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DaySim’s Roots 
The Day Activity Schedule  
(TRB  January 1994) 

Day

Activity Pattern

Tours
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DaySim and related models 
2014 

Activity-Based Model Systems 
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Outline 

• Basic Features 

• Model structure and associated 
features 

• Software 
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DaySim is a travel demand simulator 
that equilibrates with network 
assignment models 

DaySim 

Travel demand 

simulator

Network 

assignment

Trips
Traffic 

conditions

Predictions

Land use attributes

Households & Individuals
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DaySim uses primarily discrete 
choice models of the logit family 

Activity-Based Model Systems 
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Where i and j index discrete alternatives 

  Pn(i) is the probability that person n chooses alternative i 

Xin is a vector of explanatory variables  

 is a vector of coefficients 
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DaySim is an integrated 
system of choice models 

Long term

Day

Tour

Trip/Stop
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Within DaySim, model 
integration is important 

• Downward (conditionality) 

• Upward (accessibility) 
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Downward Integration 
Lower models take upper outcomes as 
given 

Long term

Day

Tour

Trip/Stop
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Upward Integration 
Upper models should be sensitive to 
conditions affecting lower models 

Long term
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Within DaySim, model 
integration is impotant 

• Downward (conditionality) 

• Upward (accessibility) 
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DaySim uses fine spatial detail 
Parcels or Microzones 

 Attributes include: 

 Location 

 Area 

 Housing units 

 Enrollment by school type 

 Employment by sector 

 Transportation network access 

 Urban form measures 

 Offstreet parking 

Ex. TAZs, microzones and parcels 
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Why use a fine-grained 
representation of space? 

• measure attractiveness better for location choice 

• capture neighborhood effects on location choices 

• include the impact of true walk distances in 
travel choices 

• model short intra-zonal travel choices better 

• represent transit alternatives more accurately in 
mode choice 

• Handle bicycle and walk modes as effectively as 
cars and transit 
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Measure walk access and egress more 
accurately (Philadelphia) 

 Walk access and 
egress impedance: 
parcel-to-stop using 
Enhanced short 
distance calculation 

 Transit impedance from 
boarding stop to 
alighting stop 

 AB model chooses best 
combination of transit 
stops 
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…improves work mode choice 
estimation results (and prediction) 

TAZ-based  Link-based 

Log-likelihood    -4637    -4607 

Values of time            $/hr (T)   $/hr (T) 

Car- drive alone   2.2  (1.2)  4.6  (2.5) 

Transit- in vehicle  1.4  (1.4)  1.9  (1.9) 

Transit- wait    5.9  (3.5)  5.3  (3.3) 

Transit- walk     0.9  (0.2)  12.2 (6.1) 

From Portland Metro (Bowman, et al, 2001) 
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Use similar techniques for other 
mode combinations 

• Auto park and ride 

• Auto park and walk 

• Auto kiss and ride 

• Bicycle park and ride 

• Bicycle on board transit 
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Outline 

• Basic Features 

• Model structure and associated 
features 

• Software 
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DaySim Model Structure 

Long term

Day

Tour

Trip/Stop
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Long term models 

Activity-Based Model Systems 

Usual School Location

Auto Ownership

Transit Pass Ownership

Pay to Park at Workplace

Usual Mode to Work

Usual Work Location

Long term

Day

Tour

Trip/Stop
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Day models 

Activity-Based Model Systems 

Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Long term

Day

Tour

Trip/Stop
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Day models 

Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Activity-Based Model Systems 

Models with 
explicit 

household 
interactions 
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Why model joint intra-household 
interactions? 

• Yields coherent travel choices among 
household members 
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transport policies 
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Why model joint intra-household 
interactions? 

• Yields coherent travel choices among 
household members 

• Joint travel impacts responsiveness to 
transport policies 

• At-home family activities correlate with 
travel choices 
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Why model joint intra-household 
interactions? 

• Yields coherent travel choices among 
household members 

• Joint travel impacts responsiveness to 
transport policies 

• At-home family activities correlate with 
travel choices 

• Joint decisions constrain and influence 
individual choices 
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Many tours have joint travel 
(Seattle example) 

Activity-Based Model Systems 

65.7%

34.3%

Non-joint tour

Tour with joint
travel
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Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Activity-Based Model Systems 

• Copenhagen 

• Vuk et al (2013) 

• Participation Model 
• Shared at-home 

activity 

• Schedule Model 
• Start minute and 

duration minutes 
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Logsums—accessibility to workplaces 
and at home affect likelihood of PFPT 

Variable (PFPT alternative) Coeff T Stat

Work tour mode choice logsums for 

up to two workers

0.134 1.58

At-home non-auto 

mode-destination logsum

-0.031 -2.38
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PFPT affects subsequent model 
components 

• Time window constraints—
travel activities can’t occur 
during time reserved for PFPT  

• PFPT workers more likely to 
take care of personal business 
on work-based subtours 

• PFPT households more likely to 
travel together to work and 
school 

• PFPT households more likely to 
conduct joint tours for non-
mandatory purposes 

Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time
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Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Activity-Based Model Systems 

• Based on Bradley & 
Vovsha (2005) 

• Joint for up to five 
HH members 

• Up to three pattern 
type alternatives 
per person 
• Mandatory on tour 

• Non-mandatory on 
tour 

• At home all day 
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Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Activity-Based Model Systems 

• Work at Home Model 

• Mandatory Tour 
Generation Model  

• Mandatory Stop 
Presence Model  
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Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Activity-Based Model Systems 

• Shared travel to 
work and school 

• Joint Half Tour 
Generation Model 

• Fully joint or 
partially joint 

• Participation Model 

• Jointly for up to 
five persons 
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Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Activity-Based Model Systems 

• Shared travel for 
non-mandatory 
activity 

• Joint Tour 
Generation Model 

• Participation Model 

• Jointly for up to 
five persons 
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Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Activity-Based Model Systems 

• Person Day Pattern 
Model 
• Presence in day of… 

• 9 tour purposes  

• 9 intermediate 
stop purposes 

• Tour Generation 
Model 
• Exact number of tours 

for each purpose 
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Logsums on  
work days     (Seattle) 

Patterns with 
additional tour 

purpose(s) 
 

Tour Coeff  (T stat) 

Patterns with 
intermediate stops 

 
 

Stop Coeff (T stat) 

Work tour mode 
choice logsum 

-0.014    (-0.66) 0.036    ( 2.13) 

At-home mode-
destination logsum 

0.042    ( 2.17) 0.033    ( 2.30)  
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Logsums on  
school days 

Patterns with 
additional tour 

purpose(s) 
 

Tour Coeff  (T stat) 

Patterns with 
intermediate stops 

 
 

Stop Coeff (T stat) 

School tour mode 
choice logsum 

-0.014    (-0.19) 0.627    ( 7.74) 

At-home mode-
destination logsum 

0.090    ( 3.84) -0.007    (-0.37) 

Activity-Based Model Systems John L Bowman, Ph.D. (www.JBowman.net) 48 



Logsums on  
on-tour non-commute days 

Patterns with 
additional tour 

purpose(s) 
 

Tour Coeff  (T stat) 

Patterns with 
intermediate stops 

 
 

Stop Coeff (T stat) 

At-home mode-
destination logsum 

0.077    (4.61) 0.000    ( 0.02) 
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Day models 
with explicit intra-household interactions 

Activity-Based Model Systems 

Household Day Pattern Type

Person Mandatory Activities

Joint Mandatory Half Tours

Joint Non-Mandatory Tours

Person Day Activity Pattern

Primary Family Priority Time

Long term

Day

Tour

Trip/Stop
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Day models 
without explicit intra-household interactions 

Activity-Based Model Systems 

Person Day Activity Pattern

Long term

Day

Tour

Trip/Stop
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Why NOT model joint intra-
household interactions? 

• It is a lot simpler 

• Dealing with survey data 

• Estimating models 

• Calibrating and validating 

• Not essential for many of the benefits of 
AB models, e.g.: 

• Time-of-day price sensitivity 

• Induced demand and trip chaining 

• Equity analysis 
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Tour and Trip Models 

Activity-Based Model Systems 

Intermediate Stop Generation

Stop Location

Trip Mode

Trip Arrival or Departure Time 

Destination, Mode, 
Arrival and Departure Times 

Long term

Day

Tour

Trip/Stop
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Number of intermediate stops on tour 

DaySim Base Year Intermediate 
Stops on Tours (Copenhagen) 

23% of tours have 
intermediate stops 
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DaySim uses  
fine temporal detail 

Activity-Based Model Systems 

Intermediate Stop Generation

Stop Location

Trip Mode

Trip Arrival or Departure Time 
(10-minute time periods)

Destination, Mode, 
Arrival and Departure Times 

(5-6 time periods in day)

Long term

Day

Tour

Trip/Stop
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Discrete Choice Model Formulation  
for Time of Day 
(Vovsha and Bradley, 2004)  

• Logit model 

• Important effects captured via 
‘shift’ variables (analogous to 
hazard duration models) 
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‘Shift’ effects--examples 

• part time employees more likely to arrive at 
work later and have shorter work day 

 

 
 

 
 
 
 

• People shift travel to periods with lower travel 
time and cost 
 

Activity-Based Model Systems 

Likely outcome for FT employee: 

24 2620161283 4

Likely outcome for PT employee: 

24 2620161283 4
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Copenhagen: 
Congestion and Road Pricing 

Trafikverket, 29 Oct 2013 John L. Bowman, Ph.D. 58 
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DaySim uses rigorous 
time window accounting 

 When something is 
scheduled its time span is 
occupied 

 Tight schedules affect 
choices 

 Hard constraints:   
infeasible alternatives are 
ruled out 

 Soft constraints:   
feasible alternatives causing 
tight schedules are less 
attractive 

Simulation Event Occupied 

time spans 
Work tour scheduled 7:53 AM to 4:47 PM 

No stop on way to work scheduled 7:04 AM to 4:47 PM 

Stop on way home scheduled 7:04 AM to 5:30 PM 

No other stop on way home 

scheduled 

7:04 AM to 6:05 PM 

Tour to eat out scheduled 7:04 AM to 6:05 PM 

7:30 PM to 9:15 PM 

No stop on way to eat out 

scheduled 

7:04 AM to 6:05 PM 

7:15 PM to 9:15 PM 

No stop on way home scheduled 7:04 AM to 6:05 PM 

7:15 PM to 9:30 PM 
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Sensitivity to pricing 
via auto path type choice 
(uses findings of SHRP 2 C04 and C10) 

• In some cases, a driver has the choice 
between a faster tolled path and a slower 
untolled path. 

• Traffic model estimates attributes of both 
paths 

• DaySim chooses between tolled and 
untolled path 

• Uses random variation in value of time 
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Outline 

• Basic Features 

• Model structure and associated 
features 

• Software 
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DaySim software: written in C# and 
distributed with open source license 

• DaySim screenshot 
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DaySim software:  supports 
model estimation and application 

 

 

 

Activity-Based Model Systems 

Prepare data

Run DaySim
(in estimation mode

for each model)

Run DaySim
(in application mode)

Estimate Model
(in ALOGIT)

Input Data
(DaySim 
format)

Input Data
(client’s format)

--HH
--Spatial

--Skims

Control file
Data file

Coefficient 
file

DaySim 
software

(with embedded 

models)

DaySim Output 
(Activity and travel 

schedules)
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DaySim software: runs fast 

on a PC (e.g. Sacramento) 

Activity-Based Model Systems John L Bowman, Ph.D. (www.JBowman.net) 64 

Problem Size 
Households / persons .9 M / 2.2 M 

Zones / parcels 1533 / 0.7 M 

assignment periods / classes 12 / 3 

Performance Threads 
Hrs per 
iteration 

Hrs (7 global 

iterations) 

DaySim 4 0.7 4.7 25% 

Assignment, etc 3 2.0 14.3 75% 

Total 2.7 19 
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Summary:  DaySim….. 

• equilibrates with traffic assignment 

• is an integrated system of discrete choice 
models 

• Downward and upward integration are important 

• uses fine spatial and temporal detail 

• has versions with and without explicit intra-
household interactions 

• has well-engineered software and runs fast 

• is in development or implemented in 11 
locations 
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