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ABSTRACT 
This paper studies the properties and performance of a new measure of accessibility, 

called the Activity-Based Accessibility (ABA) measure, and compares it to traditional measures 

of accessibility, including isochrone, gravity and utility-based measures. The novel aspect of the 

ABA is that it measures accessibility to all activities in which an individual engages, 

incorporating constraints such as scheduling and travel characteristics such as trip chaining. The 

ABA is generated from the Day Activity Schedule (DAS) model system, an integrated system 

based on the concept of an activity pattern, which identifies the sequence and tour structure 

among all the activities and trips taken by an individual during a day. A byproduct is an 

individual’s expected maximum utility over the choices of all available activity patterns, and 

from this the ABA is derived. The ABA is related to the logsum accessibility measures 

frequently derived from destination and mode discrete choice models. The key difference is that 

it is generated, not via examination of a particular trip, but by examining all trips and activities 

throughout the day.  

A case study using data from Portland, Oregon, demonstrates the rich picture of 

accessibility made available by use of the ABA, and highlights differences between the ABA and 

more traditional measures of accessibility. The ABA is successful in (1) capturing taste 

heterogeneity across individuals (not possible with aggregate accessibility measures), (2) 

combining different types of trips into a unified measure of accessibility (not possible with trip-

based measures), (3) reflecting the impact of scheduling and trip chaining on accessibility (not 

possible with trip-based measures), and (4) quantifying differing accessibility impacts on 

important segments of the population such as unemployed and zero auto households (not 

possible with aggregate measures, and limited with trip-based measures).  
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INTRODUCTION 
 “Accessibility”, although a widely used term in the transportation-planning arena, is an 

abstract concept. Researchers have defined this term in various ways and have constructed 

numerous mathematical formulations to measure its value. Accessibility is essential to evaluate 

the interrelationships between patterns of land use and the nature of transportation systems. 

Therefore, indexes of accessibility that describe the correlation between land use patterns and 

transportation systems have been used extensively by researchers and policy makers, especially 

in assessing the existing transportation system and forecasting its performance. One definition of 

accessibility (from the Department of Environment, 1996) is “the ease and convenience of access 

to spatially distributed opportunities with a choice of travel”. The difficulty is how to quantify 

this “ease and convenience,” which is particularly complex as it is a function of varying types of 

trips and activities and most likely varies across people according to their tastes and preferences. 

This paper proposes a new measure of accessibility, the Activity-Based Accessibility or 

ABA. The novel aspect of the ABA is that it is a measure of accessibility to all activities in 

which an individual engages, incorporating constraints such as scheduling and travel 

characteristics such as trip chaining. Such a measure is significantly different from the traditional 

trip-based measures of accessibility, which focus on one trip purpose and do not incorporate 

scheduling or trip chaining. The paper proceeds by first describing traditional measures of 

accessibility, then presenting the activity-based accessibility, and finally presenting results of a 

case study using data from Portland Oregon.  

TRADITIONAL MEASURES OF ACCESSIBILITY 
A key property of measures that have traditionally been used to quantify accessibility is 

that they are “trip-based”, meaning they only examine one trip type at a time (for example, the 

work trip) and do not consider scheduling or trip chaining. Such measures are briefly described 
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in this section. Following Handy and Niemeier (1997), accessibility measures are often classified 

into three categories: isochrone, gravity-based and utility-based. 

Isochrone measures are also referred to as “cumulative opportunity” measures. Early 

examples include Wachs and Kumagai (1973) and Vickerman (1974). They count the number of 

opportunities that can be reached within a given travel time, distance, or generalized cost as 

shown by the following equation: 

i j j
j

Acc W a=∑ ,               (1) 

where ja  represents the opportunities in a zone j ,  

jW  equals 1 if  *
ij ijc c≤  ,   and 0 otherwise,  

ijc  is a measure of impedance between zones i and j, and 

*
ijc  is the pre-determined range within which the activity opportunities are 

counted. 

An example of an isochrone measure is the “total number of employment opportunities 

within 30 minutes by transit”. The strengths of this measure are that it is easy to compute and 

understand. However, this measure of accessibility is highly sensitive to the size of the range (in 

the example, 30 minutes) and the representation of opportunities (in the example, total 

employment), both of which are difficult to determine.  

Gravity-based measures are so called because they are derived from the denominator in 

the gravity model for trip distribution. It is first derived by Hanson (1959), and used in various 

analysis, including Huff (1963) and Geertman and Ritsema van Eck (1995).  

A generic formulation of gravity-based measures to calculate the accessibility of zone i 

is: 
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( )j iji
j

Acc a f c=∑               (2) 

where        j        indexes the available destination zones that are reachable from zone i,  

      ja       measures the activity opportunities in zone j, and 

        f(cij)   is an impedance function of traveling from zone i to zone j. 

 
The isochrone measure is a special case of gravity in which f(cij) is equal to 1 within the 

range defined to count the activity opportunities, and 0 outside that range.  

Although any number of formulations of f(cij) are possible, in many cases it includes the 

travel time in a negative exponential form; the farther away an opportunity, the lower is its 

impact on accessibility values. In this way, the gravity-based measures represent the joint effect 

of transportation systems (captured using f(cij)) and land use patterns (captured by ja ) on 

accessibility. The limitation of the gravity measure is that it neglects the variations across 

individuals. For example, a gravity measure says that a retired grandfather and his college 

student grandson who live together each have identical values of accessibility.  

Utility-based measures (see, for example, Neuburger (1971) or Ben-Akiva & Lerman 

(1977)) are based on random utility theory (see Domencich and McFadden (1975)).  Random 

utility theory assumes that people select the alternative with the highest utility. However, utility 

is not known with certainty to the analyst, and therefore is treated as a random variable. The 

utility of an alternative has two additive components. One is called systematic utility, consisting 

of observable attributes of the alternative and characteristics of the decision-maker that are 

assumed to impact the decision. The other component is called the disturbance, representing the 

unobservable portion of the utility.  In order to obtain a tractable form, often the disturbances of 

all alternatives are assumed to be identically and independently Gumbel distributed with a scale 
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parameter µ —giving the model the familiar multinomial logit (MNL) form—and each 

alternative’s systematic utility and disturbance are combined additively.  For MNL, an 

individual’s expected maximum utility achieved from a set of alternatives can be expressed as: 

1(max ) ln exp( )
n

n

in ini C i C
E U Vµ

µ∈
∈

= ∑ ,         

 
where Vin is the systematic component of utility Uin for individual n choosing one alternative 

from the choice set Cn.  For the more general nested logit model (NL) the expected maximum 

utility is also the “logsum”, but it is calculated for the root, or highest, level of the model, which 

includes in it the logsums from the lower levels.  Even more generally, for the Generalized 

Extreme Value (GEV) model, of which MNL and NL are the most common special cases, the 

expected maximum utility achieved from a set of alternatives can be expressed as: 

1(max ) ln
n

ini C
E U G

µ∈
= ,       (3) 

where G is the function that characterizes the particular form of the GEV model (McFadden, 

1978; Ben-Akiva and Lerman, 1985).  

Utility-based accessibility measures use this expected maximum utility from a random 

utility model as the measure of accessibility, because it represents the expected “worth” of a set 

of travel alternatives. Usually, such measures are derived from a multinomial model of 

destination choice or a nested logit model of destination and mode choice. An advantage of 

utility-based measures is that they can represent accessibility at an individual level according to 

individual preferences (Pirie, 1979) and in this way capture taste differences. Another advantage 

is that the expected maximum utility can be derived from any choice situation, thus an 

accessibility measured from a destination-mode choice model can capture the impact of all 
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modes including auto, transit and non-motorized options on accessibility. It is this type of 

extension that is exploited in the activity-based accessibility presented in this paper.  

ACTIVITY-BASED ACCESSIBILITY 
The Activity-Based Accessibility measure is derived from random utility theory, and 

therefore also belongs to the class of utility-based accessibility measures discussed above.  The 

major contribution of the ABA measure is that it incorporates the impact of trip chaining, the full 

set of activities pursued in a day, and the scheduling of activities. This is different from the 

traditional utility-based measures, which focus on a particular trip purpose, without trip chaining, 

and without incorporating the time dimension.  

The Activity-Based Accessibility measure was first presented in Ben-Akiva and Bowman 

(1998). It is generated from the Day Activity Schedule (DAS) model system, which is an 

activity-based travel demand model system, and therefore we refer to the resulting measure of 

accessibility as the “Activity-Based Accessibility” (ABA). Rather than modeling each trip 

separately or as a part of a tour, the DAS models the whole day’s schedule of multiple activities 

and trips taken by an individual, using various modes, and joined together in a particular pattern. 

The intent is to capture more realistically people’s travel and activity behavior. 

The Day Activity Schedule Model System 

The Day Activity Schedule model system was proposed by Ben-Akiva, Bowman and 

Gopinath (1996), and first implemented using data from Boston (Bowman (1995) and Bowman 

and Ben-Akiva (2001)). It was enriched in Portland, Oregon, by Bradley, et al (1998), and 

further refined by Bowman (1998). The DAS regards the activities conducted in a whole day as 

the basis for modeling travel behavior. This is based on the idea that the need to travel is derived 

from people’s desire to pursue various activities, and that activities conducted throughout a day 

are inter-related. 
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The DAS model defines the concepts of activity pattern and activity schedule.  Activity 

pattern refers to the set of activities and tours (that is, journeys beginning and ending at the same 

location) taken by an individual during a day.  It identifies the purposes of the activities, 

identifies one of them as primary, and locates each activity either at home or on a particular tour.  

The activity schedule refers to the activity pattern, and adds detailed information about the 

pattern’s tours, such as the sequence, timing and location of activities, as well as the travel 

modes.  Thus, the activity pattern identifies the basic framework of a person’s day, and the 

activity schedule fills in the details. 

For the analysis presented here, a published implementation of the DAS model is used.  It 

is the second implementation used by Portland, Oregon, to model and forecast people’s travel in 

the Portland metropolitan area.  In the Portland implementation, each activity pattern is defined 

by the following five items: (a) the primary activity of the day, (b) whether the primary activity 

occurs at home or away from home, (c) the type of tour for the primary activity, including 

number, purpose and the sequence of activity stops, (d) the number and purpose of secondary 

tours, and (e) purpose-specific participation in at-home activities.  The activity schedule consists 

of five levels of choices. The highest level is the choice of day activity pattern.  Proceeding 

downward, the other levels include time of day for home-based tours, destination and mode for 

home-based tours, work-based sub-tours, and intermediate stop locations for car driver tours. 

Upper level choices condition the lower level choices, and the available lower level alternatives 

inform the upper level choice with the expected maximum utility. The activity pattern sub-model 

includes terms in its utility function representing the expected utility of tours in the pattern. The 

lower level models describe the choices among travel options, including the travel time, mode 

and destination, and work-based sub-tours. 
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The Activity-Based Accessibility Measure 

The ABA measure obtained from the DAS model system is defined as the expected value 

of an individual’s maximum utility among the available activity schedules, given his or her 

residential location. Its key aspects are that (a) it reflects the outcome of travel and activity 

scheduling; (b) it captures the relative attractiveness of various alternatives for activity 

participation, trip combination, travel mode, and timing; and (c) it reflects not only the nature of 

land use and properties of the transportation system, but also the socioeconomic characteristics 

of individuals. It thus departs substantially from the traditional trip-based measures. 

Activity-Based Accessibility belongs to the utility-based measures of accessibility, where 

accessibility is defined as the expected maximum utility over a choice situation faced by an 

individual, and formulated as in equation (3).  The key to the ABA is that the choice set Cn is a 

set of activity schedules, each describing in detail one option for conducting all the activities and 

travel of an entire day. 

There is a technical detail that is of utmost importance to consider when using utility-

based measures, whether they are the traditional measures derived from destination choice or the 

more complex ABA presented here. Therefore, we spend significant time discussing such details 

in this paper. The issue is that the expected maximum utility derived from a choice model is not, 

in general, in a form that is directly comparable across individuals. In order to make comparisons 

across individuals or to generate summary statistics based on the ABA measure (or any utility-

based measure), two conditions must be satisfied: one is called the “scale condition”, and the 

other is called the “level condition”.  The scale condition requires all the calculated accessibility 

values to share the same scale or same unit.  It is needed because the units of the ABA match 

those of Vin, and these units vary across individuals.  The level condition requires the ABA 

values to have a consistent benchmark utility.  This is necessary because the underlying random 
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utility model does not depend on the absolute size of utility but on the utility differences of the 

available alternatives. It is well understood that any constant could be added to all alternatives’ 

utilities without changing the choice model probabilities. However, it is important to note that 

the addition of a constant does, indeed, change the accessibility as calculated by equation (3).  

For further explanation of the properties of utility-based accessibility measures, see Ben-Akiva 

and Lerman (1985).  The key idea is that the accessibility measure must be normalized, ensuring 

that both the scale and level conditions are satisfied, before comparisons can be made across 

individuals and summary statistics can be generated. 

A standard method for dealing with the level condition is to compute the differences in 

accessibility resulting from the application of a transportation-related policy. In this way, the 

benchmark utility of each individual cancels out while computing the difference. If b
nAcc  

denotes the accessibility value for individual n before imposing any transportation policy, and 

a
nAcc  denotes the same measure but after imposing the transportation policy, then the change in 

accessibility from the policy is:   

a b
n n nAcc Acc Acc∆ = − .       (4) 

The scale condition can be satisfied by converting the units of nAcc∆ from utility units to 

those of a model variable (x) that is comparable across individuals, through the use of a 

conversion factor ( nxα ) defined in terms of x.  The result,   

/nx n nxAcc Acc α∆ = ∆ ,        (5) 

is a normalized measure of accessibility, expressed in the units of x, that can be compared across 

individuals.  In transportation policy analysis it is customary to use as x either travel time or cost. 
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An empirical method can be used to develop the conversion factor by calculating the 

difference in utility that occurs when the travel time (or cost) of all trips in all of the available 

activity schedules is incremented by x∆ .  Specifically, we use  

( )x

n

b b
n n

nx
in i

i C

Acc Acc
x p t

α
∆

∈

−
=

∆ ∑ ,        (6) 

where ( )xb
nAcc ∆  represents n’s accessibility when x is increased by x∆ in 

every trip of every available activity schedule, 

inp   is n’s probability of activity schedule i, and 

it   is the number of trips in activity schedule i. 

The numerator of equation (6) is the change in expected utility induced by the increase in 

time or cost, and the denominator is the change in the expected time or cost itself.  In practice, 

the numerator and denominator are calculated simultaneously in a nested calculation that 

accounts for the travel attributes of all available activity schedules.  The conversion factor can be 

thought of as an empirical approximation of the marginal utility with respect to travel time or 

cost, taking into consideration all available activity schedules. 

While we are focused on accessibility in this paper, note that the formulation presented in 

equation (5) can also be interpreted as the change in consumer surplus (see Ben-Akiva and 

Lerman, 1985, for more information). For example, in the case of a peak period toll used later in 

the case study, when x is travel cost, nxAcc∆  is the change (loss) in consumer surplus expressed 

in cost units caused by the imposition of the toll. 

Relationship to Other Activity-Based Accessibility Measures 
Other measures of accessibility exist that are also based on the idea of access to activities. 

Kwan, Murray, O’Kelly and Tiefelsdorf (2003), Miller (1991), Kwan (1998), Ashiru, Polak and 
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Noland (2003), and Chen (1996) identify accessibility measures that are based on the time-

geographic perspective (Hägerstrand, 1970), employing space-time constraints and the space-

time prism (Lenntorp, 1976 and Burns, 1979).  The accessibility measure can be defined either as 

a simple function of the feasible opportunity set, such as cardinality of the set or weighted sum of 

the opportunities, as in Miller (1991) and Kwan (1998); or as the expected maximum of the 

utilities for all possible opportunities.  Chen’s measure is derived directly from a mathematical 

programming formulation proposed by Recker (1995), where the objective is to minimize the 

total travel time and waiting time for all the activities engaged by all the household members, 

subject to constraints related to time, the physical action space, the available vehicles, trip 

chaining, and interactions among household members.  

A key difference between the activity-based accessibility measures in the literature as 

described above and the ABA measure presented in this paper is that the measures in the 

literature treat important attributes of the activity pattern as exogenous.  The exogenous attributes 

include participation, location and duration of all “mandatory” activities (and in some cases all 

activities), as well as the travel mode for all trips (which is assumed to be the same for all trips of 

all persons).  Their measure of accessibility depends on the activity opportunities that can be 

reached for the “non-mandatory” activity stops.  Differences in accessibility across individuals or 

households depend primarily on differences in the number, timing and location of the exogenous 

activities (although Chen’s measure also depends on the household’s vehicle fleet), and the cost 

and travel speed of the assumed travel mode.  In contrast, the measure proposed in this paper 

treats activities endogenously via a microeconomic approach based on specifying utilities of 

activity participation. 
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EMPIRICAL ANALYSIS OF THE ABA 

Introduction 
Thus far, we have presented a technical discussion of the ABA in which we suggest that 

the ABA improves upon traditional measures of accessibility by calculating accessibility as a 

function of all activities pursued throughout the day, including issues such as trip chaining and 

scheduling. This departs substantially from traditional trip-based measures, which focus on 

accessibility for a particular purpose such as work or shopping, and do not consider trip chaining 

or scheduling. Also important, the ABA, like all utility-based accessibility measures, can capture 

taste heterogeneity. In this section, we present a case study that further explores these issues and 

the properties of the ABA. The case study uses data from Portland, Oregon, and the DAS model 

system as described above. Accessibility is examined using a 10% synthetic population (55,000 

households, 105,506 individuals over 16), which was generated by Portland Metro for their 

planning purposes. Note that, unless otherwise noted, all values of accessibility are calculated in 

reference to a particular residential location, but not in reference to a particular work location. 

This is in accordance with the manner in which traditional accessibility measures are calculated, 

but is not necessary with the ABA, as will be shown in the empirical results.  Note also that the 

Portland DAS model (and hence also the normalized ABA), in calculating expected utility 

logsums of the available day activity schedules, uses travel time and cost information from the 

tours in the schedule without incorporating travel time and cost information from the 

intermediate stops of the tours.  This simplification of the DAS approach causes the empirical 

results to only partially reflect the conceptual advantages of the ABA discussed in this paper. 

There are two main factors that influence accessibility: the space dimension and the 

individuality dimension. For example, the accessibility of a zone in the suburbs is lower than the 

accessibility of a zone downtown. Further, the accessibility of any particular zone is perceived 
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differently by, for example, a single college student versus a married couple with children, 

because they have different preferences regarding activities and schedules. In the empirical 

study, we will explore both of these dimensions. In particular, we perform the following analysis, 

each described in more detail in the sections that follow: 

First, we explore the variation across the population of a peak period toll’s accessibility 

impact. This is done by first using equation (5) to calculate the loss of accessibility for each 

individual in our 10% sample, and then plotting the distribution of these losses. We will see that 

the magnitude of impact varies significantly across the population. 

Second, we further explore the impact of the peak period toll by plotting the distributions 

by market segments, where the market segments are defined by auto ownership and employment. 

Such analysis is critical if one is interested in issues of environmental justice such as who is 

impacted by a given policy and by how much.  

Third, we explore how taste heterogeneity leads to different values of accessibility even 

when people are faced with the same land use pattern and transportation system. This is done by 

generating accessibility plots of the Portland area (high accessible zones versus low accessible 

zones) based on different demographic characteristics. The ability to capture such heterogeneity 

is an example of analysis that is not possible with aggregate accessibility measures such as 

isochrone and gravity. 

Finally, we compare accessibility plots generated by the ABA with those generated by a 

traditional trip-based utility measure derived from a destination-mode choice model. The focus 

here is to determine the added benefit, if any, of reflecting in the accessibility measure all 

activities throughout the day. 
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Through the analysis, we aim to reflect the rich picture of accessibility made available by 

use of the ABA, and highlight differences between the uses of the ABA versus more traditional 

measures of accessibility. 

Variation of Accessibility (ABA) Impacts Resulting from a Peak Period Toll 
In the first empirical experiment, we study the impact of a peak-period toll (50 cents/mile 

in the morning and evening peak) on accessibility. Since people have different residential 

locations as well as heterogeneous tastes, the impact of the toll will vary across the population. 

Figure 1 shows the distribution across the population of the decrease in accessibility resulting 

from the peak-period toll. The change in accessibility is calculated for each person in the 10% 

sample using equation (5), and the distribution is displayed with both time units and monetary 

units.  

(Insert figure 1 here) 
 

Both of the plots have a similar bimodal shape with a smaller peak to the left of the larger 

peak, and both plots have long tails to the right. An analysis of the individuals that make up each 

mode indicates that the smaller peak consists of unemployed people and the larger peak consists 

of employed people. This matches a priori beliefs, because we expect unemployed people to be 

less affected by a peak hour toll. This could be for a number of reasons, including that they take 

fewer trips during the peak period, they have more flexibility to adjust the timing of their trips, or 

they have a lower value of time and so are less impacted by switching to a slower mode. All of 

these types of adjustments are captured (to some extent) in the DAS model system, and therefore 

are reflected in the ABA measure. This is no minor point that the ABA is able to directly 

quantify the differing impact of the peak-period toll to employed and unemployed persons, 

which is not possible to quantify using any of the other accessibility measures presented in this 
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paper. This suggests that the ABA measure can provide valuable insight to issues of 

environmental justice and other policy issues.  

To further explore the characteristics of the individuals, we use the marginal utilities of 

cost and time used in the accessibility calculation to generate the value of time (VOT) 

distribution in the population, which is shown in Figure 2.  

(Insert figure 2 here) 
 

This VOT distribution suggests two distinct groups of people. The larger group consists 

of 75% of the population, among which the VOT are distributed with two modes, at 

approximately $6.40/hour and $7.80/hour respectively. The smaller group has a single mode at 

$12.40/hour. An examination of the socioeconomic characteristics of individuals in the 

proximity of each of the three modes, finds that the average income is $20.6k for the first mode, 

$40.5k for the second mode and $91.0k for the mode with the highest value. This further 

validates that the ABA measure produces reasonable results (value of time increases with 

income), and also provides valuable information on VOT as a byproduct of the ABA 

calculations. 

Variation of Accessibility (ABA) Impacts by Market Segment Resulting from a Peak Period Toll 
We further explore the sensitivity of the ABA measure to social and economic variables 

by examining the impact of a peak period toll for different market segments. For the analysis, we 

plot the distributions shown in Figure 1 for market segments based on auto ownership and 

employment status. Figure 3 displays the sensitivity of market segments defined by auto 

ownership to the peak-period toll. About 6% of the persons in the data do not own a car. Not 

surprisingly, the plots indicate that individuals who do not have cars are significantly less 

impacted by a peak-period highway toll than those who do. 

(Insert figure 3 here) 



 17

Figure 4 displays the distributions for segments based on employment status. Similar to 

the results for the people without cars, unemployed people are significantly less impacted by the 

imposition of a peak-period toll for reasons discussed above. 

(Insert figure 4 here) 

This sensitivity analysis of changes in accessibility as a result of the peak-period toll with 

respect to these market segments indicates that the ABA is able to reflect the impact of socio-

economic factors such as auto ownership and employment status. Importantly, it does so by 

linking the socio-demographic characteristics to propensities for certain types of day schedules 

as well as different cost- and time-sensitivities.  

Variations of Accessibility (ABA) Across Space, Fixing Demographics 
All of the calculations above were made using the individuals’ residence zones as the 

anchor from which to calculate a single value of accessibility for each person. In this subsection, 

we examine how accessibility of an individual varies throughout the urban area by calculating 

accessibility across all zones for an individual. Note that the normalization (and the application 

of a peak-period toll) is not necessary in this case, because we are examining one individual at a 

time and examining the relative accessibilities of zones. The objective is to examine how 

accessibility varies over space and how demographics affect this spatial variation. 

For the experiment, we start by examining the spatial accessibility of a 25 year old male 

who lives with his 26 year old wife. He has a full time job, and his wife does not work. They 

have 2 cars (and both have driver’s licenses), no children, and an annual income of $50,000 

(medium income). First we will perform a long-term analysis in which his work location is not 
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known. Given the characteristics of this individual, his accessibility as calculated for each zone 

in the urban area is plotted in Figure 5a.1 

As with every map in this section, this map displays 5 different levels of accessibility: the 

darkest shade represents the zones that are amongst the 20% with highest accessibility, the 

lightest shade represents those zones amongst the 20% with lowest accessibility, and there are 

three shades in-between representing the other three quintiles. The shading pattern represents the 

relative attractiveness in terms of accessibility of each zone as a residential location. The white 

star in map 5a marks the central business district (CBD) of Portland, and the line starting from 

the CBD and extending to the east is the route of the Metropolitan Area Express (MAX), the 

light rail system in Portland. The highest accessibility for this individual occurs near the CBD 

and MAX. There are also high accessibility zones to the southwest of the CBD, near two major 

activity centers where a large shopping mall and public park provide many maintenance and 

recreational activity opportunities. 

(Insert figure 5 here) 

Next, to investigate how demographics impact the individual accessibility across the 

urban area, we vary some of the individual characteristics and reexamine the accessibility plots. 

Figure 5b displays the accessibility plot for the same individual as in Figure 5a with the 

exception that we now assume that the household no longer has a car. Note that the two activity 

centers in the southwest of the urban area lose much of their attractiveness due to a relatively 

lower level of transit service in that area. The high accessibility region is now almost solely 

oriented around the CBD and the light rail transit line, and in general areas of high density.  

                                                 
1 TransCAD was used to generate these plots. 
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Figure 5c displays the accessibility plot that results when the household has a car again; 

however now both members of the family are unemployed. Again, the most obvious difference is 

around the two activity centers. The plot shows a relative decrease of accessibility oriented 

towards the center of the city where the job density is highest, and more oriented to the activity 

centers, which provide access to services and shopping albeit at a lower overall development 

density.  

Additional studies were conducted by changing other characteristics, such as income, age 

and number of children, and all such adjustments led to deviations from the base case. Those 

displayed in Figure 5a-c are those with the most visually significant changes, and presumably 

those that have the greatest impact on accessibility.  

The final plot in Figure 5 displays a short-term measure of accessibility, in which it is 

assumed that the individual has a fixed work location in the white zone in the right-center of the 

map. When the work location is known, the perception of overall accessibility is highly tied to 

ease of access to work, indicating the significance of the work trip in the overall accessibility 

picture. Nonetheless, note how the most accessible zones are not centered solely on the work 

location, but are heavily skewed towards the high density parts of the city. This indicates that 

while the work trip is important, measures of accessibility based solely on the work trip alone are 

not adequate. Furthermore, while traditional trip-based measures require each purpose to be 

analyzed separately, the ABA provides a means of weighting the importance (or trade-offs) of 

these various types of activities in the calculation of a single measure of accessibility.  

The conclusion from this analysis is that both socio-demographic characteristics as well 

as multiple types of activity purposes have significant influence on perceived accessibility, and 

the ABA has the ability to capture such factors.  
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Comparison of ABA Accessibility to a Traditional Utility-Based Accessibility Measure 
So far we have only examined the ABA in the case study. This section compares the 

ABA with a traditional trip-based measure of accessibility (we will denote as TBA) derived from 

a work destination-mode choice model. In this analysis, our TBA is derived from the work 

destination-mode choice model that is a component of the DAS from which the ABA is derived. 

Both the ABA and the TBA are based on random utility theory, both are disaggregate measures, 

and both have an underlying disaggregate travel choice model. The key difference between these 

two measures is that the TBA measure considers only one single trip (the work trip), with one 

purpose, choosing one destination and mode at a given time, with no consideration of trip 

chaining. Recall that the ABA measure is generated from the full DAS model system, which 

describes the whole day travel schedule and considers multiple trips conducted at different time 

periods of a day. Therefore, as we saw earlier, the ABA is able to reflect the influence of 

different types of trips and their scheduling on accessibility. As the TBA measure can consider 

only a single trip, we choose to use the work trip because, as evidenced above, it is the most 

important trip purpose impacting accessibility. Due to this restriction, we perform our 

comparison of the two measures using only those persons in the sample who are employed. 

The TBA, like the ABA, is sensitive to socio-economic effects. However, since this 

particular aspect is not the emphasis of this portion of the analysis, we attempt to disentangle the 

effect of socio-economics. Our approach is to randomly select 100 individuals from among the 

employed individuals in the sample. We then calculate accessibility using both the ABA and 

TBA for each individual and in each zone in the urban area, and average the accessibility values 

computed for each zone by each measure. In order to compute the average values across different 

individuals, both the ABA and TBA have to be normalized as described above. Again, the same 

peak hour toll described above is imposed.  
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The first level of analysis is to compare the change in accessibility histograms and basic 

statistics resulting from the two measures, which are shown in Figure 6. The histograms are 

similarly skewed to the left with a long tail to the right, a unimodal distribution and a fairly flat 

peak. The primary difference is that the TBA histogram has a lower peak, and is shifted to the 

right of the ABA histogram. 

(Insert figure 6 here) 
 

It is significant that the ABA measure shows an overall lower accessibility impact from 

the peak-period toll. The reason for this is the difference in how the ABA and TBA are affected 

by a policy that is limited to the peak period, when most work trips occur. Unlike the TBA, 

which considers only the work tour and accepts as fixed the activity pattern and schedule in 

which the work tour occurs, the ABA covers all activities and tours of the day and reflects the 

full array of adjustments that one can make in reacting to the peak-period toll. Some worker 

activity patterns include secondary tours that do not occur during the peak period, and that are 

therefore not negatively affected by the policy. Also, a worker could switch to travel to or from 

work in the off-peak, or could work from home, or could change work commute travel mode, or 

in the long term could change their home or work location. The ABA measure captures all these 

adjustments except the change in residential location. In contrast, the TBA measure can only 

reflect the change in mode or work location. The ABA measure’s more realistic representation of 

scheduling flexibility results in lower estimates of accessibility impacts. 

Figure 7 shows the spatial distribution of accessibility impacts as calculated by the ABA 

and TBA, in a long-term analysis in which the work location is not fixed and the normalization 

expresses accessibility impact in equivalent minutes2. In these maps, each of the four darker 

                                                 
2 Only accessibilities in minutes are displayed, because using dollars resulted in a similar plot. 
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shades corresponds to 10 minute intervals of accessibility impacts, starting with the darkest 

shade relating to the smallest accessibility impact of 0-10 minutes, the second darkest shade 

representing 10-20 minute impacts, and so on. Comparing the two maps, we can see that both 

measures indicate that the residential zones that receive the smallest loss of accessibility as a 

result of the peak-period toll are those at the center of the city. This is intuitive, because the CBD 

contains the highest density of activities (and therefore many can be accessed without driving) as 

well as the best transit service (and therefore there is a higher propensity to use and greater ease 

of switching to transit). Note that the 0-10 minute region in the TBA is larger than in the ABA. 

This is likely because while the CBD provides many employment opportunities, it has a lower 

proportion of the opportunities for other household activities such as shopping, services, 

recreation, and social visits. Since the TBA measures accessibility only for the work trip, it 

ignores the accessibility impact for non-work purposes. As distance from the center increases, 

the TBA eventually averages more than 10 minutes because the workers need to get to work and 

fewer work opportunities are within 10 minutes. The 10-minute threshold is hit sooner with the 

ABA because it includes the smaller (but still present) effect of the toll on non-work trips. 

(Insert figure 7 here) 
 

The second through fourth levels, which contain zones with average decreases in 

accessibility of 10-20, 20-30, and 30-40 minutes, respectively, are all larger for the ABA than for 

the TBA, reflecting the lower sensitivity to the policy of the ABA as discussed for Figure 6.  

CONCLUSIONS 
This paper examines the properties and performance of the Activity-Based Accessibility 

measure, which is generated from the Day Activity Schedule model system. The novel aspect of 

the ABA is that it is a measure of accessibility to all activities in which an individual engages, 

incorporating both scheduling constraints and travel characteristics such as trip chaining. The 
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ABA is a natural extension of the often used accessibility measure generated from a destination 

or destination-mode choice model. Like these more traditional utility-based measures of 

accessibility, the ABA can reflect taste heterogeneity, thereby reflecting the impact of socio-

economic factors such as auto ownership, employment status, income, and household structure 

on accessibility. Aggregate measures such as isochrone or gravity, on the other hand, cannot 

reflect varying levels of accessibility based on socioeconomic factors. A second key advantage 

of the utility-based measures (both traditional and the ABA) is that they are able to reflect travel 

times and costs from all travel modes by including mode in the choice model from which the 

logsum is derived. This is an important feature in any accessibility measure as the true impact of, 

say, a transit oriented policy is dependent on the propensity and/or necessity with which one uses 

transit. Such a feature is substantially different from the isochrone or gravity models, which 

require either a single travel time as an input, or an ad-hoc generalized travel time that is not 

based on preferences. The final advantage of the ABA is that it encompasses activity-based 

travel choices throughout a whole day schedule, and thereby covers multiple choices for multiple 

trips conducted in different time periods of a day. This is substantially different from the 

traditional utility-based measure derived from a destination or mode-destination choice model, 

which can only model one particular trip purpose and cannot reflect scheduling or trip chaining. 

Along with a mathematical presentation of the ABA and a presentation of the conceptual 

advantages of the new measure such as those listed above, the paper also presented empirical 

results from a case study in order to reflect the rich picture of accessibility made available by use 

of the ABA and to highlight differences between the ABA and more traditional measures of 

accessibility. The case study demonstrated many of the advantages presented in the above 

paragraph, including the following: 
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(1) The ABA is successful in capturing taste heterogeneity across individuals. This is 

shown in Figure 3, where the peak period toll is shown to have a significantly larger impact on 

auto owners versus households that do not have a car. Such a result is expected, and the ABA 

provides quantitative evidence that is not available from aggregate measures. Figure 6 provided 

another view of the importance of heterogeneity by showing how accessibility varies throughout 

an urban area based on socio-economic factors such as employment and auto ownership. Using a 

measure that recognizes such varying tastes and needs is important for any type of environmental 

justice study, because it will greatly impact the answer to who is impacted and by how much. 

(2) The ABA combines different types of trips into a unified measure of accessibility, 

which is not possible with trip-based measures. Figure 4 provides one valuable outcome of 

having a measure that reflects all activity types, which is that it makes it possible to generate 

direct comparisons of accessibility impacts from policy initiatives across such groups as 

employed and unemployed. Figure 5d shows that while the work trip is an important part of 

overall accessibility, accessibility to other activities is important as well.  

(3) The ABA reflects the impact of scheduling and trip chaining on accessibility (not 

possible with trip-based measures), which leads to a different picture of the magnitude (Figure 6) 

and spatial aspects (Figure 7) of accessibility impacts. 

By taking into account all activities throughout the day as well as scheduling, trip 

chaining, and taste heterogeneity, the ABA improves our ability to quantify the “ease and 

convenience of access to spatially distributed opportunities”. As such, it has the potential to 

provide new insight to the important questions of who is impacted and how by the imposition of 

various transportation and land use initiatives. 
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Figure 1 Distribution of the loss of accessibility as a result of a peak-period toll 
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Figure 2 Distribution of Value of Time in the Population 
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Figure 3 Distributions of the loss of accessibility for persons with and without cars 
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Figure 4 Distributions of the loss of accessibility for employed and unemployed persons 
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 5a. base case: long-term    5b. with no car                   5c. not employed              5d. short-term: workplace 
       employed, with car                                                                                                 fixed at white dot 

Figure 5 Variations of Accessibility Across Space (within each plot)  
and Across Socio-Economic Characteristics (across the plots) 
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Figure 6 Distributions of the Activity-based Accessibility (ABA) and  
Trip-based Accessibility (TBA) values 

ABA TBA
Mean 27.1  31.1  
Median 24.0  27.0  
Std. Dev. 11.1  12.8  
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7a. ABA values, average   7b. TBA values, average 
      over 100 employed individuals        over 100 employed individuals 

Figure 7 Comparison of Activity-Based Accessibility (ABA) and  
Trip-Based Accessibility (TBA) Plots of Relative Accessibility 

 

 


