

1 pm 6.9% 6.7% 7.5% 7.3% 7.9% 7.5% 7.6% 7.5% 

2 pm 7.6% 7.3% 7.1% 6.9% 7.4% 7.3% 7.8% 7.4% 

3 pm 9.2% 10.2% 9.0% 8.5% 8.0% 8.9% 7.9% 8.6% 

4 pm 8.0% 8.6% 8.5% 8.7% 7.4% 8.0% 8.0% 8.1% 
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5 pm 8.3% 8.0% 7.9% 7.3% 7.9% 7.8% 8.0% 7.9% 

6 pm 6.6% 6.8% 6.9% 7.2% 6.8% 7.2% 7.0% 7.0% 

7 pm 5.1% 4.4% 5.1% 5.4% 5.1% 5.3% 5.1% 5.2% 

8 pm 3.5% 3.1% 3.1% 4.1% 3.4% 3.3% 3.5% 3.4% 

9 pm 2.8% 2.7% 2.3% 2.2% 2.5% 2.4% 2.3% 2.4% 

10 pm 1.0% 1.2% 1.4% 1.2% 1.2% 1.5% 1.4% 1.4% 

11 pm .6% .5% .6% .6% .6% .7% .6% .6% 

12 am .1% .2% .1% .1% .1% .1% .1% .1% 

1 am .1% .0% .1% .0% .1% .0% .0% .1% 

2 am .1% .1% .1% .1% .0% .1% .1% .1% 

3 am .0% .1% .0% .0% .0% .0% .0% .0% 

4 am  .1% .0% .0% .0% .0% .0% .0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

Table 44: Observed weekday trip distribution by hour of day and region (weighted) 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

xhour 4 am .1% .1% .0% .2% .1% .1% .1% .1% 

5 am .8% .7% .7% .4% .6% .6% .5% .6% 

6 am 2.3% 2.4% 1.9% 2.8% 1.5% 1.8% 1.8% 1.9% 

7 am 5.3% 5.4% 6.2% 6.0% 6.2% 5.2% 5.9% 5.5% 

8 am 7.9% 9.7% 8.1% 7.5% 7.0% 9.6% 8.1% 8.9% 

9 am 5.6% 4.9% 5.3% 5.2% 5.9% 5.1% 5.9% 5.3% 
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10 am 4.4% 4.4% 4.7% 4.4% 5.4% 4.6% 5.0% 4.7% 

11 am 5.6% 4.9% 5.0% 4.9% 5.6% 5.1% 5.3% 5.2% 

12 pm 7.2% 6.3% 6.7% 7.4% 6.4% 6.3% 6.6% 6.5% 

1 pm 6.1% 5.8% 6.7% 6.1% 6.9% 6.8% 6.5% 6.6% 

2 pm 6.8% 7.1% 6.4% 6.3% 6.5% 6.7% 6.7% 6.7% 

3 pm 9.2% 10.0% 9.1% 9.0% 7.3% 8.8% 7.8% 8.6% 

4 pm 8.4% 9.0% 8.8% 8.6% 7.3% 8.1% 7.6% 8.0% 

5 pm 8.6% 8.0% 8.1% 7.7% 9.6% 8.0% 8.7% 8.3% 

6 pm 6.4% 7.7% 7.0% 7.8% 8.1% 7.7% 7.6% 7.6% 

7 pm 5.7% 4.7% 5.7% 6.1% 5.6% 6.0% 5.9% 5.9% 

8 pm 3.7% 3.5% 3.4% 3.9% 4.3% 3.9% 4.1% 3.9% 

9 pm 3.1% 2.9% 2.7% 2.9% 3.1% 2.7% 2.6% 2.8% 

10 pm 1.4% 1.5% 1.8% 1.6% 1.5% 1.8% 1.8% 1.7% 

11 pm .8% .7% .9% 1.1% .9% .8% .9% .9% 

12 am .2% .2% .2% .1% .1% .1% .3% .2% 

1 am .1% .0% .2% .0% .1% .1% .1% .1% 

2 am .2% .1% .1% .1% .1% .1% .1% .1% 

3 am .1% .1% .1% .0% .0% .1% .1% .1% 

4 am  .0% .0% .0% .0% .0% .1% .0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Figure 5: Observed weekday trip distribution by hour of day and region (unweighted) 

 

Figure 6: Observed weekday trip distribution by hour of day and region (weighted) 
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Tables 45 and 46 and Figures 7 and 8: Observed weekday trip distribution by hour of day and trip destination purpose: The most 

pronounced differences in time of day are related to trip purpose, as one would expect. Trips to school have a very pronounced peak at around 

8 AM, while trips to work and for serve passenger have a somewhat smaller peak at that same hour. Trips to meals show a peak at the lunch 

hour and a smaller one at the dinner hour. Trips to medical and shopping destinations are highest in the midday, while trips for the other 

purposes (recreation, social visits, personal business, and returning home, are most common in the early evening hours.  Again, the use of trip 

weights does not change the picture substantially.  

Table 45: Observed weekday trip distribution by hour of day and destination purpose (unweighted) 

 

 

home work school 

serve 

passenger 

personal 

business shopping meal social visit recreation medical Total 

xhour 4 am .0% .3%  .0% .1% .0% .0% .0% .1%  .1% 

5 am .1% 2.3% .1% .4% .3% .1% .2% .2% 1.2% .2% .5% 

6 am .6% 6.5% 1.1% 1.4% 1.7% .4% .9% .6% 2.8% .7% 1.6% 

7 am 1.3% 15.1% 23.7% 8.8% 4.2% 1.0% 2.6% 1.6% 4.9% 2.4% 4.7% 

8 am 2.6% 17.4% 42.5% 17.5% 6.6% 2.4% 3.3% 3.5% 6.6% 8.4% 7.5% 

9 am 2.8% 10.2% 10.7% 6.6% 7.9% 5.5% 3.8% 6.1% 7.7% 12.8% 5.8% 

10 am 3.4% 6.2% 2.6% 3.5% 9.8% 9.6% 3.5% 7.7% 6.5% 15.0% 5.9% 

11 am 4.8% 4.6% 2.0% 3.7% 8.1% 11.4% 7.2% 7.9% 6.0% 12.2% 6.5% 

12 pm 6.4% 7.1% 2.1% 4.7% 7.1% 10.8% 17.6% 7.6% 5.1% 7.4% 7.7% 

1 pm 5.8% 11.0% 2.0% 4.2% 7.2% 10.2% 10.8% 7.4% 5.1% 9.2% 7.5% 

2 pm 7.0% 7.1% 2.0% 8.2% 6.2% 10.5% 5.9% 6.5% 5.2% 11.2% 7.4% 

3 pm 10.6% 4.6% 2.8% 11.3% 7.9% 10.1% 4.0% 7.3% 6.0% 9.2% 8.6% 

4 pm 10.8% 3.2% 2.0% 8.6% 6.7% 8.8% 4.5% 8.1% 8.3% 5.9% 8.1% 

5 pm 11.2% 2.1% 2.0% 8.0% 6.3% 6.9% 8.1% 9.5% 9.0% 3.1% 7.9% 

6 pm 9.6% 1.1% 2.6% 5.3% 7.4% 5.0% 12.1% 11.2% 9.9% 1.1% 7.0% 
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7 pm 7.1% .6% 1.5% 2.9% 7.9% 3.4% 8.2% 8.0% 8.7% .5% 5.2% 

8 pm 5.9% .3% .1% 1.9% 2.2% 2.0% 4.5% 3.8% 3.8% .4% 3.4% 

9 pm 4.8% .2% .0% 1.4% 1.1% 1.0% 1.8% 1.8% 1.8% .1% 2.4% 

10 pm 3.1% .1% .0% .9% .8% .4% .6% .8% .9% .1% 1.4% 

11 pm 1.4% .0% .0% .5% .4% .1% .3% .3% .4% .0% .6% 

12 am .3% .0% .0% .1% .1% .0% .1% .0% .1%  .1% 

1 am .1%   .0% .0% .0% .0%  .0% .0% .1% 

2 am .2% .0%  .0% .0% .0% .1% .0% .0% .0% .1% 

3 am .1%   .0%  .0%  .0%   .0% 

4 am .1% .0%  .0% .0% .0%  .0% .0%  .0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 46: Observed weekday trip distribution by hour of day and destination purpose (weighted) 

 

 

home work school 

serve 

passenger 

personal 

business shopping meal social visit recreation medical Total 

xhour 4 am .0% .3%  .0% .0% .1% .1% .0% .2%  .1% 

5 am .1% 2.6% .1% .5% .4% .2% .3% .3% 1.2% .2% .6% 

6 am .7% 7.3% 1.1% 1.6% 2.0% .6% .9% .4% 2.7% .7% 1.9% 

7 am 1.3% 15.0% 23.5% 10.1% 4.6% 1.1% 2.7% 1.3% 3.8% 2.4% 5.5% 

8 am 2.8% 17.5% 43.2% 20.0% 6.4% 3.0% 3.5% 3.6% 4.6% 8.8% 8.9% 

9 am 2.4% 10.3% 9.7% 6.0% 7.4% 4.8% 3.1% 5.1% 5.7% 13.0% 5.3% 

10 am 2.5% 6.1% 2.9% 2.8% 8.1% 7.9% 3.2% 7.1% 5.4% 13.4% 4.7% 

11 am 3.7% 4.3% 1.9% 3.2% 6.9% 9.5% 7.0% 6.5% 4.6% 11.2% 5.2% 

12 pm 5.2% 6.4% 2.2% 4.1% 6.3% 9.4% 16.9% 7.1% 4.1% 7.7% 6.5% 
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1 pm 5.1% 10.0% 2.2% 3.4% 6.3% 9.4% 10.1% 6.0% 4.9% 9.2% 6.6% 

2 pm 6.4% 6.9% 1.9% 7.6% 5.8% 9.2% 6.0% 5.9% 4.7% 9.6% 6.7% 

3 pm 11.1% 4.9% 2.9% 11.6% 7.9% 9.0% 4.2% 7.6% 5.5% 9.6% 8.6% 

4 pm 10.8% 3.1% 1.5% 8.2% 7.2% 9.3% 4.0% 8.3% 8.7% 7.7% 8.0% 

5 pm 11.4% 2.5% 2.3% 8.1% 6.7% 8.3% 7.7% 10.6% 10.6% 3.4% 8.3% 

6 pm 10.3% 1.3% 3.0% 5.2% 8.0% 7.1% 11.3% 11.0% 12.2% 1.6% 7.6% 

7 pm 8.0% .7% 1.5% 2.8% 9.6% 5.3% 8.4% 9.3% 10.9% .6% 5.9% 

8 pm 6.3% .4% .1% 1.8% 3.0% 3.2% 6.6% 5.2% 5.3% .5% 3.9% 

9 pm 5.4% .2% .0% 1.2% 1.4% 1.5% 2.4% 2.7% 2.8% .2% 2.8% 

10 pm 3.6% .2% .0% .8% 1.2% .8% .9% 1.2% 1.5% .1% 1.7% 

11 pm 1.8% .0% .0% .8% .4% .1% .6% .5% .6% .1% .9% 

12 am .4% .0% .0% .1% .3% .1% .2% .0% .0%  .2% 

1 am .2%   .0% .0% .0% .0%  .0% .0% .1% 

2 am .3% .0%  .0% .0% .0% .1% .0% .0% .0% .1% 

3 am .2%   .0%  .0%  .0%   .1% 

4 am .1% .0%  .0% .0% .0%  .1% .1%  .0% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Figure 7:Observed weekday trip distribution by hour of day and destination purpose (unweighted) 

 

Figure 8:Observed weekday trip distribution by hour of day and destination purpose (weighted) 
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Tables 47 and 48 and Figures 9 and 10: Observed weekday trip distribution by reported travel duration and region: Respondents’ 

self-reported trip durations were grouped in 5-minute intervals and analyzed to look at the distribution of journey times.  The graphs show 

some “kinking” at 30, 45 and 60 minutes, as is often found with self-reported journey times. There is not a huge difference between the 

regions, but there is a consistent pattern, with San Joaquin having the highest percentage of short-duration trips, and Jacksonville showing her 

percentages in the higher durations.  

Table 47: Observed weekday trip distribution by reported travel duration and region (unweighted) 

 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

tripdur .00 3.6% 4.1% 3.2% 3.7% 3.3% 3.4% 3.6% 3.5% 

5.00 24.2% 26.2% 21.2% 19.4% 22.2% 23.3% 20.9% 22.1% 

10.00 22.7% 22.1% 22.3% 19.9% 21.3% 22.1% 21.2% 21.8% 

15.00 18.1% 19.4% 19.8% 20.2% 19.5% 18.5% 19.1% 19.0% 

20.00 9.0% 8.8% 10.8% 9.9% 10.5% 9.4% 10.3% 10.0% 

25.00 4.5% 4.3% 5.2% 5.1% 5.1% 4.5% 5.2% 4.9% 

30.00 8.1% 6.6% 8.0% 9.0% 7.8% 7.6% 8.6% 8.0% 

35.00 1.9% 1.4% 2.1% 3.3% 2.2% 2.0% 2.2% 2.1% 

40.00 1.7% 1.1% 1.6% 2.2% 1.6% 1.6% 1.9% 1.7% 

45.00 2.0% 1.7% 2.1% 2.6% 2.4% 2.2% 2.3% 2.2% 

50.00 .7% .6% .6% .9% .7% .8% .7% .7% 

55.00 .4% .3% .3% .5% .4% .5% .5% .5% 

60.00 1.1% 1.1% .9% 1.3% 1.1% 1.5% 1.3% 1.3% 

65.00 .2% .2% .2% .2% .2% .2% .3% .2% 

70.00 .3% .3% .2% .2% .2% .2% .3% .2% 
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75.00 .2% .3% .3% .4% .3% .5% .4% .4% 

80.00 .1% .1% .1% .1% .2% .2% .1% .1% 

85.00 .0% .2% .0% .1% .1% .1% .1% .1% 

90.00 .2% .3% .3% .3% .3% .5% .3% .4% 

95.00 .1% .1% .0% .0% .0% .1% .0% .1% 

100.00 .1% .0% .0% .1% .0% .1% .0% .1% 

105.00 .0% .1% .1% .1% .0% .1% .1% .1% 

110.00 .0% .1% .0% .0% .1% .0% .0% .0% 

115.00 .0%  .0%  .0% .0% .0% .0% 

120.00+ .7% .6% .5% .4% .4% .6% .5% .5% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 48: Observed weekday trip distribution by reported travel duration and region (weighted) 

 

% within region 

 
region 

Total Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL 

tripdur .00 3.2% 4.1% 2.9% 3.4% 3.0% 3.0% 3.6% 3.2% 

5.00 24.3% 24.5% 19.9% 19.0% 23.6% 21.9% 19.9% 21.5% 

10.00 22.7% 22.8% 21.5% 18.2% 20.4% 21.3% 20.2% 21.0% 

15.00 17.2% 19.0% 19.9% 19.7% 18.0% 18.0% 18.7% 18.3% 

20.00 9.1% 8.9% 11.5% 9.5% 10.7% 9.6% 10.3% 9.9% 

25.00 5.2% 3.9% 5.2% 5.5% 5.2% 4.6% 5.4% 4.9% 

30.00 8.3% 7.8% 8.7% 10.7% 8.0% 8.6% 9.2% 8.7% 

35.00 1.8% 1.5% 2.2% 3.7% 2.7% 2.3% 2.2% 2.3% 
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40.00 1.8% 1.4% 1.8% 2.2% 1.8% 1.8% 2.2% 1.9% 

45.00 2.2% 1.3% 2.2% 3.2% 2.5% 2.4% 2.7% 2.4% 

50.00 .7% .7% .7% .8% .7% .9% .8% .9% 

55.00 .4% .3% .4% .3% .5% .5% .6% .5% 

60.00 1.1% 1.6% 1.2% 1.6% 1.0% 1.9% 1.5% 1.6% 

65.00 .2% .1% .2% .1% .1% .3% .4% .3% 

70.00 .3% .4% .2% .2% .2% .3% .3% .3% 

75.00 .4% .2% .3% .5% .3% .5% .4% .5% 

80.00 .2% .1% .1% .1% .1% .2% .2% .2% 

85.00 .0% .2% .1% .1% .1% .1% .1% .1% 

90.00 .2% .4% .3% .4% .4% .7% .5% .6% 

95.00 .1% .1% .1% .0% .0% .1% .1% .1% 

100.00 .1% .0% .0% .0% .0% .1% .0% .1% 

105.00 .0% .1% .1% .0% .0% .1% .1% .1% 

110.00 .0% .1% .0% .1% .1% .0% .0% .0% 

115.00 .0%  .0%  .0% .1% .0% .0% 

120.00 .6% .6% .6% .4% .5% .8% .7% .7% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Figure 9: Observed weekday trip distribution by reported travel duration and region (unweighted) 

 

Figure 10: Observed weekday trip distribution by reported travel duration and region (weighted) 
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Tables 49 and 50 and Figures 11 and 12: Observed weekday trip distribution by reported travel duration and trip destination 

purpose: The differences in trip duration are more pronounced across trip purposes than across regions. Meal, shopping, and serve passenger 

trips are consistently the shortest, while work trips and medical trips are the longest. 

 Table 49: Observed weekday trip distribution by reported travel duration and destination purpose (unweighted) 

 

 

home work school 

serve 

passenger 

personal 

business shopping meal social visit recreation medical Total 

tripdur .00 2.7% 2.1% 2.4% 3.8% 3.5% 5.6% 4.7% 5.8% 2.5% 1.3% 3.5% 

5.00 19.9% 16.7% 23.2% 25.7% 23.2% 29.2% 29.0% 19.7% 18.8% 12.2% 22.1% 

10.00 21.3% 17.5% 23.4% 24.3% 22.6% 25.0% 24.6% 19.3% 20.3% 17.6% 21.8% 

15.00 19.6% 17.3% 17.8% 19.3% 19.9% 17.6% 18.8% 18.7% 22.4% 20.7% 19.0% 

20.00 10.2% 11.2% 10.4% 9.3% 9.7% 8.6% 8.3% 11.2% 10.5% 13.1% 10.0% 

25.00 5.0% 6.8% 5.0% 4.6% 4.8% 3.5% 3.4% 4.7% 4.6% 7.9% 4.9% 

30.00 9.0% 10.4% 7.1% 5.6% 7.6% 5.0% 5.5% 8.7% 10.4% 11.5% 8.0% 

35.00 2.3% 3.5% 2.5% 1.7% 1.5% 1.2% 1.1% 2.2% 1.8% 3.3% 2.1% 

40.00 1.9% 3.1% 2.0% 1.3% 1.2% 1.0% .8% 1.5% 1.5% 2.2% 1.7% 

45.00 2.5% 3.6% 1.8% 1.3% 1.7% 1.2% 1.1% 2.4% 2.5% 3.3% 2.2% 

50.00 .8% 1.4% .9% .6% .7% .4% .3% .6% .7% .9% .7% 

55.00 .5% .8% .4% .3% .4% .3% .2% .3% .3% .7% .5% 

60.00 1.5% 1.9% 1.1% .7% 1.1% .6% .8% 1.8% 1.5% 2.0% 1.3% 

65.00 .3% .5% .3% .1% .2% .1% .1% .2% .2% .4% .2% 

70.00 .3% .4% .4% .2% .2% .1% .1% .2% .2% .3% .2% 

75.00 .5% .7% .3% .3% .3% .1% .2% .4% .4% .6% .4% 
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80.00 .2% .3% .1% .1% .2% .1% .0% .2% .1% .1% .1% 

85.00 .1% .2% .0% .0% .1% .0% .1% .1% .1% .1% .1% 

90.00 .4% .6% .3% .2% .3% .1% .2% .5% .4% .6% .4% 

95.00 .1% .1% .1% .0% .1% .0% .0% .1% .1% .0% .1% 

100.00 .1% .1% .0% .1% .0% .0% .0% .1% .0% .1% .1% 

105.00 .1% .1% .0% .0% .1% .0% .0% .2% .1% .1% .1% 

110.00 .1% .0% .0% .0% .0% .0% .0% .1% .0% .0% .0% 

115.00 .0% .0%  .0% .1% .0% .0% .0% .0% .0% .0% 

120.00 .8% .6% .4% .4% .5% .2% .3% .8% .6% .9% .5% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 50: Observed weekday trip distribution by reported travel duration and destination purpose (weighted) 

 

home work school 

serve 

passenger 

personal 

business shopping meal social visit recreation medical Total 

tripdur .00 2.6% 1.8% 2.2% 3.7% 3.1% 5.3% 5.3% 5.4% 2.6% 1.2% 3.2% 

5.00 19.4% 15.9% 21.6% 27.1% 22.1% 28.5% 31.7% 19.4% 18.3% 10.7% 21.5% 

10.00 20.2% 16.6% 22.2% 25.1% 22.3% 24.3% 24.9% 19.3% 20.4% 16.4% 21.0% 

15.00 18.8% 17.1% 16.9% 18.7% 19.1% 17.7% 17.0% 17.8% 22.4% 18.6% 18.3% 

20.00 10.1% 11.1% 11.0% 8.8% 9.8% 8.5% 7.3% 11.0% 9.7% 13.8% 9.9% 

25.00 4.8% 6.7% 5.0% 4.4% 5.4% 3.5% 3.2% 4.5% 4.5% 8.2% 4.9% 

30.00 9.8% 11.0% 7.8% 5.3% 8.2% 5.7% 5.3% 9.1% 11.4% 12.9% 8.7% 

35.00 2.5% 3.4% 2.7% 1.4% 1.4% 1.4% 1.4% 2.4% 1.7% 2.9% 2.3% 

40.00 2.1% 3.1% 2.5% 1.0% 1.4% 1.2% .8% 1.4% 1.3% 2.2% 1.9% 

45.00 2.6% 4.0% 2.2% 1.3% 1.8% 1.4% .8% 3.3% 2.8% 3.2% 2.4% 

50.00 .9% 1.5% 1.0% .7% 1.0% .4% .4% .5% .7% 1.1% .9% 
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55.00 .6% .9% .5% .3% .3% .2% .3% .4% .4% 1.0% .5% 

60.00 1.9% 2.2% 1.6% .8% 1.8% .9% .7% 2.4% 1.7% 2.7% 1.6% 

65.00 .2% .6% .3% .1% .2% .1% .1% .3% .1% .4% .3% 

70.00 .4% .5% .4% .2% .3% .1% .1% .2% .2% .4% .3% 

75.00 .6% .8% .4% .3% .3% .1% .1% .4% .3% .8% .5% 

80.00 .2% .4% .2% .2% .2% .0% .1% .2% .1% .1% .2% 

85.00 .1% .2% .1% .1% .1% .0% .1% .0% .2% .1% .1% 

90.00 .7% .9% .5% .1% .4% .2% .1% .7% .5% 1.4% .6% 

95.00 .1% .1% .1% .0% .1% .0% .0% .1% .0% .1% .1% 

100.00 .0% .1% .1% .1% .0% .0% .0% .2% .0% .3% .1% 

105.00 .1% .2% .0% .1% .1% .1% .0% .1% .1% .0% .1% 

110.00 .1% .0% .0% .0% .0% .0% .0% .1% .0% .1% .0% 

115.00 .1% .0%  .0% .1% .0% .0% .0% .0% .0% .0% 

120.00 1.0% .8% .6% .3% .6% .3% .3% 1.0% .5% 1.2% .7% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Figure 11: Observed weekday trip distribution by reported travel duration and destination purpose (unweighted) 

 

Figure 12: Observed weekday trip distribution by reported travel duration and destination purpose (weighted) 
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Tables 51 and 52 and Figures 13 and 14: Mean observed weekday trip duration by mode and region:  The average durations for walk, 

bike, and car trips are around 15 minutes for all of the regions, while the average durations for transit and school bus trips are 30 minutes or 

more for all regions.  There is not a great deal of congestion in any of the regions that would cause longer trip durations.  

Table 51: Mean Observed Trip Duration by Mode and Region (unweighted) 

mode region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

dimension2 

walk 14.1546 13.1302 14.9809 13.3976 13.8635 15.2544 13.0572 14.4535 

bike 18.5781 21.0400 22.8505 17.4524 17.4375 19.8156 17.3023 19.2572 

drive alone 16.9929 15.6390 16.8168 18.2703 16.7383 17.5209 17.4769 17.2921 

shared ride 2 15.8601 14.6857 15.7774 17.5089 16.6827 16.0393 17.3036 16.4665 

shared ride 3+ 14.7675 15.6335 15.9901 18.2509 18.5580 15.6744 17.9007 16.5454 

transit 41.7500 48.9556 42.5489 63.0000 41.0732 45.3209 44.9970 44.7265 

school bus 35.6047 34.7692 32.4379 32.7830 31.0073 31.2928 32.3171 32.1337 

others 21.7031 19.3220 24.0544 25.5429 26.4952 25.0036 27.9150 25.3929 

Total 16.5210 15.6483 16.7575 18.0775 17.0334 17.2782 17.5067 17.1947 
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Table 52: Mean Observed Trip Duration by Mode and Region (weighted) 

Mode region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

dimension2 

walk 13.9475 13.5692 15.2575 13.2778 13.1000 15.5163 12.5692 14.7071 

bike 15.0019 24.1605 21.3516 15.5294 13.5095 19.5894 17.4774 18.6927 

drive alone 18.1365 16.6922 17.5932 18.9945 17.4922 18.8191 19.3360 18.7091 

shared ride 2 15.5662 14.1684 15.6568 18.0951 16.7621 16.1509 17.2518 16.4019 

shared ride 3+ 13.8389 15.4981 15.9947 17.5392 16.3014 16.0983 17.1281 16.2449 

transit 42.6240 48.2119 42.5478 71.2692 33.4196 45.8446 42.5253 45.1835 

school bus 30.3333 36.6431 33.2609 32.6033 31.4328 32.3626 33.0166 32.6900 

others 21.1685 17.2526 23.9322 31.8616 29.7617 25.7781 29.2842 26.4064 

Total 16.7034 16.1822 17.4291 18.9329 17.1412 18.4142 18.5308 18.1673 
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Figure 13: Mean Observed Trip Duration by Mode and Region (unweighted) 

 

Figure 14: Mean Observed Trip Duration by Mode and Region (weighted) 
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Tables 53 and 54 and Figures 15 and 16: Mean observed weekday trip duration by mode and region:  Again, the differences in means 

are more pronounced by purpose than by region, although some consistent trends are seen by region as well.  The San Joaquin region has the 

shortest mean duration for all of the purposes except personal business and medical, while the Jacksonville region has the longest mean 

duration for almost all of those same purposes.  These differences may be related to land use patterns and the physical size of the various 

urban areas, a question that the model estimation will address. 

 

Table 53: Mean Observed Trip Duration by Destination Purpose and Region (unweighted) 

dpurp region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

dimension2 

home 17.5004 16.7574 17.6866 19.5703 17.8079 18.3802 18.6368 18.2625 

work 20.8227 19.3251 20.6618 21.6586 20.7187 21.9285 21.4185 21.3707 

school 15.4280 13.7649 15.4049 21.8148 18.9818 16.2200 18.9074 16.8452 

serve passenger 14.7313 12.6976 14.5978 16.4378 17.3915 13.9545 16.5022 14.9462 

personal business 17.4290 18.4842 15.3053 16.8525 14.8750 17.1034 15.8284 16.2983 

shopping 12.4483 11.5955 13.1473 13.8642 13.3805 13.3503 13.6691 13.3591 

meal 13.0356 12.7434 13.3768 13.3073 14.5807 13.1336 14.6728 13.7448 

social visit 18.1600 15.9033 18.0911 18.7431 18.7081 18.1615 17.9614 18.0636 

recreation 16.8344 17.5894 18.6430 18.2514 17.8516 18.7338 17.5845 18.2132 

medical 19.4211 23.0735 20.3868 21.7560 20.9817 21.4070 21.8673 21.3995 

Total 16.5210 15.6483 16.7575 18.0775 17.0334 17.2782 17.5067 17.1947 
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Table 54: Mean Observed Trip Duration by Destination Purpose and Region (weighted) 

 

Dpurp region 

Sacramento San Joaquin San Diego Jacksonville Tampa Rest of CA Rest of FL Total 

dimension2 

home 17.5307 17.4922 18.3435 20.5337 17.8465 19.6715 19.6816 19.3404 

work 20.4597 20.3148 21.0896 22.2959 19.9921 23.0587 23.1900 22.5846 

school 16.3454 15.3148 16.6771 21.6017 18.7399 17.8217 20.1603 18.2022 

serve passenger 15.3932 11.9446 15.0106 16.6157 16.6794 14.0279 15.7135 14.5649 

personal business 16.9562 18.5313 16.4313 16.5568 13.7761 17.9944 17.2258 17.3802 

shopping 13.2422 11.7702 13.6378 13.8228 13.6365 14.3988 13.8659 14.0013 

meal 11.4122 12.4502 13.1433 12.3261 13.3311 12.9673 13.7376 13.0896 

social visit 16.3901 17.4522 19.0131 20.5531 17.2000 19.0904 19.0815 18.8110 

recreation 16.7354 17.5900 18.5608 19.7574 18.2068 19.0545 17.3035 18.4152 

medical 18.9371 22.9883 21.8946 21.3596 22.5133 24.4020 23.2352 23.4889 

Total 16.7034 16.1822 17.4291 18.9329 17.1412 18.4142 18.5308 18.1673 
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Figure 15: Mean Observed Trip Duration by Destination Purpose and Region (unweighted) 

 

 
 

Figure 16: Mean Observed Trip Duration by Destination Purpose and Region (weighted) 
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Preliminary Summary Observations 

Impacts of small sample size.  Except for San Diego, all the regions have small sample sizes relative to typical regional household survey 

sizes used for estimating activity schedule models (Table 1), and this will, in general, limit our ability to find statistical differences across 

regions.  Beyond that, there will be some cases where small sample will almost surely prevent meaningful comparisons across regions.  These 

include children under the age of 5, for whom no travel diaries were collected (Table 28), and children age 16+ and college students, for 

whom the sample sizes are especially small (also Table 28), as well as trips involving bicycle and transit modes (Tables 38-40.) 

Differences across regions.  There are some differences in the population across the regions, notably with regard to household type (Table 

9), income group (Table 17) and person type (Table 22).  The model specifications can, to a great extent, control for these differences, so that 

the differences might not limit model transferability.  Of the three major differences noted here, the DaySim model specifications used as the 

starting point for the transferability testing may be weakest in using household type to condition the specifications.  Improving the model 

specifications to control for different household types might enhance model transferability. 

In addition to differences in population, there are some differences across regions in trip distribution by hour of the day (Figure 6), and in trip 

duration (Figure 10).  It remains to be seen whether or not factors controlled for in the models, such as purpose (Figure 8), and travel 

impedance, will account for these differences. 
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Appendix 2:  Data dictionary of the estimation results data file 

This appendix is the data dictionary for the estimation results data file, from which all summary 

tables and figures were produced.  The file includes a record for each coefficient in each 

estimated model.  A model was estimated for each combination of Model Type (mtype) and 

Model Spec (mspec).  However, the location choice models (mtypes 1, 10 and 14) do not have 

models for Model Specs 25-36, those with a base that has alternative-specific constants (ASCs) 

for each region.  This is because the location choice models do not have ASCs. 

 
Name Type Wid. Dec. Label Values Description 

Mname String 7 0 Model Name (mname) workloc 
autownx 
idpatt1 
exactt1 
wttime1 
wtmode1 
wtmode2 
subtour 
stmode1 
otdest1 
ottime1 
otmode1 
instop1 
stoploc 
trptim1 

 1   'Usual work location' 
 2   'Auto ownership' 
 3   'Person-day tour generation' 
 4   'Exact number of tours' 
 5   'Work tour time of day' 
 6   'Work tour mode (detailed LOS)' 
 7  'Work tour mode (combined LOS)' 
 8  ' WB subtour generation' 
 9   'School tour mode' 
10   'Other tour destination' 
11   'Other HB tour time of day' 
12   'Other HB tour mode' 
13   'Intermediate stop generation' 
14   'Intermediate stop location' 
15   'Trip time of day' 

Mtype Num. 1 0 Model Type (mtype)  1   'Usual work location' 
 2   'Auto ownership' 
 3   'Person-day tour generation' 
 4   'Exact number of tours' 
 5   'Work tour time of day' 
 6   'Work tour mode (detailed LOS)' 
 7  'Work tour mode (combined LOS)' 
 8  ' WB subtour generation' 
 9   'School tour mode' 
10   'Other tour destination' 
11   'Other HB tour time of day' 
12   'Other HB tour mode' 
13   'Intermediate stop generation' 
14   'Intermediate stop location' 
15   'Trip time of day' 
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Name Type Wid. Dec. Label Values Description 

Mspec Num. 1 0 Model Spec (mspec) 1   '2State_base' 
  2   'Calif_base' 
  3  'Florida_base' 
  4 '2State_base_ASC'    
  5 'Calif_base_ASC' 
  6   'Florida_base_ASC' 
 7    'SANDAG_base' 
 8    'SACOG_base' 
 9    'Fresno_base' 
10    '3County_base' 
11     'Tampa_base' 
12     'Jacksnv_base' 
13     'SANDAG_Dif_2S' 
14     'SACOG_Dif_2S' 
15     'Fresno_Dif_2S' 
16     '3County_Dif_2S' 
17     'Tampa_Dif_2S' 
18     'Jacksnv_Dif_2S' 
19     'SANDAG_Dif_1S' 
20     'SACOG_Dif_1S' 
21     'Fresno_Dif_1S' 
22     '3County_Dif_1S' 
23     'Tampa_Dif_1S' 
24     'Jacksnv_Dif_1S' 
25     'SANDAG_Dif_2S_ASC' 
26     'SACOG_Dif_2S_ASC' 
27     'Fresno_Dif_2S_ASC' 
28     '3County_Dif_2S_ASC' 
29     'Tampa_Dif_2S_ASC' 
30     'Jacksnv_Dif_2S_ASC' 
31     'SANDAG_Dif_1S_ASC' 
32     'SACOG_Dif_1S_ASC' 
33     'Fresno_Dif_1S_ASC' 
34     '3County_Dif_1S_ASC' 
35     'Tampa_Dif_1S_ASC' 
36    'Jacksnv_Dif_1S_ASC' 

1-3:  Base model without ASCs for all 
regions 
4-6:  Base model with ASCs for all 
regions 
7-12:  Region-speciifc models 
13-18:  2-state base with coefficient 
differences for named region 
19-24:  1-state base with coefficient 
differences for named region 
25-30:  2-state base with ASCs for each 
coefficient and coefficient differences 
for named region 
31-36:  1-state base with ASCs for each 
coefficient and coefficient differences 
for named region 

Dataused Num. 1 0 Data Used (dataused) 1 'sandag' 
2 'sacog' 
3 'fresno' 
4 '3county' 
5 'tampa' 
6 'jacksnvl'  
7 'calif' 
8 'florida' 
9 'cal&fla' 

Data set used from model estimation. 
7 'calif' includes all 4 CA regions 
8 'florida' includes both FL regions 
9 'cal&fla' includes all 6 regions 

Diftype Num. 1 0 Type of Difference Model 
(diftype) 

0 'none' 
1 'ASCs free' 
2 'one regoin' 
3 'one region & ASCs free' 

0 'none':  for mspec 1-3, 7-12 
'1 ASCs free': for mspec 4-6 
'2 one region' for mspec 13-24 
'3 one region & ASCs free' for mspec 
25-36 
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Name Type Wid. Dec. Label Values Description 

Difregion Num. 1 0 Difference Region 
(difregion) 

0 'none' 
1 'sandag' 
2 'sacog' 
3 'fresno' 
4 '3county' 
5 'tampa' 
6 'jacksnvl'  

region for which difference coefficients 
are estimated 

Basespec Num. 1 0 Base Model (basespce) 0 'n/a' 
1   '2State_base' 
2   'Calif_base' 
3  'Florida_base' 
4 '2State_base_ASC'    
5 'Calif_base_ASC' 
6   'Florida_base_ASC' 

the base estimated model. 
'_ASC' means ASCs were estimated for 
all regions 

Totpar Num. 2 0 Number of Coefficients 
Total (totpar) 

    

Estpar Num. 2 0 Number of Coefficients 
Estimated (estpar) 

    

totdif Num. 2 0 Number of Difference 
Coefficients Total (totdif) 

    

estdif Num. 2 0 Number of Difference 
Coefficients Estimated 
(estdif) 

    

nobs Num. 5 0 Number of Observations 
(nobs) 

    

niter Num. 1 0 Number of Estimation 
Iterations (niter) 

    

converge Num. 1 0 Model Converged? 
(converge) 

0 'no' 
1 'yes' 

  

like0 Num. 9 2 Log Likelihood (0) (like0)   Log likelihood with no estimated 
coefficients 

likec Num. 9 2 Log Likelihood 
(constants) (likec) 

  Log likelihood with a full set of 
alternative specific constants 

likef Num. 9 2 Likelihood (final) (likef)   Log likelihood with final estimated 
values 

chidf Num. 2 0 Degrees of Freedom (U - 
R) (chidf) 

  Difference in number of estimated 
coefficients between unrestricted 
model (U) and restricted model (R). 
--unrestricted model includes region-
specific difference coefficients 
--restricted model excludes them 

chival Num. 6 2 Chi Squared Statistic 
(chival) 

  -2(Likef(R) - Likef(U)) 
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Name Type Wid. Dec. Label Values Description 

chiprob Num. 6 2 Chi Squared Probability 
(chiprob) 

  Under the null hypothesis that U and R 
are the same model (ie that the 
region's model is no different than the 
base model), this is the probability that 
chival would be less than what was 
actually observed.  That is, chiprob is 
the probability that the two models are 
different. 

pnum Num. 2 0 Coefficient Number 
(pnum) 

    

plabel String 10 0 Coefficient Label (plabel)     

ptype1 Num. 1 0 Coefficient Type 1 
(ptype1) 

0 'none' 
1 'A-constant' 
2 'P-person' 
3 'H-household' 
4 'D-day pattern' 
5 'T-tour/trip' 
6 'I-impedance' 
7 'U-land use' 
8 'W-time window' 
9 'C-logsum' 
10 'G-size variable' 
11 'L-log size mult' 

  

ptype2 Num. 1 0 Coefficient Type 2 
(ptype) 

same as ptype1 This identifies a second type in the 
case of variables specified as 
interactions, such as a size variable 
(11) for a particular tour purpose (5) 

Difvar Num. 1 0   0 'no' 
1 'yes' 

Is this a coefficient for a difference 
variable? 

Basevar Num. 2 0       

Expsign Num. 2 0   -1 'negative' 
0 'unknown' 
1 'positive' 

Expected sign, a priori  (Note:  this was 
not used in final reporting) 

Constr Num. 1 0   0 'no' 
1 'yes' 

Was this coefficient constrained to a 
particular value in estimation? 

Coeff Num. 11 8     Final coefficient value, either 
constrained or estimated 

tstat Num. 7 3   -9999 'not estimated' asymptotic t statistic value if 
coefficient was estimated; -9999 
otherwise 

constrbase Num. 1 0   0 'no' 
1 'yes' 

Was this coefficient also constrained to 
a particular value in the associated 
two-state base model (mspec=1)? 

Coeffbase Num. 11 8     Final coefficient value, either 
constrained or estimated, in the 
associated two-state base model 

Tstatbase Num. 7 3     asymptotic t statistic value from the 
associated two-state base model if the 
coefficient was estimated; -9999 
otherwise 
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Appendix 3:  Summary Statistics for all Models 

Summary Statistics for all Base Models 

 
Table 1a 

Usual work location

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 7526 54 48 0.128 67% 33% 0% 0% 0%

Calif_base 5584 54 48 0.126 67% 24% 9% 0% 0%

Florida_base 1942 54 47 0.150 55% 27% 6% 9% 3%

SANDAG_base 4195 54 48 0.125 61% 27% 9% 3% 0%

SACOG_base 807 54 39 0.118 39% 39% 15% 6% 0%

Fresno_base 247 54 45 0.108 21% 55% 15% 0% 9%

3County_base 335 54 37 0.194 15% 45% 30% 0% 9%

Tampa_base 1265 54 47 0.160 42% 30% 21% 3% 3%

Jacksnv_base 677 54 47 0.142 42% 27% 18% 9% 3%

Size variables excluded from the significance and estimability columns (the five columns on the right  

 
Table 1b 

Auto ownership

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 12203 24 24 0.310 83% 17% 0% 0% 0%

Calif_base 8351 24 24 0.303 83% 13% 0% 4% 0%

Florida_base 3852 24 24 0.334 79% 13% 8% 0% 0%

SANDAG_base 6002 24 24 0.302 83% 8% 4% 4% 0%

SACOG_base 1311 24 24 0.297 46% 50% 4% 0% 0%

Fresno_base 381 24 24 0.323 54% 38% 4% 4% 0%

3County_base 657 24 24 0.297 58% 21% 21% 0% 0%

Tampa_base 2517 24 22 0.357 75% 8% 8% 0% 8%

Jacksnv_base 1335 24 24 0.314 71% 13% 13% 4% 0%  

 
Table 1c 

Person-day tour generation

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 18770 127 126 0.442 73% 27% 0% 0% 0%

Calif_base 13268 127 126 0.444 68% 28% 4% 0% 0%

Florida_base 5502 127 126 0.436 44% 44% 11% 0% 0%

SANDAG_base 9567 127 126 0.443 66% 28% 6% 1% 0%

SACOG_base 2023 127 126 0.438 40% 52% 8% 0% 0%

Fresno_base 656 127 122 0.450 20% 44% 33% 0% 3%

3County_base 1022 127 122 0.430 20% 49% 24% 4% 3%

Tampa_base 3449 127 125 0.432 37% 50% 12% 1% 1%

Jacksnv_base 2053 127 126 0.439 37% 49% 13% 1% 0%  
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Table 1d 
Exact number of tours

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 20795 98 86 0.655 40% 60% 0% 0% 0%

Calif_base 14781 98 86 0.659 36% 55% 9% 0% 0%

Florida_base 6014 98 83 0.640 23% 52% 21% 0% 3%

SANDAG_base 10715 98 86 0.661 33% 55% 13% 0% 0%

SACOG_base 2283 98 75 0.644 22% 45% 20% 0% 13%

Fresno_base 673 98 49 0.701 5% 40% 13% 0% 43%

3County_base 1110 98 73 0.603 14% 44% 24% 2% 15%

Tampa_base 3820 98 80 0.629 19% 48% 27% 0% 7%

Jacksnv_base 2194 98 76 0.645 16% 47% 26% 0% 12%  

 
Table 1e 

Work tour time of day

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 5347 74 69 0.223 72% 28% 0% 0% 0%

Calif_base 3924 74 69 0.219 71% 25% 4% 0% 0%

Florida_base 1423 74 67 0.234 67% 26% 3% 1% 3%

SANDAG_base 2832 74 69 0.216 68% 29% 3% 0% 0%

SACOG_base 617 74 64 0.207 36% 45% 12% 0% 7%

Fresno_base 173 74 61 0.219 29% 35% 25% 0% 12%

3County_base 302 74 57 0.220 36% 30% 14% 1% 17%

Tampa_base 883 74 67 0.232 64% 28% 4% 1% 3%

Jacksnv_base 540 74 63 0.230 45% 32% 14% 0% 9%  

 
Table 1f 

Work tour mode (combined LOS)

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 5282 31 31 0.611 61% 39% 0% 0% 0%

Calif_base 3866 31 31 0.594 48% 45% 6% 0% 0%

Florida_base 1416 31 21 0.662 29% 39% 0% 0% 32%

SANDAG_base 2794 31 31 0.606 48% 39% 13% 0% 0%

SACOG_base 601 31 30 0.578 23% 52% 23% 0% 3%

Fresno_base 173 31 19 0.404 10% 39% 13% 0% 39%

3County_base 298 31 18 0.503 6% 39% 13% 0% 42%

Tampa_base 880 31 21 0.608 19% 42% 6% 0% 32%

Jacksnv_base 536 31 17 0.539 10% 32% 13% 0% 45%  
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Table 1g 
 WB subtour generation

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 3447 14 14 0.393 79% 21% 0% 0% 0%

Calif_base 2553 14 14 0.385 64% 21% 14% 0% 0%

Florida_base 894 14 14 0.405 50% 43% 7% 0% 0%

SANDAG_base 1852 14 14 0.383 64% 21% 14% 0% 0%

SACOG_base 410 14 13 0.355 36% 36% 21% 0% 7%

Fresno_base 96 14 8 0.528 21% 21% 0% 14% 43%

3County_base 195 14 12 0.364 36% 29% 21% 0% 14%

Tampa_base 537 14 13 0.407 43% 36% 14% 0% 7%

Jacksnv_base 357 14 13 0.380 7% 57% 29% 0% 7%  

 
Table 1h 

School tour mode

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 1910 38 33 0.251 59% 41% 0% 0% 0%

Calif_base 1527 38 32 0.264 56% 34% 6% 0% 3%

Florida_base 383 38 22 0.267 19% 28% 19% 0% 34%

SANDAG_base 1092 38 32 0.274 59% 28% 9% 0% 3%

SACOG_base 226 38 29 0.224 13% 38% 34% 3% 13%

Fresno_base 77 38 22 0.052 9% 28% 28% 0% 34%

3County_base 132 38 17 0.255 16% 19% 13% 3% 50%

Tampa_base 211 38 22 0.285 13% 19% 34% 0% 34%

Jacksnv_base 172 38 21 0.240 22% 28% 13% 0% 38%  

 
Table 1i 

Other tour destination

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 14210 72 62 0.257 88% 12% 0% 0% 0%

Calif_base 10220 72 62 0.276 84% 8% 6% 2% 0%

Florida_base 3990 72 62 0.219 69% 22% 2% 6% 0%

SANDAG_base 7512 72 62 0.273 80% 10% 10% 0% 0%

SACOG_base 1520 72 61 0.293 57% 33% 8% 2% 0%

Fresno_base 434 72 62 0.272 35% 41% 24% 0% 0%

3County_base 754 72 62 0.288 39% 47% 14% 0% 0%

Tampa_base 2674 72 62 0.223 71% 16% 10% 2% 0%

Jacksnv_base 1316 72 62 0.215 51% 35% 12% 2% 0%

Size variables excluded from the significance and estimability columns (the five columns on the right  
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Table 1j 
Other HB tour time of day

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 15377 95 86 0.252 76% 24% 0% 0% 0%

Calif_base 10628 95 86 0.252 71% 26% 3% 0% 0%

Florida_base 4749 95 84 0.251 60% 26% 10% 1% 2%

SANDAG_base 7726 95 86 0.252 66% 30% 3% 0% 0%

SACOG_base 1617 95 84 0.252 33% 57% 8% 0% 2%

Fresno_base 460 95 84 0.231 22% 55% 20% 1% 2%

3County_base 825 95 82 0.243 30% 50% 15% 0% 5%

Tampa_base 3083 95 84 0.248 52% 31% 14% 0% 2%

Jacksnv_base 1666 95 83 0.254 40% 44% 12% 1% 3%  

 
Table 1k 

Other HB tour mode

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 12583 41 41 0.358 68% 32% 0% 0% 0%

Calif_base 8546 41 41 0.365 63% 34% 2% 0% 0%

Florida_base 4037 41 40 0.347 61% 24% 12% 0% 2%

SANDAG_base 6226 41 41 0.370 61% 27% 12% 0% 0%

SACOG_base 1320 41 41 0.352 46% 34% 20% 0% 0%

Fresno_base 386 41 38 0.331 37% 37% 20% 0% 7%

3County_base 614 41 40 0.344 41% 29% 27% 0% 2%

Tampa_base 2623 41 40 0.360 54% 32% 12% 0% 2%

Jacksnv_base 1414 41 39 0.322 49% 34% 12% 0% 5%  

 
Table 1l 

Intermediate stop generation

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 63630 100 100 0.536 87% 13% 0% 0% 0%

Calif_base 45144 100 100 0.539 81% 14% 5% 0% 0%

Florida_base 18486 100 100 0.528 70% 24% 6% 0% 0%

SANDAG_base 32605 100 100 0.540 77% 15% 8% 0% 0%

SACOG_base 6963 100 100 0.532 54% 36% 9% 1% 0%

Fresno_base 2014 100 99 0.530 40% 48% 11% 0% 1%

3County_base 3562 100 100 0.542 45% 38% 15% 2% 0%

Tampa_base 11727 100 100 0.534 58% 33% 9% 0% 0%

Jacksnv_base 6759 100 100 0.517 55% 37% 7% 1% 0%  
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Table 1m 
Intermediate stop location

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 12140 77 66 0.228 68% 32% 0% 0% 0%

Calif_base 8711 77 66 0.236 77% 23% 0% 0% 0%

Florida_base 3429 77 62 0.213 43% 29% 21% 2% 5%

SANDAG_base 6705 77 66 0.234 70% 27% 4% 0% 0%

SACOG_base 1300 77 64 0.239 41% 43% 13% 4% 0%

Fresno_base 427 77 52 0.222 29% 32% 27% 4% 9%

3County_base 279 77 54 0.224 13% 45% 32% 0% 11%

Tampa_base 2278 77 61 0.201 41% 30% 14% 7% 7%

Jacksnv_base 1151 77 58 0.232 38% 29% 21% 0% 13%

Size variables excluded from the significance and estimability columns (the five columns on the right  

 
Table 1n 

Trip time of day

Model Spec (mspec)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total (totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Coefficients 

Significant 

Same Sign

Coefficients 

Insignificant 

Same Sign

Coefficients 

Insignificant 

Other Sign

Coefficients 

Significant 

Other Sign

Coefficients 

Not 

Estimable

2State_base 15554 48 45 0.523 76% 24% 0% 0% 0%

Calif_base 10946 48 45 0.518 73% 22% 4% 0% 0%

Florida_base 4608 48 44 0.536 71% 18% 7% 2% 2%

SANDAG_base 7862 48 45 0.517 76% 18% 7% 0% 0%

SACOG_base 1696 48 44 0.515 51% 38% 9% 0% 2%

Fresno_base 507 48 38 0.517 31% 47% 7% 0% 16%

3County_base 881 48 40 0.521 36% 24% 24% 4% 11%

Tampa_base 2887 48 43 0.550 64% 20% 11% 0% 4%

Jacksnv_base 1721 48 42 0.508 60% 22% 9% 2% 7%  
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Summary Statistics for all Difference Models 

 
Table 2a 

Usual work location

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 7526 106 95 0.133 47 36% 64% 0% 100%

2State_base sacog 7526 106 86 0.129 38 24% 76% 0% 100%

2State_base fresno 7526 106 92 0.128 44 3% 88% 9% 91%

2State_base 3county 7526 106 84 0.128 36 15% 76% 9% 100%

2State_base tampa 7526 106 94 0.131 46 42% 55% 3% 100%

2State_base jacksnvl 7526 106 94 0.131 46 33% 64% 3% 100%

Calif_base sandag 5584 106 95 0.128 47 27% 73% 0% 100%

Calif_base sacog 5584 106 86 0.127 38 21% 79% 0% 100%

Calif_base fresno 5584 106 92 0.126 44 6% 85% 9% 89%

Calif_base 3county 5584 106 84 0.125 36 21% 70% 9% 0%

Florida_base tampa 1942 106 92 0.154 45 21% 76% 3% 100%

Florida_base jacksnvl 1942 106 93 0.153 46 21% 76% 3% 100%

Size variables excluded from the significance and estimability columns  

 
Table 2b 

Auto ownership

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 12203 48 48 0.311 24 29% 71% 0% 100%

2State_base sacog 12203 48 48 0.310 24 21% 79% 0% 99%

2State_base fresno 12203 48 48 0.310 24 21% 79% 0% 98%

2State_base 3county 12203 48 48 0.310 24 8% 92% 0% 99%

2State_base tampa 12203 48 46 0.315 22 13% 79% 8% 100%

2State_base jacksnvl 12203 48 48 0.311 24 25% 75% 0% 100%

Calif_base sandag 8351 48 48 0.302 24 17% 83% 0% 90%

Calif_base sacog 8351 48 48 0.302 24 21% 79% 0% 91%

Calif_base fresno 8351 48 48 0.302 24 13% 88% 0% 93%

Calif_base 3county 8351 48 48 0.303 24 17% 83% 0% 99%

Florida_base tampa 3852 48 46 0.342 22 13% 79% 8% 100%

Florida_base jacksnvl 3852 48 46 0.342 22 13% 79% 8% 100%

2State_base_ASC sandag 12203 64 64 0.314 20 25% 75% 0% 100%

2State_base_ASC sacog 12203 64 64 0.313 20 15% 85% 0% 89%

2State_base_ASC fresno 12203 64 64 0.313 20 15% 85% 0% 99%

2State_base_ASC 3county 12203 64 64 0.313 20 5% 95% 0% 99%

2State_base_ASC tampa 12203 64 62 0.315 18 15% 75% 10% 100%

2State_base_ASC jacksnvl 12203 64 64 0.314 20 20% 80% 0% 100%

Calif_base_ASC sandag 8351 56 56 0.302 20 15% 85% 0% 93%

Calif_base_ASC sacog 8351 56 56 0.302 20 20% 80% 0% 95%

Calif_base_ASC fresno 8351 56 56 0.302 20 15% 85% 0% 97%

Calif_base_ASC 3county 8351 56 56 0.302 20 10% 90% 0% 99%

Florida_base_ASC tampa 3852 48 46 0.342 18 15% 75% 10% 100%

Florida_base_ASC jacksnvl 3852 48 46 0.342 18 15% 75% 10% 100%

No ASC differences for cases with ASC model base  
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Table 2c 
Person-day tour generation

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 18770 254 252 0.441 126 7% 93% 0% 93%

2State_base sacog 18770 254 252 0.441 126 10% 90% 0% 80%

2State_base fresno 18770 254 248 0.441 122 6% 90% 3% 82%

2State_base 3county 18770 254 248 0.441 122 14% 83% 3% 96%

2State_base tampa 18770 254 251 0.442 125 10% 89% 1% 94%

2State_base jacksnvl 18770 254 252 0.441 126 8% 92% 0% 93%

Calif_base sandag 13268 254 252 0.443 126 7% 93% 0% 88%

Calif_base sacog 13268 254 252 0.443 126 6% 94% 0% 86%

Calif_base fresno 13268 254 248 0.443 122 6% 90% 3% 62%

Calif_base 3county 13268 254 248 0.444 122 13% 84% 3% 96%

Florida_base tampa 5502 254 251 0.434 125 11% 88% 1% 94%

Florida_base jacksnvl 5502 254 251 0.434 125 11% 88% 1% 94%

2State_base_ASC sandag 18770 366 364 0.441 98 4% 96% 0% 55%

2State_base_ASC sacog 18770 366 364 0.441 98 7% 93% 0% 46%

2State_base_ASC fresno 18770 366 360 0.441 94 6% 90% 4% 71%

2State_base_ASC 3county 18770 366 360 0.441 94 10% 86% 4% 98%

2State_base_ASC tampa 18770 366 363 0.441 97 12% 87% 1% 100%

2State_base_ASC jacksnvl 18770 366 364 0.441 98 8% 92% 0% 98%

Calif_base_ASC sandag 13268 310 308 0.443 98 2% 98% 0% 49%

Calif_base_ASC sacog 13268 310 308 0.443 98 4% 96% 0% 58%

Calif_base_ASC fresno 13268 310 304 0.443 94 8% 88% 4% 66%

Calif_base_ASC 3county 13268 310 304 0.443 94 8% 88% 4% 95%

Florida_base_ASC tampa 5502 254 251 0.434 97 11% 88% 1% 100%

Florida_base_ASC jacksnvl 5502 254 251 0.434 97 11% 88% 1% 100%

No ASC differences for cases with ASC model base  
 

Table 2d 
Exact number of tours

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 20795 196 170 0.654 84 5% 93% 2% 94%

2State_base sacog 20795 196 161 0.653 75 7% 82% 11% 82%

2State_base fresno 20795 196 135 0.654 49 0% 60% 40% 36%

2State_base 3county 20795 196 159 0.655 73 12% 75% 13% 100%

2State_base tampa 20795 196 166 0.653 80 12% 82% 6% 75%

2State_base jacksnvl 20795 196 162 0.653 76 4% 86% 11% 80%

Calif_base sandag 14781 196 168 0.657 82 7% 89% 4% 98%

Calif_base sacog 14781 196 161 0.657 75 5% 85% 11% 78%

Calif_base fresno 14781 196 135 0.657 49 0% 60% 40% 25%

Calif_base 3county 14781 196 159 0.659 73 14% 73% 13% 100%

Florida_base tampa 6014 196 156 0.635 73 6% 80% 14% 70%

Florida_base jacksnvl 6014 196 156 0.635 73 6% 80% 14% 70%

2State_base_ASC sandag 20795 252 214 0.653 72 7% 92% 1% 94%

2State_base_ASC sacog 20795 252 205 0.653 63 6% 83% 11% 82%

2State_base_ASC fresno 20795 252 182 0.653 40 0% 58% 42% 6%

2State_base_ASC 3county 20795 252 204 0.654 62 11% 76% 13% 100%

2State_base_ASC tampa 20795 252 210 0.653 68 13% 82% 6% 62%

2State_base_ASC jacksnvl 20795 252 206 0.653 64 6% 83% 11% 74%

Calif_base_ASC sandag 14781 224 188 0.657 70 7% 90% 3% 99%

Calif_base_ASC sacog 14781 224 181 0.657 63 6% 83% 11% 80%

Calif_base_ASC fresno 14781 224 158 0.657 40 0% 58% 42% 6%

Calif_base_ASC 3county 14781 224 180 0.658 62 13% 75% 13% 100%

Florida_base_ASC tampa 6014 196 156 0.635 61 7% 78% 15% 66%

Florida_base_ASC jacksnvl 6014 196 156 0.635 61 7% 78% 15% 66%

No ASC differences for cases with ASC model base  
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Table 2e 
Work tour time of day

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 5347 148 136 0.222 67 4% 93% 3% 91%

2State_base sacog 5347 148 133 0.222 64 0% 93% 7% 1%

2State_base fresno 5347 148 130 0.222 61 12% 77% 12% 75%

2State_base 3county 5347 148 126 0.222 57 4% 78% 17% 83%

2State_base tampa 5347 148 136 0.223 67 19% 78% 3% 100%

2State_base jacksnvl 5347 148 132 0.222 63 1% 90% 9% 42%

Calif_base sandag 3924 148 135 0.217 66 1% 94% 4% 15%

Calif_base sacog 3924 148 133 0.217 64 0% 93% 7% 1%

Calif_base fresno 3924 148 130 0.218 61 7% 81% 12% 63%

Calif_base 3county 3924 148 126 0.218 57 4% 78% 17% 90%

Florida_base tampa 1423 148 132 0.230 65 9% 86% 6% 28%

Florida_base jacksnvl 1423 148 130 0.231 63 9% 83% 9% 77%

2State_base_ASC sandag 5347 272 236 0.221 41 0% 98% 2% 35%

2State_base_ASC sacog 5347 272 234 0.221 39 0% 93% 7% 1%

2State_base_ASC fresno 5347 272 231 0.221 36 10% 76% 14% 80%

2State_base_ASC 3county 5347 272 227 0.221 32 2% 74% 24% 63%

2State_base_ASC tampa 5347 272 236 0.221 41 19% 79% 2% 88%

2State_base_ASC jacksnvl 5347 272 233 0.221 38 2% 88% 10% 58%

Calif_base_ASC sandag 3924 210 184 0.216 40 0% 95% 5% 15%

Calif_base_ASC sacog 3924 210 183 0.216 39 0% 93% 7% 3%

Calif_base_ASC fresno 3924 210 180 0.217 36 5% 81% 14% 70%

Calif_base_ASC 3county 3924 210 176 0.217 32 2% 74% 24% 67%

Florida_base_ASC tampa 1423 148 132 0.222 40 10% 86% 5% 0%

Florida_base_ASC jacksnvl 1423 148 130 0.231 38 10% 81% 10% 85%

No ASC differences for cases with ASC model base  
 

Table 2f 
Work tour mode (detailed LOS)

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 5282 120 116 0.529 58 14% 86% 0% 100%

2State_base sacog 5282 120 111 0.529 53 7% 84% 9% 100%

2State_base fresno 5282 120 73 0.529 15 0% 26% 74% 47%

2State_base 3county 5282 120 82 0.529 24 3% 38% 59% 85%

2State_base tampa 5282 120 85 0.531 27 9% 38% 53% 100%

2State_base jacksnvl 5282 120 79 0.529 21 2% 34% 64% 48%

Calif_base sandag 3866 120 113 0.513 55 9% 86% 5% 98%

Calif_base sacog 3866 120 111 0.514 53 7% 84% 9% 100%

Calif_base fresno 3866 120 73 0.514 15 0% 26% 74% 40%

Calif_base 3county 3866 120 82 0.514 24 0% 41% 59% 90%

Florida_base tampa 1416 120 48 0.551 21 5% 31% 64% 94%

Florida_base jacksnvl 1416 120 48 0.551 21 5% 31% 64% 94%

2State_base_ASC sandag 5282 140 133 0.530 53 9% 91% 0% 100%

2State_base_ASC sacog 5282 140 128 0.528 48 8% 83% 9% 97%

2State_base_ASC fresno 5282 140 90 0.529 10 0% 19% 81% 72%

2State_base_ASC 3county 5282 140 99 0.529 19 4% 32% 64% 90%

2State_base_ASC tampa 5282 140 103 0.531 23 6% 38% 57% 100%

2State_base_ASC jacksnvl 5282 140 98 0.529 18 0% 34% 66% 61%

Calif_base_ASC sandag 3866 130 123 0.513 50 6% 89% 6% 96%

Calif_base_ASC sacog 3866 130 121 0.513 48 6% 85% 9% 92%

Calif_base_ASC fresno 3866 130 83 0.515 10 0% 19% 81% 64%

Calif_base_ASC 3county 3866 130 92 0.515 19 0% 36% 64% 90%

Florida_base_ASC tampa 1416 120 48 0.551 18 6% 28% 66% 96%

Florida_base_ASC jacksnvl 1416 120 48 0.551 18 6% 28% 66% 96%

No ASC differences for cases with ASC model base  
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Table 2g 
Work tour mode (combined LOS)

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 5282 62 62 0.613 31 16% 84% 0% 100%

2State_base sacog 5282 62 61 0.612 30 10% 87% 3% 100%

2State_base fresno 5282 62 50 0.610 19 16% 45% 39% 76%

2State_base 3county 5282 62 49 0.611 18 6% 52% 42% 100%

2State_base tampa 5282 62 52 0.612 21 0% 68% 32% 100%

2State_base jacksnvl 5282 62 48 0.611 17 3% 52% 45% 97%

Calif_base sandag 3866 62 62 0.595 31 10% 90% 0% 100%

Calif_base sacog 3866 62 61 0.595 30 13% 84% 3% 100%

Calif_base fresno 3866 62 50 0.593 19 10% 52% 39% 72%

Calif_base 3county 3866 62 49 0.594 18 3% 55% 42% 100%

Florida_base tampa 1416 62 38 0.658 17 0% 55% 45% 55%

Florida_base jacksnvl 1416 62 38 0.658 17 0% 55% 45% 55%

2State_base_ASC sandag 5282 82 79 0.614 26 15% 85% 0% 100%

2State_base_ASC sacog 5282 82 78 0.612 25 8% 88% 4% 100%

2State_base_ASC fresno 5282 82 67 0.611 14 12% 42% 46% 79%

2State_base_ASC 3county 5282 82 66 0.612 13 8% 42% 50% 100%

2State_base_ASC tampa 5282 82 70 0.611 17 0% 65% 35% 91%

2State_base_ASC jacksnvl 5282 82 67 0.612 14 4% 50% 46% 97%

Calif_base_ASC sandag 3866 72 72 0.595 26 8% 92% 0% 100%

Calif_base_ASC sacog 3866 72 71 0.594 25 12% 85% 4% 100%

Calif_base_ASC fresno 3866 72 60 0.593 14 8% 46% 46% 79%

Calif_base_ASC 3county 3866 72 59 0.594 13 4% 46% 50% 100%

Florida_base_ASC tampa 1416 62 38 0.658 14 0% 54% 46% 69%

Florida_base_ASC jacksnvl 1416 62 38 0.658 14 0% 54% 46% 69%

No ASC differences for cases with ASC model base  
 

Table 2h 
 WB subtour generation

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 3447 28 28 0.391 14 0% 100% 0% 47%

2State_base sacog 3447 28 27 0.392 13 0% 93% 7% 84%

2State_base fresno 3447 28 22 0.392 8 0% 57% 43% 35%

2State_base 3county 3447 28 26 0.392 12 0% 86% 14% 76%

2State_base tampa 3447 28 27 0.390 13 0% 93% 7% 16%

2State_base jacksnvl 3447 28 27 0.391 13 0% 93% 7% 63%

Calif_base sandag 2553 28 28 0.382 14 0% 100% 0% 55%

Calif_base sacog 2553 28 27 0.384 13 0% 93% 7% 84%

Calif_base fresno 2553 28 22 0.384 8 7% 50% 43% 46%

Calif_base 3county 2553 28 26 0.384 12 0% 86% 14% 85%

Florida_base tampa 894 28 26 0.396 12 0% 86% 14% 30%

Florida_base jacksnvl 894 28 26 0.396 12 0% 86% 14% 30%

2State_base_ASC sandag 3447 60 54 0.388 6 0% 100% 0% 46%

2State_base_ASC sacog 3447 60 53 0.389 5 0% 83% 17% 69%

2State_base_ASC fresno 3447 60 52 0.388 4 0% 67% 33% 44%

2State_base_ASC 3county 3447 60 53 0.388 5 0% 83% 17% 58%

2State_base_ASC tampa 3447 60 53 0.388 5 0% 83% 17% 4%

2State_base_ASC jacksnvl 3447 60 54 0.388 6 0% 100% 0% 46%

Calif_base_ASC sandag 2553 44 39 0.382 6 0% 100% 0% 68%

Calif_base_ASC sacog 2553 44 38 0.382 5 0% 83% 17% 58%

Calif_base_ASC fresno 2553 44 37 0.382 4 0% 67% 33% 44%

Calif_base_ASC 3county 2553 44 38 0.382 5 0% 83% 17% 69%

Florida_base_ASC tampa 894 28 26 0.396 5 0% 83% 17% 30%

Florida_base_ASC jacksnvl 894 28 26 0.396 5 0% 83% 17% 30%

No ASC differences for cases with ASC model base  
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Table 2i 
School tour mode

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 1910 76 64 0.258 31 9% 84% 6% 100%

2State_base sacog 1910 76 62 0.249 29 9% 78% 13% 90%

2State_base fresno 1910 76 55 0.249 22 3% 63% 34% 88%

2State_base 3county 1910 76 50 0.251 17 3% 48% 48% 98%

2State_base tampa 1910 76 54 0.259 21 6% 56% 38% 100%

2State_base jacksnvl 1910 76 54 0.255 21 6% 56% 38% 100%

Calif_base sandag 1527 76 62 0.261 30 6% 84% 9% 90%

Calif_base sacog 1527 76 61 0.262 29 9% 78% 13% 96%

Calif_base fresno 1527 76 54 0.262 22 0% 66% 34% 94%

Calif_base 3county 1527 76 49 0.262 17 3% 48% 48% 82%

Florida_base tampa 383 76 43 0.264 21 16% 47% 38% 99%

Florida_base jacksnvl 383 76 43 0.264 21 16% 47% 38% 99%

2State_base_ASC sandag 1910 96 81 0.267 26 11% 81% 7% 100%

2State_base_ASC sacog 1910 96 79 0.265 24 11% 74% 15% 97%

2State_base_ASC fresno 1910 96 72 0.265 17 4% 56% 41% 82%

2State_base_ASC 3county 1910 96 68 0.265 13 0% 46% 54% 55%

2State_base_ASC tampa 1910 96 72 0.267 17 7% 52% 41% 100%

2State_base_ASC jacksnvl 1910 96 72 0.264 17 4% 56% 41% 55%

Calif_base_ASC sandag 1527 86 71 0.262 25 7% 81% 11% 97%

Calif_base_ASC sacog 1527 86 70 0.262 24 11% 74% 15% 97%

Calif_base_ASC fresno 1527 86 63 0.261 17 0% 59% 41% 82%

Calif_base_ASC 3county 1527 86 59 0.261 13 0% 46% 54% 55%

Florida_base_ASC tampa 383 76 43 0.264 17 19% 41% 41% 100%

Florida_base_ASC jacksnvl 383 76 43 0.264 17 19% 41% 41% 100%

No ASC differences for cases with ASC model base  
 

Table 2j 
Other tour destination

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 14210 142 123 0.259 61 43% 57% 0% 100%

2State_base sacog 14210 142 122 0.257 60 18% 82% 0% 63%

2State_base fresno 14210 142 123 0.257 61 22% 78% 0% 100%

2State_base 3county 14210 142 123 0.257 61 20% 80% 0% 100%

2State_base tampa 14210 142 123 0.259 61 37% 63% 0% 100%

2State_base jacksnvl 14210 142 123 0.258 61 20% 80% 0% 100%

Calif_base sandag 10220 142 123 0.276 61 27% 73% 0% 100%

Calif_base sacog 10220 142 122 0.275 60 8% 92% 0% 2%

Calif_base fresno 10220 142 123 0.276 61 22% 78% 0% 100%

Calif_base 3county 10220 142 123 0.276 61 22% 78% 0% 100%

Florida_base tampa 3990 142 123 0.221 61 18% 82% 0% 100%

Florida_base jacksnvl 3990 142 123 0.221 61 18% 82% 0% 100%

Size variables excluded from the significance and estimability columns  
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Table 2k 
Other HB tour time of day

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 15377 190 170 0.252 84 9% 88% 2% 81%

2State_base sacog 15377 190 170 0.252 84 7% 91% 2% 69%

2State_base fresno 15377 190 170 0.252 84 5% 93% 2% 81%

2State_base 3county 15377 190 168 0.252 82 5% 91% 5% 92%

2State_base tampa 15377 190 170 0.252 84 16% 81% 2% 100%

2State_base jacksnvl 15377 190 169 0.252 83 5% 92% 3% 81%

Calif_base sandag 10628 190 170 0.252 84 5% 93% 2% 74%

Calif_base sacog 10628 190 170 0.252 84 3% 94% 2% 37%

Calif_base fresno 10628 190 170 0.252 84 6% 92% 2% 83%

Calif_base 3county 10628 190 168 0.252 82 5% 91% 5% 67%

Florida_base tampa 4749 190 167 0.250 83 8% 88% 3% 67%

Florida_base jacksnvl 4749 190 167 0.250 83 8% 88% 3% 67%

2State_base_ASC sandag 15377 314 270 0.251 59 8% 89% 3% 70%

2State_base_ASC sacog 15377 314 270 0.251 59 7% 90% 3% 56%

2State_base_ASC fresno 15377 314 270 0.251 59 7% 90% 3% 86%

2State_base_ASC 3county 15377 314 268 0.251 57 8% 85% 7% 90%

2State_base_ASC tampa 15377 314 270 0.251 59 15% 82% 3% 100%

2State_base_ASC jacksnvl 15377 314 269 0.251 58 5% 90% 5% 66%

Calif_base_ASC sandag 10628 252 220 0.251 59 7% 90% 3% 72%

Calif_base_ASC sacog 10628 252 220 0.251 59 5% 92% 3% 21%

Calif_base_ASC fresno 10628 252 220 0.251 59 8% 89% 3% 91%

Calif_base_ASC 3county 10628 252 218 0.251 57 5% 89% 7% 67%

Florida_base_ASC tampa 4749 190 167 0.250 58 7% 89% 5% 45%

Florida_base_ASC jacksnvl 4749 190 167 0.250 58 7% 89% 5% 45%

No ASC differences for cases with ASC model base  
 

Table 2l 
Other HB tour mode

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 12583 82 82 0.359 41 7% 93% 0% 100%

2State_base sacog 12583 82 82 0.358 41 12% 88% 0% 100%

2State_base fresno 12583 82 79 0.358 38 7% 85% 7% 87%

2State_base 3county 12583 82 81 0.358 40 7% 90% 2% 97%

2State_base tampa 12583 82 81 0.359 40 15% 83% 2% 100%

2State_base jacksnvl 12583 82 80 0.358 39 10% 85% 5% 100%

Calif_base sandag 8546 82 82 0.365 41 5% 95% 0% 100%

Calif_base sacog 8546 82 82 0.365 41 15% 85% 0% 100%

Calif_base fresno 8546 82 79 0.364 38 10% 83% 7% 92%

Calif_base 3county 8546 82 81 0.364 40 5% 93% 2% 97%

Florida_base tampa 4037 82 79 0.347 39 10% 85% 5% 100%

Florida_base jacksnvl 4037 82 79 0.347 39 10% 85% 5% 100%

2State_base_ASC sandag 12583 102 102 0.359 36 8% 92% 0% 100%

2State_base_ASC sacog 12583 102 102 0.360 36 11% 89% 0% 100%

2State_base_ASC fresno 12583 102 99 0.359 33 8% 83% 8% 75%

2State_base_ASC 3county 12583 102 101 0.359 35 6% 92% 3% 91%

2State_base_ASC tampa 12583 102 101 0.360 35 14% 83% 3% 100%

2State_base_ASC jacksnvl 12583 102 100 0.359 34 11% 83% 6% 98%

Calif_base_ASC sandag 8546 92 92 0.365 36 6% 94% 0% 98%

Calif_base_ASC sacog 8546 92 92 0.366 36 14% 86% 0% 100%

Calif_base_ASC fresno 8546 92 89 0.365 33 11% 81% 8% 81%

Calif_base_ASC 3county 8546 92 91 0.365 35 6% 92% 3% 86%

Florida_base_ASC tampa 4037 82 79 0.347 34 8% 86% 6% 92%

Florida_base_ASC jacksnvl 4037 82 79 0.347 34 8% 86% 6% 92%

No ASC differences for cases with ASC model base  
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Table 2m 

Intermediate stop generation

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 63630 200 200 0.536 100 13% 87% 0% 100%

2State_base sacog 63630 200 200 0.536 100 17% 83% 0% 100%

2State_base fresno 63630 200 196 0.536 96 9% 87% 4% 100%

2State_base 3county 63630 200 200 0.536 100 10% 90% 0% 100%

2State_base tampa 63630 200 200 0.536 100 19% 81% 0% 100%

2State_base jacksnvl 63630 200 200 0.536 100 12% 88% 0% 100%

Calif_base sandag 45144 200 200 0.539 100 14% 86% 0% 98%

Calif_base sacog 45144 200 200 0.539 100 15% 85% 0% 100%

Calif_base fresno 45144 200 196 0.539 96 9% 87% 4% 100%

Calif_base 3county 45144 200 200 0.539 100 9% 91% 0% 100%

Florida_base tampa 18486 200 200 0.528 100 15% 85% 0% 100%

Florida_base jacksnvl 18486 200 200 0.528 100 15% 85% 0% 100%

2State_base_ASC sandag 63630 228 228 0.536 93 14% 86% 0% 100%

2State_base_ASC sacog 63630 228 228 0.536 93 16% 84% 0% 100%

2State_base_ASC fresno 63630 228 224 0.536 89 9% 87% 4% 100%

2State_base_ASC 3county 63630 228 228 0.536 93 9% 91% 0% 100%

2State_base_ASC tampa 63630 228 228 0.536 93 19% 81% 0% 100%

2State_base_ASC jacksnvl 63630 228 228 0.536 93 12% 88% 0% 100%

Calif_base_ASC sandag 45144 214 214 0.539 93 15% 85% 0% 97%

Calif_base_ASC sacog 45144 214 214 0.539 93 14% 86% 0% 100%

Calif_base_ASC fresno 45144 214 210 0.539 89 9% 87% 4% 100%

Calif_base_ASC 3county 45144 214 214 0.539 93 9% 91% 0% 100%

Florida_base_ASC tampa 18486 200 200 0.528 93 15% 85% 0% 100%

Florida_base_ASC jacksnvl 18486 200 200 0.528 93 15% 85% 0% 100%

No ASC differences for cases with ASC model base  
 

Table 2n 
Intermediate stop location

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 12140 152 131 0.229 65 27% 73% 0% 100%

2State_base sacog 12140 152 129 0.225 63 30% 70% 0% 0%

2State_base fresno 12140 152 117 0.198 51 20% 71% 9% 0%

2State_base 3county 12140 152 119 0.225 53 11% 79% 11% 0%

2State_base tampa 12140 152 126 0.228 60 38% 55% 7% 100%

2State_base jacksnvl 12140 152 123 0.228 57 18% 70% 13% 94%

Calif_base sandag 8711 152 130 0.236 64 27% 73% 0% 100%

Calif_base sacog 8711 152 129 0.231 63 29% 71% 0% 0%

Calif_base fresno 8711 152 117 0.205 51 18% 73% 9% 0%

Calif_base 3county 8711 152 119 0.226 53 18% 71% 11% 0%

Florida_base tampa 3429 152 118 0.212 56 18% 68% 14% 100%

Florida_base jacksnvl 3429 152 118 0.213 56 18% 68% 14% 100%

Size variables excluded from the significance and estimability columns  
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Table 2o 
Trip time of day

Base Model 

(basespce)

Difference 

Region 

(difregion)

Number of 

Observations 

(nobs)

Number of 

Coefficients 

Total 

(totpar)

Number of 

Coefficients 

Estimated 

(estpar)

Adjusted 

Rho 

Squared 

(rhosqadj)

Degrees of 

Freedom 

(U - R) 

(chidf)

Significant 

Difference 

Coefficients

Insignificant 

Difference 

Coefficients

Difference 

Coefficients 

Not 

Estimable

Chi 

Squared 

Probabilty 

(chiprob)

2State_base sandag 15554 96 89 0.523 44 22% 76% 2% 99%

2State_base sacog 15554 96 89 0.523 44 7% 91% 2% 100%

2State_base fresno 15554 96 83 0.523 38 20% 64% 16% 99%

2State_base 3county 15554 96 85 0.523 40 31% 58% 11% 97%

2State_base tampa 15554 96 88 0.523 43 27% 69% 4% 99%

2State_base jacksnvl 15554 96 87 0.523 42 18% 76% 7% 96%

Calif_base sandag 10946 96 89 0.518 44 18% 80% 2% 100%

Calif_base sacog 10946 96 89 0.518 44 4% 93% 2% 99%

Calif_base fresno 10946 96 83 0.518 38 18% 67% 16% 98%

Calif_base 3county 10946 96 85 0.518 40 31% 58% 11% 96%

Florida_base tampa 4608 96 85 0.535 41 24% 67% 9% 98%

Florida_base jacksnvl 4608 96 85 0.535 41 24% 67% 9% 98%

2State_base_ASC sandag 15554 208 176 0.522 20 40% 60% 0% 99%

2State_base_ASC sacog 15554 208 176 0.523 20 10% 90% 0% 100%

2State_base_ASC fresno 15554 208 175 0.522 19 40% 55% 5% 99%

2State_base_ASC 3county 15554 208 174 0.522 18 45% 45% 10% 99%

2State_base_ASC tampa 15554 208 176 0.522 20 45% 55% 0% 100%

2State_base_ASC jacksnvl 15554 208 175 0.522 19 20% 75% 5% 95%

Calif_base_ASC sandag 10946 152 130 0.517 20 25% 75% 0% 100%

Calif_base_ASC sacog 10946 152 130 0.517 20 10% 90% 0% 100%

Calif_base_ASC fresno 10946 152 129 0.517 19 40% 55% 5% 99%

Calif_base_ASC 3county 10946 152 128 0.517 18 45% 45% 10% 99%

Florida_base_ASC tampa 4608 96 86 0.535 19 45% 50% 5% 99%

Florida_base_ASC jacksnvl 4608 96 85 0.535 18 45% 50% 5% 100%

No ASC differences for cases with ASC model base  
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Appendix 4:  Summary for all Coefficient Types 

This appendix provides figures showing summaries of estimability and differences from 2-state 

base models by type of coefficient at the finest type categorization used in the analysis.  Size 

variables and log size multipliers are excluded from the summaries.  In cases where a coefficient 

is identified by two types, the following order takes precedence in the summaries: 

C-logsum 

I-impedance 

U-land use 

W-time window 

T-tour/trip 

D-day pattern 

P-person 

H-household 

A-constant 
 
 

Table 1:  Number of coefficients by type 

Coefficient Type 2-state base models all base models difference models

A-constant 152 1368 1884

P-person 154 1386 3878

H-household 83 747 2272

D-day pattern 62 558 1488

T-tour/trip 102 918 2436

I-impedance 94 846 1716

U-land use 76 684 1640

W-time window 45 405 1056

C-logsum 24 216 444

Total 792 7128 16814  
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                                                          Figure 1 

               
 

Figure 2 

 



Making advanced travel forecasting models affordable through model transferability 
A Research Project Sponsored by FHWA under the Broad Agency Announcement DTFH61-10-R-00013 

Final Report  
 

 

John L. Bowman, Ph. D., Mark Bradley and Joe Castiglione September 7, 2013 

page 160 

 
Figure 3 
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Appendix 5:  Feedback from Peer Review Panel 

This appendix contains a memo summarizing feedback offered to the project team by the peer 

review panel at the project peer review meeting.  It was drafted by Scott Smith of the U.S. DOT 

Volpe Center and accepted by the members of the panel. The final report includes edits in 

response to the panel’s recommended changes to the final report.  All seven recommendations 

were addressed except for the literature review, which was excluded due to budget limitations. 
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 Memorandum on the Findings of the Peer Review Panel for 

Advanced Model Transferability 
 

Peer Review Panelists 

 

Name     Organization 
David Ory   Metropolitan Transportation Commission (chairperson)  

Joel Freedman   Parsons Brinckerhoff  

Brian Gregor   Oregon Department of Transportation 

Abdul Pinjari   University of South Florida  

Wu Sun   San Diego Association of Governments 

Scott Smith   Volpe Center (technical support) 
 

This memorandum summarizes the peer review meeting for the report entitled  

Making Advanced Travel Forecasting Models Affordable through Model Transferability, 

co-authored by John Bowman, Mark Bradley and Joe Castiglione.  Both the report and the peer 

review were sponsored by the Federal Highway Administration (FHWA) Office of Planning. 

The peer review meeting was held May 14-15, 2013 at the offices of Resource Systems Group in 

San Diego, and was based on a draft version of the report, dated April 26, 2013.  The remainder 

of this memorandum is organized as follows: 

 Questions for the panelists 

 Panel findings including strengths and limitations of the report, as well as suggested 

modifications 

 Areas for further research 

 An appendix which contains the meeting agenda and list of attendees 

 

Questions for the panelists 

 

Before the meeting, the following questions were presented to panel members:  

 

1. Critique and make suggestions about method, so that methodological issues can be 

documented in the final report and methods can be improved in future transferability studies. 

Some questions to trigger discussion: How can we better deal with the effect of sample size on 

the statistical results? What other statistical tests might be useful?  

2. Provide insight about conclusions that can (or cannot) be drawn from the completed 

analysis, so that the project team can enhance the Executive Overview and the Conclusions 

chapter. Questions: How shall we interpret the disappointing results of the Chi square tests? 

What important conclusions might be apparent from the detailed analysis in chapter 7 that failed 

to make it into the conclusions and executive overview?  

3. Evaluate understandability for different audiences and suggest minor editorial changes to 

the Final Report, to correct errors or improve readability.  
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4. Suggest avenues of further research that would be of most value in the ongoing study of 

model transferability, with a focus on ways to leverage and extend the work that has been done 

in this project.  

 

Panel findings 

 

The research that was presented is timely, relevant and useful.  Activity-based models can be 

data-hungry, and mid-size Metropolitan Planning Organizations (MPOs) may find it difficult to 

obtain enough household survey data.  Given limited budgets for survey work and model 

development, the option of transferring an existing model is often attractive.   

 

The automated, systematic estimation of multiple activity-based models for six regions was a 

large undertaking, carried out in an efficient manner. It was a comprehensive effort, in that it 

considered 15 separate models within an activity based model system.   

 

A good set of hypotheses was presented, and a consistent set of models and tools were used for 

evaluation, considering geographies that are smaller than the Transportation Analysis Zone 

(TAZ). Finally, the report was well-organized, well-written and clear. It would be easily readable 

by the intended MPO audience, although they might struggle with the question of how to apply 

it.   

 

A limitation of the report is that the comparisons as presented would provide little guidance for 

an MPO who is considering transferring a model.   One measure used was the numbers of 

coefficients of varying types whose parameter estimates were significantly different between a 

regional model and a 1-state or 2-state model.  With more than 800 coefficients in total, such an 

analysis is concise, but did not provide a deep understanding of the coefficients that were 

different.  It implicitly assumes that all coefficients are equally important, while in reality, some 

are far more important than others.  Questions that might be asked include:  What coefficients 

are most important?  How do the sensitivities compare?  Which tend to be transferable, and 

which are not?    Simply counting the numbers of different coefficients also makes it difficult to 

compare this work to previous papers on transferability.   

 

The Chi-squared test for assessing the similarity of two models is not particularly useful, because 

it almost always shows that two models are different, even though the differences may be 

practically insignificant.  It may be better to use a transferability index, which would provide an 

indication of the degree to which two models are different.
6
 

 

All of the models used a single specification, a modified version of the Sacramento (SACSIM) 

specification.  Although use of a single specification is important from a comparison standpoint, 

                                                 
6
 For example, see the paper by Sikder, Pinjari, Srinivasan, Nowrouzian, “Spatial Transferability of Travel 

Forecasting Models,” presented at the 4th Innovations in Travel Modeling Conference, Tampa, Florida, and 

downloaded from http://www.trb.org/conferences/InnovationsinTravelModeling2012.aspx  

http://www.trb.org/conferences/InnovationsinTravelModeling2012.aspx
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it leaves open the question of whether some of the transferability results are simply due to the 

chosen specification.  Could transferability be improved by changing the model specification?  

Also, how well would the existing Sacramento model transfer to the model for Sacramento that 

was estimated for this project?   

 

The report did not anticipate what readers might criticize, in particular the choice of the modified 

SACSIM model as a base model specification 

 

Finally, the conclusion, that “although estimation of models using a large local sample is best, it 

is better to transfer models that are based on a large sample from a comparable region than it is 

to estimate new models using a much smaller local sample,” requires more nuance and caveats.   

For some special markets, this might not be true.  Also, data collection will still be needed, for 

calibration if nothing else.   

 

The panel recommends the following changes to the final report: 

 

1. Discuss transferability more broadly.  Model transferability is a larger topic than similarity 

of coefficients, and the distinction needs to be clearer.  Transferability also has value beyond 

inexpensive model development.  For a region that is rapidly growing or adding new travel 

options, it might be better to transfer a model from a larger region than to attempt to 

estimate a model based on the region as it exists now.  Some discussion of the role of 

transferability and data collection (surveys) should be included.   

2. Consider adding a literature review.  The academic community is not likely to take this work 

seriously unless a literature review is included.  A brief literature review may help to 

provide context for the two studies that were mentioned near the end of the report, in the 

section “Comparison To Two Recent Transferability Studies.”  On the other hand, the panel 

recognized that an exhaustive literature review is most likely out of scope for this research.   

3. Clarify how the logsums are computed. 

4. Motivate the selection of base model (modified SACSIM) specification. 

5. Summarize results by categories of variables.  Table 4.3 presents 11 types of variables, but 

little use of them is made in the report.   

6. Create a data dictionary for excel spreadsheet.  The spreadsheet of model results is well 

organized and should be made publicly available.  It will be more useful if a data dictionary 

explaining the variables is added.   

7. Add more nuance to the conclusions, by noting that data collection will still be necessary for 

calibration, and that the transferability findings may not apply where the regions are 

significantly different.  For example, a university town may have significantly different 

characteristics from any of the regions studied here.   

 

Areas for further research 

 

The report suggested that the research could be extended by adding other regions where add-on 

samples are available from the National Household Travel Survey (NHTS).  Although there 

would be some value in creating a multi-state model specification, panel members felt that it 
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should be a higher priority to perform more in-depth analysis on the existing data.  Simply 

adding more regions with small samples would add little value.  

 

It may be helpful to replace the SACSIM model specification with a new specification that is 

based on the combined 2-state data.   

 

Some areas to explore in a more in-depth analysis using the current data include different 

measures of transferability, exploration of individual parameters, scale differences, variables that 

address differences among regions, and weighted estimation. 

 

As noted earlier, the Chi-squared test is of limited use.  Other options, such as the transfer index 

mentioned earlier, would provide more information than a yes-no answer, and should be 

explored.  The transfer index measures the goodness of fit of a transferred model versus the 

locally specified model.  It thus provides an indication of the extent of transferability.   

 

The combined models include well over 800 parameters. Some are, obviously, more important 

than others in their influence on model predictions.  It would be valuable to identify which 

parameters are the most important, and do some sensitivity testing on them, to determine 

elasticities. Are the same parameters important across the various models, and do these 

parameters transfer easily from model to model?   What is the sensitivity to policy changes? 

 

Since the utility functions used in these models have no units, coefficients are scaled relative to 

the residual error term.  Differing scales on the regional models could confound the 

transferability results, and it would be helpful to determine whether there are significant scale 

differences among the models that were tested.  

 

Region-wide variables could be used to address differences among regions.  Examples include 

the history of growth in the region (very different for, say, Phoenix and Detroit), an overall 

congestion index, or an index of income that accounts for cost of living (A particular household 

income might be less than the median household income in San Diego, but more than the median 

in Fresno). They could help to address the question of the evolution of a region over time: what 

if one region becomes more like another region?     

 

A weighted estimation approach that controls for differing sample sizes could be explored.   

 

It may be helpful to explore the largest data set (the 6000 households from San Diego) to 

examine sample size effects, to see what happens to estimability and significance for sample 

sizes that are between 2500 and 6000.  Response curves could be developed for the estimability 

and significance of coefficients for different models as a function of sample size.   

 

Although the estimation-based approach used in this report allows for explicit statistical tests of 

the differences in coefficients, it would be helpful to explore the application based approach, and 

perform sensitivity tests to see if the models differ significantly in their predictions of observed 

choices.  Such an application-based approach is more common in studies of transferability, and 

more directly relates to the decisions that these models may be supporting.   
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Moving beyond transferability and the current report, a number of areas were identified as 

research priorities:  

 

Destination location choice models appear to be the weakest and least transferable in the model 

chain.  Improving the estimation of the usual workplace location would add significant value.  

Research questions include 

 

 How does sample size affect location choice models? 

 How does the choice of geographic subunits, ranging from TAZ to parcel, affect location 

choice models? 

 What can be done with improved land use data, such as assessments or parcel level data 

from Google?   

 How can GPS-assisted travel surveys help? 

 What is the dependence between destination choice and mode choice? 

 

A second research interest is to better understand the sources of variation and uncertainty, so that 

more robust models can be built with respect to the variety of futures that may occur.  Questions 

include 

 

 How can sampling and simulation variation be characterized? 

 How can temporal stability be characterized?  What happens as an area grows, or its culture 

changes? 

 

A third research interest is the modeling of special markets (such as university towns), and how 

insights from them can be applied elsewhere.  Under what circumstances is transit oriented 

development effective (the so-called myth of the transit village)?  Universities often have 

restrictive parking policies; what can be learned from them? 
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Appendix:  Meeting Agenda and Attendees 

PEER REVIEW AGENDA  

Day One—Tuesday, May 14, 2013  

8:30 Welcome and Introductions 

Brian Gardner, FHWA System 

Planning & Analysis Team Leader 

 

Supin Yoder, FHWA Project Manager 

9:00 
Project Introduction (report chapters 2-

4) 

John L Bowman, Principal 

Investigator 

9:30 
The Regions and Their Data (report 

chapter 5 & Appendix 1) 
Joe Castiglione, Co-investigator 

10:00 

Model Estimation and Transferability 

Testing Approach (report chapter 6 & 

Appendices 2,3) 

Mark Bradley, Principal Investigator 

11:30 Results (report chapters 7-8) John L Bowman and Mark Bradley 

12:00 Lunch (working if behind schedule)  

1:00 Results (continued)  

2:30 Current ideas for further research John L Bowman and Mark Bradley 

3:00 Separate closed session for panel Panel led by panel chairperson 

4:30 End of first day  

Day Two—Wednesday, May 15, 2013 

8:30 
Panel closed session, final prep for 

feedback 
Panel chairperson and other members 

9:00 Presentation of panel feedback Panel chairperson and other members 

10:00 Open discussions Brian Gardner & Supin Yoder 

11:30 Concluding comments 
John Bowman, Mark Bradley & Joe 

Castiglione 

12:00 Dismissal  
 

 

 

Attendees: 

 

Name     Organization 

John Bowman   Bowman Research and Consulting 

Mark Bradley   Resource Systems Group 

Joe Castiglione  Resource Systems Group 

Joel Freedman   Parsons Brinckerhoff  

Brian Gardner   FHWA (May 14 only) 

Brian Gregor   Oregon DOT 

David Ory   Metropolitan Transportation Commission (chairperson)  

Abdul Pinjari   University of South Florida  

Scott Smith   Volpe Center, US DOT 

Wu Sun   San Diego Association of Governments 

Supin Yoder   FHWA 


