Activity-Based Models: What, Why and How

Institute for Transport Studies, University of Leeds August 6, 2013

AB Models in the U.S.

AB Models in the U.S.

Copenhagen ACTUM Project

- funded by the Danish Strategic Research Council
- led by Danish Technical University
- involves several universities and collaborators, including Leeds
- to develop an advanced activity-based model (COMPAS—Copenhagen Model for Person-Activity Scheduling)

Outline: How AB models are designed to achieve the desired benefits

- Microsimulate an entire day for each person
- Model household interactions explicitly
- Use a fine-grained representation of space

A closer look at two model components

- Person Day Activity Pattern
- Primary Family Priority Time

Outline: How AB models are designed to achieve the desired benefits

- Microsimulate an entire day for each person
- Model household interactions explicitly
- Use a fine-grained representation of space

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? Generate a synthetic population...

Household	Person
	person type
Household income	age in years
Residence parcel id	gender
	worker type
	student type

...and use those characteristics in choice models that generate a schedule for each household.

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? Aggregate results in any way desired.

Household

Vehicles available Household income Residence parcel id

Person	
person type	
age in years	
gender	
worker type	
usual work parcel id	
student type	
usual school parcel id	
transit pass?	
paid parking at workplace	

Tour	
parent tour id	
number of subtours	
prim.dest.purpose	
time leave tour origin	
time larrive tour dest	
time leave tour dest	
time arrive tour origin	
tour origin parcel	
tour dest parcel	
tour main mode	
tour mode path type	

Trip	
tour half	
trip# within half tour	
trip origin purpose	
trip dest purpose	
trip origin parcel	
trip dest parcel	
trip mode	
trip mode path type	
trip driver or passenger	
trip deparute time	
trip arrival time	
trip dest activity end time	
network travel time	
network travel cost	
network travel distance	

Household Day

PFPT participation

PFPT start time

PFPT duration

Person Day		
Vinutes worked at home		

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? An integrated system of choice models

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? Person Day Activity Pattern Model

- Model simultaneously
 - Presence of tour purposes
 - Presence of intermediate stop purposes
- Chosen combinations depend on
 - Personal characteristics
 - Household characteristics
 - Accessibility

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? Construct a trip chain for each half tour.

Work

Start with known tour outcomes

- --purpose
- --destination
- --main tour mode
- --arrival and departure time periods
- Model stops on each half tour

Home

Generate a stop for some purpose (or not)

Stop Generation model

ITS Leeds, August 6, 2013

...then the stop location...

Location Choice model

ITS Leeds, August 6, 2013

...then the trip mode...

Mode Choice model

ITS Leeds, August 6, 2013

...and the arrival time.

Arrival Time Choice model

ITS Leeds, August 6, 2013

Generate another stop? (not this time)

For the 'last' trip in the half tour model mode choice...

...and arrival time.

Then repeat for the second half tour

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? Time of day choice models for tours and intermediate stops

- Arrival and duration shift variables
- Example effects
 - People shift travel to periods with shorter travel time
 - part time employees more likely to arrive at work later and have shorter work day

Likely outcome for FT employee

Likely outcome for PT employee

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? Rigorous time window accounting

- When something is scheduled its time span is occupied
- Tight schedules affect choices
 - Hard constraints: infeasible alternatives are ruled out
 - Soft constraints: feasible alternatives causing tight schedules are less attractive

Simulation Event	Occupied time spans
Work tour scheduled	7:53 AM to 4:47 PM
No stop on way to work scheduled	7:04 AM to 4:47 PM
Stop on way home scheduled	7:04 AM to 5:30 PM
No other stop on way home scheduled	7:04 AM to 6:05 PM
Tour to eat out scheduled	7:04 AM to 6:05 PM 7:30 PM to 9:15 PM
No stop on way to eat out scheduled	7:04 AM to 6:05 PM 7:15 PM to 9:15 PM
No stop on way home scheduled	7:04 AM to 6:05 PM 7:15 PM to 9:30 PM

- use personal and household characteristics to explain choices
- measure policy impacts on flexibly defined population subsegments
- represent how choices for a day constrain travel choices
- capture effects of time and cost on a day's activity participation choices
- include interactions among tours and intermediate stops
- include chained and non-home based trips realistically
- capture effects of time-of-day policies
- Use time constraints to limit alternatives and affect choices
- (Need to consistently use all features for estimation and application)

ITS Leeds, August 6, 2013

How? Software code that supports model estimation and application

Outline: How AB models are designed to achieve the desired benefits

- Microsimulate an entire day for each person
- Model household interactions explicitly
- Use a fine-grained representation of space

Why model household interactions explicitly?

 Yields coherent travel choices among household members

Why model household interactions explicitly?

- Yields coherent travel choices among household members
- Can represent joint activity and travel
Why model household interactions explicitly?

- Yields coherent travel choices among household members
- Can represent joint activity and travel
- Joint travel impacts responsiveness to transport policies

Why model household interactions explicitly?

- Yields coherent travel choices among household members
- Can represent joint activity and travel
- Joint travel impacts responsiveness to transport policies
- At-home family activities correlate with travel choices

Why model household interactions explicitly?

- Yields coherent travel choices among household members
- Can represent joint activity and travel
- Joint travel impacts responsiveness to transport policies
- At-home family activities correlate with travel choices
- Joint decisions constrain and influence individual choices

How? Household Day Activity Pattern

- Vuk et al (2013)
- Participation Model
 - Shared at-home activity
- Schedule Model
 - Start minute and duration minutes

- Based on Bradley & Vovsha (2005)
- Joint for up to five HH members
- Up to three pattern type alternatives per person

- Work at Home Model
- Mandatory Tour Generation Model
- Mandatory Stop Presence Model

- Shared travel to work and school
- Joint Half Tour Generation Model
 - Fully joint or partially joint
- Participation Model
 - Jointly for up to five persons

- Shared travel for non-mandatory activity
- Joint Tour Generation Model
- Participation Model
 - Jointly for up to five persons

- Person Day Pattern Model
 - Presence in day of...
 - tour purposes
 - intermediate stop purposes
- Tour Generation Model
 - Exact number of tours for each purpose

Outline: How AB models are designed to achieve the desired benefits

- Microsimulate an entire day for each person
- Model household interactions explicitly
- Use a fine-grained representation of space

- measure attractiveness better for location choice
- capture neighborhood effects on location choices
- include the impact of true walk distances in travel choices
- model short intra-zonal travel choices better
- represent transit alternatives more accurately in mode choice
- Handle bicycle and walk modes as effectively as cars and transit

- measure attractiveness better for location choice
- capture neighborhood effects on location choices
- include the impact of true walk distances in travel choices
- model short intra-zonal travel choices better
- represent transit alternatives more accurately in mode choice
- Handle bicycle and walk modes as effectively as cars and transit

How? Use parcels or microzones for destination choice.

- Parcel attributes include:
 - Location
 - Area
 - Housing units
 - Enrollment by school type
 - Employment by sector
 - Transportation network access
 - Urban form measures
 - Offstreet parking

Ex. TAZs, microzones and parcels

- measure attractiveness better for location choice
- capture neighborhood effects on location choices
- include the impact of true walk distances in travel choices
- model short intra-zonal travel choices better
- represent transit alternatives more accurately in mode choice
- Handle bicycle and walk modes as effectively as cars and transit

How? Measure attributes in neighborhood of parcel or microzone centroid

- Attributes buffered
 - Housing units
 - Employment by sector
 - School enrollment
 - Street intersections by type (dead end, 3-way, 4-way)

Meal Tour Destination Choice Model (PSRC)

Attribute	Parcel size effect (relative to base)	Neighborhood effect (coefficient)
Food employment	1.000	0.261
Retail employment		0.010
Service employment		-0.190
Total employment	Tiny	
Households	Tiny	

- measure attractiveness better for location choice
- capture neighborhood effects on location choices
- include the impact of true walk distances in travel choices
- model short intra-zonal travel choices better
- represent transit alternatives more accurately in mode choice
- Handle bicycle and walk modes as effectively as cars and transit

How? Use all-streets network to measure impedance for short trips

- Associate each parcel (or microzone) and transit stop with its nearest node
- Calculate shortest network paths between all node pairs less than 2-3 miles apart
- Use for impedance calculations
 - instead of zone-to-zone impedance for walk and short bike trips
 - for transit walk access and egress times
 - rescale zone-to-zone auto impedance for short trips
- Use for weighting in the parcel (or microzone) buffer calculations

- measure attractiveness better for location choice
- capture neighborhood effects on location choices
- include the impact of true walk distances in travel choices
- model short intra-zonal travel choices better
- represent transit alternatives more accurately in mode choice
- Handle bicycle and walk modes as effectively as cars and transit

How? measure transit impedance using stop areas instead of zones

- Walk access and egress impedance: parcel-to-stop using Enhanced short distance calculation
- Transit impedance from boarding stop to alighting stop
- AB model chooses best combination of transit stops

- measure attractiveness better for location choice
- capture neighborhood effects on location choices
- include the impact of true walk distances in travel choices
- model short intra-zonal travel choices better
- represent transit alternatives more accurately in mode choice
- Handle bicycle and walk modes as effectively as cars and transit

How? Bicycle route choice model (a newly emerging capability)

- Route choice model
 - use all-streets network
 - with bicycle-specific attributes for disaggregate bike route choice model
 - Link type (wide cycle track, narrow cycle track, lane, etc)
 - Cumulative elevation gain
 - Motorized volumes and speeds (or proxies)
 - Bicycle intersection provisions (eg: automatic signal activation; green wave signal timing)
 - Number of stops and turns
- Use route choice logsum in mode choice model

A closer look at two model components

- Person Day Activity Pattern
- Primary Family Priority Time

Person Day Activity Pattern

Person Day Pattern

- Presence or absence in day of...
 - tours for each purpose
 - intermediate stops for each purpose
- Purposes:
 - Work, business, school
 - Escort, personal business, shop, meal, social, recreation, medical

Choice Set (Seattle) has 3051 alternatives

- Include combinations of:
 - 7 binary tour purpose variables
 - 7 binary stop purpose variables
 - This would yield 2^14 = 16384 alternatives
- Remove extremely rare combinations:
 - Number of tour purposes > 3
 - Number of stop purposes > 4
 - Number tour purposes plus number stop purposes > 5
- Allows interactions between tours, stops and purposes to be modeled explicitly

Example Household Day

Conditioning Values: Household and Persons

Household			
Vehicles available	1		
Household income	150К		
Residence parcel id	11111		
Person	Adult 1	Adult 2	Child
person type	FT Worker	PT Worker	Child 5-15
age in years	41	40	12
gender	Male	Female	Female
worker type	FT	РТ	null
usual work parcel id	22222	33333	null
student type	nonstudent	nonstudent	Student
usual school parcel id	null	null	44444
transit pass	No	No	No
paid parking at workplace	No	No	null

ITS Leeds, August 6, 2013

Conditioning Values: Household Day

HouseholdId	10
JointTours	1
PartialHalfTours	2
FullHalfTours	0
StartingMinuteSharedHomeStay	18:00
DurationMinutesSharedHomeStay	50
PrimaryPriorityTimeFlag	TRUE

Conditioning Values: Joint Tour

HouseholdId	10
Sequence	1
MainPurpose	Social
Participants	2
PersonSequence1	1
TourSequence1	2
PersonSequence2	3
TourSequence2	2
PersonSequence3	
TourSequence3	
PersonSequence4	
TourSequence4	

PersonSequence5

TourSequence5

Conditioning Values: Person Days

	Adult 1	Adult 2	Child
HouseholdId	10	10	10
PersonSequence	1	2	3
HomeBasedTours	TRUE	TRUE	TRUE
WorkBasedTours			
UsualWorkplaceTours	1	1	0
WorkTours	1	1	0
BusinessTours	0	0	0
SchoolTours	0	0	1
EscortTours			
PersonalBusinessTours			
ShoppingTours			
SocialTours	TRUE		TRUE
BusinessStops	0	TRUE	0
SchoolStops	0	0	0
EscortStops			
PersonalBusinessStops			
ShoppingStops			
SocialStops			
WorkAtHomeDuration	0	120	0
PatternType	Mandatory	Mandatory	Mandatory

Modeled Outcomes: Person Days

	Adult 1	Adult 2	Child
HouseholdId	10	10	10
PersonSequence	1	2	3
HomeBasedTours	TRUE	TRUE	TRUE
WorkBasedTours			
UsualWorkplaceTours	1	1	0
WorkTours	1	1	0
BusinessTours	0	0	0
SchoolTours	0	0	1
EscortTours	0	0	0
PersonalBusinessTours	0	0	0
ShoppingTours	0	0	0
SocialTours	TRUE	0	TRUE
BusinessStops	0	TRUE	0
SchoolStops	0	0	0
EscortStops	0	0	0
PersonalBusinessStops	0	0	0
ShoppingStops	TRUE	0	0
SocialStops	0	0	0
WorkAtHomeDuration	0	120	0
PatternType	Mandatory	Mandatory	Mandatory

Summary Estimation Results

Number observations	17353
Number alternatives	3051
Estimated Coefficients	364
Likelihood (0)	-120337
Likelihood (C)	-61203
Likelihood (Final)	-50180
Rho-Squared (w.r.t. C)	.180
Rho-Squared (w.r.t. 0)	.583

Utility Term Categories

Category	Example
Activity Purpose Presence	Dummy for Full Time Worker with shopping tour(s) and/or stop(s)
Tour Purpose Presence	Mixed use density for pattern with one or more tours of any purpose
Stop Purpose Presence	Constant for presence of one or more social stops
Ln(# tour purposes)	Log(number tour purposes) for a retired person
Ln(# stop purposes)	Log(number stop purposes) for female with children under 5
Tour and Stop Combos	Constant for pattern with one or more work tours and one or more escort stops

Estimated Coefficients

	Activity Purpose Presence*	Tour Purpose Presence	Stop Purpose Presence	Ln(# tour purposes)	Ln(# stop purposes)	Tour and Stop Combos
Constants		7	7			116
Person characteristics	71	1	2	13	13	
Household characteristics	77	1	1	11	11	
Neighborhood characteristics		2	2	2	2	
Day				2	2	
Logsums						10
Nuisance**	7					

*Activity purpose is present if there is at least one tour or intermediate stop with that purpose **For diaries completed by a proxy

	Patterns with additional tour purpose(s)		Pattern intermedia	s with ate stops
	Tour Coef	f (T stat)	Stop Coef	f (T stat)
Work tour mode choice logsum	-0.014	(-0.66)	0.036	(2.13)
At-home mode- destination logsum	0.042	(2.17)	0.033	(2.30)

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T stat)
Work tour mode choice logsum	-0.014 (-0.66)	0.036 (2.13)
At-home mode- destination logsum	0.042 (2.17)	0.033 (2.30)

	Patterns with additional tour purpose(s)		Pattern intermedia	s with ate stops
	Tour Coef	ff (T stat)	Stop Coef	f (T stat)
Work tour mode choice logsum	-0.014	(-0.66)	0.036	(2.13)
At-home mode- destination logsum	0.042	(2.17)	0.033	(2.30)

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T star)
Work tour mode choice logsum	-0.014 (-0.66)	0.036 (2.13)
At-home mode- destination logsum	0.042 (2.17)	0.033 (2.30)

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T stat)
Work tour mode choice logsum	-0.014 (-0.66)	0.036 (2.13)
At-home mode- destination logsum	0.042 (2.17)	0.033 (2.30)

Logsums on school days

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T stat)
School tour mode choice logsum	-0.014 (-0.19)	0.627 (7.74)
At-home mode- destination logsum	0.090 (3.84)	-0.007 (-0.37)

Logsums on school days

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coerr (1 Stat)
School tour mode choice logsum	-0.014 (-0.19)	0.627 (7.74)
At-home mode- destination logsum	0.090 (3.84)	-0.007 (-0.37)

Logsums on school days

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T stat)
School tour mode choice logsum	-0.014 (-0.19)	0.627 (7.74)
At-home mode- destination logsum	0.090 (3.84)	-0.007 (-0.37)

Logsums on on-tour non-commute days

	Patterns with additional tour purpose(s)		Pattern intermedia	s with ate stops
	Tour Coeff	(T stat)	Stop Coef	f (T stat)
At-home mode- destination logsum	0.077	(4.61)	0.000	(0.02)

Logsums on on-tour non-commute days

A closer look at two model components

- Person Day Activity Pattern
- Primary Family Priority Time

Primary Family Priority Time (Vuk, et al, 2013, Copenhagen)

PFPT Definition

- Shared at-home activity
- All members of household
- At least 20 minutes
- Purpose other then work, school, commerce

Rationale for PFPT model

- family life implies that family members might like to spend time together
 - and to prioritise this time, i.e. schedule other activities around it
 - e.g. work schedules
 - seems particularly important in Denmark

PFPT Implementation

- Participation Model
 - Binary choice
- Schedule Model
 - Start time and duration
- The updated time windows constrain subsequent choices

Copenhagen data

- Travel survey data has been collected for 20+ years
 - diary of travel by one person per household in a weekday
- extended survey was needed to include whole household
 - asked about activities at home with other household members
 - 2209 persons in 801 households

PFPT Participation Summary Statistics

Number observations	644
Degrees of freedom	14
Rho squared (w.r.t. 0)	0.499
Rho squared (w.r.t.	0.446
constants)	

Dummy Variables

Variable (PFPT alternative)	Coeff	T Stat
Constant	-1.691	-4.00
HH size 3	-1.128	-3.20
HH size 4+	-1.409	-3.58
Pre-school children	1.087	3.41
One adult + school children	1.116	2.88
Two adults, both working	1.780	4.15
Two adults, one with high education	3.513	10.68
Two adults, one car	-0.434	-1.53
Two adults, 2+ cars	-0.847	-1.89
HH income 3-600,000 DKK	0.613	1.52
HH income 6-900,000 DKK	0.334	0.76
HH income over 900,000 DKK	-0.170	-0.35

John L. Bowman, Ph.D.

Logsums—accessibility to workplaces increases likelihood of PFPT

Variable (PFPT alternative)	Coeff	T Stat
Work tour mode choice logsums	0.122	1.44
for up to two workers		
At-home mode-dest logsum for	-0.002	-0.07
nonworking household		

PFPT Effects in Subsequent Model Components

- Time window constraints—travel activities can't occur during time reserved for PFPT
- PFPT households more likely to travel together to work and school
- PFPT households more likely to conduct joint tours for shopping and social purposes

Outline: How AB models are designed to achieve the desired benefits

- Microsimulate an entire day for each person
- Model household interactions explicitly
- Use a fine-grained representation of space

A closer look at two model components

- Person Day Activity Pattern
- Primary Family Priority Time

Collaborators in US AB Model Development

- Mark Bradley
- Resource Systems Group (Vermont)
 - Joe Castiglione
 - others
- DKS Associates (Sacramento)
 - John Gibb
 - John Long
- Public agency clients

Collaborators in Copenhagen (DTU Actum Research Project)

- Goran Vuk (Danish Road Directorate)
- Christian Overgård Hansen (DTU)
- Andrew Daly and Stephane Hess (Leeds University)
- Resource Systems Group

Questions?