DaySim

Activity-Based Modelling Symposium

Research Centre for Integrated Transport and Innovation (rCITI) UNSW, Sydney, Australia March 10, 2014

> John L Bowman, Ph.D. John_L_Bowman@alum.mit.edu JBowman.net

DaySim's Roots The Day Activity Schedule (TRB January 1994)

DaySim and related models 2014

Outline

- Basic Features
- Model structure and associated features
- Software

Outline

- Basic Features
- Model structure and associated features
- Software

DaySim is a travel demand simulator that equilibrates with network assignment models

DaySim uses primarily discrete choice models of the logit family

$$P_n(i) = \frac{\exp(\beta' X_{in})}{\sum_j \exp(\beta' X_{jn})}$$

Where *i* and *j* index discrete alternatives

 $P_n(i)$ is the probability that person *n* chooses alternative *i*

 X_{in} is a vector of explanatory variables

 β is a vector of coefficients

DaySim is an integrated system of choice models

Within **DaySim**, model integration is important

- Downward (conditionality)
- Upward (accessibility)

Within **DaySim**, model integration is impotant

- Downward (conditionality)
- Upward (accessibility)

DaySim uses fine spatial detail Parcels or Microzones

- Attributes include:
 - Location
 - Area
 - Housing units
 - Enrollment by school type
 - Employment by sector
 - Transportation network access
 - Urban form measures
 - Offstreet parking

Ex. TAZs, microzones and parcels

Why use a fine-grained representation of space?

- measure attractiveness better for location choice
- capture neighborhood effects on location choices
- include the impact of true walk distances in travel choices
- model short intra-zonal travel choices better
- represent transit alternatives more accurately in mode choice
- Handle bicycle and walk modes as effectively as cars and transit

Measure walk access and egress more accurately (Philadelphia)

- Walk access and egress impedance: parcel-to-stop using Enhanced short distance calculation
- Transit impedance from boarding stop to alighting stop
- AB model chooses best combination of transit stops

...improves work mode choice estimation results (and prediction)

	TAZ	-based	Link	-based
Log-likelihood	-4	-637	-4	607
Values of time	\$/hr	(T)	\$/hr	<u>(T)</u>
Car- drive alone	2.2	(1.2)	4.6	(2.5)
Transit- in vehicle	1.4	(1.4)	1.9	(1.9)
Transit- wait	5.9	(3.5)	5.3	(3.3)
Transit- walk	0.9	(0.2)	12.2	(6.1)

From Portland Metro (Bowman, et al, 2001)

Use similar techniques for other mode combinations

- Auto park and ride
- Auto park and walk
- Auto kiss and ride
- Bicycle park and ride
- Bicycle on board transit

Outline

- Basic Features
- Model structure and associated features
- Software

DaySim Model Structure

Long term models

Day models

Day models

 Yields coherent travel choices among household members

- Yields coherent travel choices among household members
- Joint travel impacts responsiveness to transport policies

- Yields coherent travel choices among household members
- Joint travel impacts responsiveness to transport policies
- At-home family activities correlate with travel choices

- Yields coherent travel choices among household members
- Joint travel impacts responsiveness to transport policies
- At-home family activities correlate with travel choices
- Joint decisions constrain and influence individual choices

Many tours have joint travel (Seattle example)

- Copenhagen
- Vuk et al (2013)
- Participation Model
 - Shared at-home activity
- Schedule Model
 - Start minute and duration minutes

Logsums—accessibility to workplaces and at home affect likelihood of PFPT

Variable (PFPT alternative)	Coeff	T Stat
Work tour mode choice logsums for	0.134	1.58
up to two workers		
At-home non-auto	-0.031	-2.38
mode-destination logsum		

PFPT affects subsequent model components

- *Time window constraints travel activities can't occur during time reserved for PFPT*
- PFPT workers more likely to take care of personal business on work-based subtours
- PFPT households more likely to conduct joint tours for non mandatory purposes

- Based on Bradley & Vovsha (2005)
- Joint for up to five HH members
- Up to three pattern type alternatives per person
 - Mandatory on tour
 - Non-mandatory on tour
 - At home all day

- Work at Home Model
- Mandatory Tour Generation Model
- Mandatory Stop Presence Model

- Shared travel to work and school
- Joint Half Tour Generation Model
 - Fully joint or partially joint
- Participation Model
 - Jointly for up to five persons

- Shared travel for non-mandatory activity
- Joint Tour Generation Model
- Participation Model
 - Jointly for up to five persons

- Person Day Pattern Model
 - Presence in day of...
 - 9 tour purposes
 - 9 intermediate stop purposes
- Tour Generation Model
 - Exact number of tours for each purpose

Logsums on work days (Seattle)

	Patterns with additional tour purpose(s)		Pattern intermedia	s with ate stops
	Tour Coef	f (T stat)	Stop Coef	f (T stat)
Work tour mode choice logsum	-0.014	(-0.66)	0.036	(2.13)
At-home mode- destination logsum	0.042	(2.17)	0.033	(2.30)

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T stat)
Work tour mode choice logsum	-0.014 (-0.66)	0.036 (2.13)
At-home mode- destination logsum	0.042 (2.17)	0.033 (2.30)

	Patterns with additional tour purpose(s) Tour Coeff (T stat)		Pattern intermedia Stop Coeff	s with ate stops f (T stat)
Work tour mode choice logsum	-0.014	(-0.66)	0.036	(2.13)
At-home mode- destination logsum	0.042	(2.17)	0.033	(2.30)

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T star)
Work tour mode choice logsum	-0.014 (-0.66)	0.036 (2.13)
At-home mode- destination logsum	0.042 (2.17)	0.033 (2.30)

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T stat)
Work tour mode choice logsum	-0.014 (-0.66)	0.036 (2.13)
At-home mode- destination logsum	0.042 (2.17)	0.033 (2.30)

Logsums on school days

	Patterns with additional tour purpose(s)	Patterns with intermediate stops
	Tour Coeff (T stat)	Stop Coeff (T stat)
School tour mode choice logsum	-0.014 (-0.19)	0.627 (7.74)
At-home mode- destination logsum	0.090 (3.84)	-0.007 (-0.37)

Logsums on on-tour non-commute days

	Patterns with additional tour purpose(s)		Pattern intermedia	s with ate stops
	Tour Coeff	(T stat)	Stop Coef	f (T stat)
At-home mode- destination logsum	0.077	(4.61)	0.000	(0.02)

Day models with explicit intra-household interactions

Day models without explicit intra-household interactions

- It is a lot simpler
 - Dealing with survey data
 - Estimating models
 - Calibrating and validating
- Not essential for many of the benefits of AB models, e.g.:
 - Time-of-day price sensitivity
 - Induced demand and trip chaining
 - Equity analysis

Tour and Trip Models

DaySim Base Year Intermediate Stops on Tours (Copenhagen)

DaySim uses fine temporal detail

Discrete Choice Model Formulation for Time of Day (Vovsha and Bradley, 2004)

- Logit model
- Important effects captured via 'shift' variables (analogous to hazard duration models)

'Shift' effects--examples

 part time employees more likely to arrive at work later and have shorter work day

Likely outcome for FT employee:

Likely outcome for PT employee:

3	4	8	12	16	20	24 2	6

 People shift travel to periods with lower travel time and cost

Copenhagen: Congestion and Road Pricing

DaySim uses rigorous time window accounting

- When something is scheduled its time span is occupied
- Tight schedules affect choices
 - Hard constraints: infeasible alternatives are ruled out
 - Soft constraints: feasible alternatives causing tight schedules are less attractive

Simulation Event	Occupied time spans
Work tour scheduled	7:53 AM to 4:47 PM
No stop on way to work scheduled	7:04 AM to 4:47 PM
Stop on way home scheduled	7:04 AM to 5:30 PM
No other stop on way home scheduled	7:04 AM to 6:05 PM
Tour to eat out scheduled	7:04 AM to 6:05 PM 7:30 PM to 9:15 PM
No stop on way to eat out scheduled	7:04 AM to 6:05 PM 7:15 PM to 9:15 PM
No stop on way home scheduled	7:04 AM to 6:05 PM 7:15 PM to 9:30 PM

Sensitivity to pricing via auto path type choice (uses findings of SHRP 2 C04 and C10)

- In some cases, a driver has the choice between a faster tolled path and a slower untolled path.
- Traffic model estimates attributes of both paths
- DaySim chooses between tolled and untolled path
 - Uses random variation in value of time

Outline

- Basic Features
- Model structure and associated features
- Software

DaySim software: written in C# and distributed with open source license

▶ Daysim - Microsoft Visual Studio Express 2012 for Windows Desktop FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOW HELP 節 留 留 論 習 ジー C - O - O - ト Start - Debug - Any CPU - 月 _{年 →} 論 作 マ や ■ 第 第 第 第 第 章	Quick Launch (Ctrl+Q) 👂 – 🗗 🗙
ActumChoiceModelRunner.cs 🔹 🗙	Solution Explorer 👻 👎 🗙
🔩 Daysim.ModelRunners.ActumChoiceModelRunner + 🛇 RunChoiceModels() +	○○☆ ७-≠0, @ @ ◇ ₽ ◘
<pre>* Deprim ModelFunner: ActumChoiceModelSuner</pre>	Search Solution Explorer (Ctrl+:) Solution Daysim' (6 projects) ■ DomainModels ■ ChoiceModels ■ DomainModels ■ Factories ■ ModelRunners ■ ParkAndRideShadowPricing ■ ParkAndRideShadowPricing ■ ShadowPricing ■ ShadowPricing ■ ShadowPricing ■ CoiceModels ■ ModelRunners ■ ParkAndRideShadowPricing ■ ShadowPricing ■ ShadowPricing ■ CoolegameScalculator.cs ■ Opyeriod.cs ■ CobalSuppressions.cs ■ C BayPeriod.cs ■ C BayPeriod.cs ■ C BayPeriod.cs ■ C BayPeriod.cs ■ C BoyPeriod.cs ■ C BoyInflowEightSettings.cs ■ C BoyInflowEightSettings.cs ■ C BoyIngWeightSettings.cs ■ C Program.cs ■ C SamplingWeightSettings.cs ■ C SamplingWeightSettings.cs ■ C SamplingWeightSettings.cs ■ C SamplingWeightSettings.cs ■ C SamplingWeightSettingsSimple.cs ■ C TourTime.cs ■ C TourTime.cs ■ C TourTime.cs
100 % - 4	C# DaysimController

Activity-Based Model Systems

John L Bowman, Ph.D. (www.JBowman.net)

DaySim software: supports model estimation and application

Problem Size				
Households / persons	.9 M / 2.2 M			
Zones / parcels	1533 / 0.7 M			
assignment periods / classes	12 / 3			

Performance	Threads	Hrs per iteration	Hrs (7 global iterations)	
DaySim	4	0.7	4.7	25%
Assignment, etc	3	2.0	14.3	75%
Total		2.7	19	

Problem Size		
Households / persons	.9 M / 2.2 M	
Zones / parcels	1533 / 0.7 M	
assignment periods / classes	12 / 3	

Performance	Threads	Hrs per iteration	Hrs (7 global iterations)	
DaySim	4	0.7	4.7	25%
Assignment, etc	3	2.0	14.3	75%
Total		2.7	19	

John L Bowman, Ph.D. (www.JBowman.net)

Problem Size				
Households / persons	.9 M / 2.2 M			
Zones / parcels	1533 / 0.7 M			
assignment periods / classes	12 / 3			

Performance	Threads	Hrs per iteration	Hrs (7 global iterations)	
< DaySim	4	0.7	4.7	25%
Assignment, etc	3	2.0	14.3	75%
Total		2.7	19	

John L Bowman, Ph.D. (www.JBowman.net)

	Problem Size							
	Households / persons		.9	M / 2.2 M				
	Zones / parcels		15	533 / 0.7 M				
	assignment periods / classes				12/3			
Perforn	nance	Threads	Hrs pe iteratio	er D'1	Hrs (7 glob iterations	oal)		
	DaySim	4	0.7		4.7		25%	
Assignme	ent, etc	3	2.0		14.3		75%	
	Total		2.7		19			

John L Bowman, Ph.D. (www.JBowman.net)

Summary: DaySim....

- equilibrates with traffic assignment
- is an integrated system of discrete choice models
 - Downward and upward integration are important
- uses fine spatial and temporal detail
- has versions with and without explicit intrahousehold interactions
- has well-engineered software and runs fast
- is in development or implemented in 11 locations

Collaborators

- Moshe Ben-Akiva (1993-1998)
- Keith Lawton at Metro (1995-2000)
- Mark Bradley (since 1996)
- Gordon Garry & Bruce Griesenbeck at SACOG (since 2001)
- John Gibb & John Long at DKS (since 2005)
- Joe Castiglione (since 2007)
- Resource Systems Group (since 2008)
- Suzanne Childress & PSRC (since 2010)
- Goran Vuk at Danish Road Directorate (since 2011)
- Christian Overgård Hansen & DTU Transport (since 2011)