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Abstract 18 
 19 

This paper presents the regional travel forecasting model system (SACSIM) being used by the 20 
Sacramento (California) Area  Council of Governments (SACOG).  Within SACSIM an integrated activity-21 
based disaggregate econometric model (DaySim) simulates each resident’s full-day activity and travel 22 
schedule.  Sensitivity to neighborhood scale is enhanced through disaggregation of the modeled outcomes in 23 
three key dimensions:  purpose, time, and space.  Each activity episode is associated with one of seven 24 
specific purposes, and with a particular parcel location at which it occurs.  The beginning and ending times of 25 
all activity and travel episodes are identified within a specific 30-minute time period. Within SACSIM, 26 
DaySim equilibrates iteratively with traditional traffic assignment models.  SACSIM was calibrated and 27 
tested for a base year of 2000 and for forecasts to the years 2005 and 2035, and was subjected to a formal 28 
peer-review.  It was used to provide forecasts for the Regional Transportation Plan (RTP) and continues to be 29 
used for various policy analyses. 30 

The paper explains the model system structure and components, the integration with the traffic 31 
assignment model, calibration and validation, sensitivity tests, model application and Federal peer review 32 
results.  We conclude that it is possible to create and apply a regional demand model system using parcel-33 
level geography and half-hour time of day periods. Experiences thus far have pointed to major benefits of 34 
using detailed land use variables and urban design variables, but also to new challenges in providing parcel-35 
level land use inputs for future years. 36 

 37 
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1 Introduction  39 
 40 

Over the last decade, activity-based travel demand microsimulation models have gradually 41 
gained acceptance in the U.S. as the eventual successor to conventional “four step” travel 42 
demand models for large metropolitan areas. Activity-based model systems have been 43 
applied in Portland (Bradley, et al., 1998; Bradley, et al., 1999), San Francisco (Bradley, et 44 
al.,2001; Jonnalagadda, et al., 2001), New York (Vovsha, et al., 2002); Columbus (Vovsha, 45 
et al., 2003); Dallas (Bhat, et al. 2004), and Sacramento. Bradley and Bowman (2006) 46 
provide a detailed comparison of the properties of those model systems, as well as references 47 
to papers written about those models.  48 

In 2009, additional activity-based model systems have reached various stages of 49 
development for Denver, Seattle, Bay Area, San Diego, Atlanta, Los Angeles and Phoenix. 50 
We have now reached the point where the majority of new travel demand model development 51 
projects for major metropolitan areas in the US are for activity-based model systems.  52 

The innovative features of the new activity-based models systems that tend to receive 53 
the most attention are the use of tours in addition to trips as a basic unit of behavior, attention 54 
to how activities are generated and scheduled across an entire day, and, in some cases, how 55 
different household members interact to influence each others’ travel decisions. Another 56 
important aspect that tends to receive less attention is that using disaggregate micro-57 
simulation of individual households and persons instead of the conventional aggregate zone-58 
based framework provides the potential for much finer levels of spatial and temporal detail in 59 
the forecasts.  To date, most of the applied activity-based models continued to rely on zones 60 
as the spatial level of detail, and to rely on four or five broad time periods of the day as the 61 
temporal level of detail.  There has been some skepticism that the new activity-based model 62 
framework would be able to improve upon those typical levels of resolution.  63 

The purpose of this article is to provide a detailed description of an operational activity-64 
based model that takes advantage of the disaggregate microsimulation framework to provide 65 
much finer levels of resolution in forecasting. The Sacramento model system described below 66 
uses 48 half-hour time periods across the day as the basic units of temporal resolution, and 67 
uses individual parcels of land as the basic units of spatial resolution.  This latter feature in 68 
particular is quite significant, given that a metropolitan area typically has over one million 69 
parcels, as compared to less than a few thousand traffic analysis zones. Using parcel-level 70 
resolution allows regional travel demand models to include land use variables and urban 71 
design variables at a level of detail that has not been possible in the past, allowing planners to 72 
look at wider range of land use and infrastructure policies, particularly those that affect non-73 
motorized travel and accessibility to transit services. 74 
 75 
2 SACSIM Model System Overview  76 
 77 
This paper presents a regional travel forecasting model system called SACSIM, implemented 78 
by the Sacramento (California) Area Council of Governments (SACOG).  The system 79 
includes an integrated econometric microsimulation of personal activities and travel with a 80 
highly disaggregate treatment of the purpose, time of day and location dimensions of the 81 
modeled outcomes.  SACSIM will be used for transportation and land development planning, 82 
and air quality analysis.    . 83 

Figure 1 shows the major SACSIM components.  The Representative Population 84 
Generator creates a synthetic population, comprised of households drawn from the region’s 85 
U.S. Census Public Use Microdata Sample (PUMS) and allocated to parcels.  Long-term 86 
choices (work location, school location and auto ownership) are simulated for all members of 87 
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the population.  The Person Day Activity and Travel Simulator (DaySim) then creates a one-88 
day activity and travel schedule for each person in the population, including a list of their 89 
tours and the trips on each tour.  The DaySim components, implemented in a single custom 90 
software program, consist of a hierarchy of multinomial logit and nested logit models.  The 91 
models within DaySim are connected by adherence to an assumed conditional hierarchy, and 92 
by the use of accessibility logsums.   93 

. 94 

  95 
Figure 1:  SACOG Regional Travel Forecasting Model System (SACSIM) 96 

97 
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The trips predicted by DaySim are aggregated and combined with predicted airport 97 
passenger trips, external trips and commercial vehicle trips into time- and mode-specific trip 98 
matrices.  The network traffic assignment models load the trips onto the network.  Traffic 99 
assignment is iteratively equilibrated with DaySim and the other demand models.   100 

As shown here, the regional forecasts are treated as exogenous.  In subsequent 101 
implementations, it is anticipated that SACSIM will be fully integrated with PECAS, 102 
Sacramento’s new land use model (Abraham, Garry and Hunt, 2004), so that the long range 103 
PECAS forecasts will depend on the activity-based travel forecast of DaySim.. 104 

 105 
2.1 DaySim Overview  106 

 107 
DaySim follows the day activity schedule approach developed by Bowman and Ben-Akiva 108 
(2001).  Its features include the following: 109 

• The model uses a microsimulation structure, predicting outcomes for each 110 
household and person in order to produce activity/trip records comparable to those from a 111 
household survey (Bradley, et al, 1999). 112 

• The model works at four integrated levels—longer term person and household 113 
choices, single day-long activity pattern choices, tour-level choices, and trip-level choices  114 

• The upper level models of longer term decisions and activity/tour generation are 115 
sensitive to network accessibility and a variety of land use variables. 116 

• The model allows the specific work tour destination for the day to differ from the 117 
person’s usual work location. 118 

• The model uses seven different activity purposes for both tours and intermediate 119 
stops (work, school, escort, shop, personal business, meal, social/recreation). 120 

• The model predicts locations down to the individual parcel level. 121 
• The model predicts the time that each trip and activity starts and ends to the 122 

nearest 30 minutes, using an internally consistent scheduling structure that is also sensitive 123 
to differences in travel times across the day (Vovsha and Bradley, 2004). 124 

• The model is highly integrated, including the use of mode choice logsums and 125 
approximate logsums in the upper level models, encapsulating differences across different 126 
modes, destinations, times of day, and types of person. 127 

The latter four features are enhancements relative to its closest precursor, the CHAMP 128 
model currently in active use by the San Francisco County Transportation Authority 129 
(SFCTA).  See Bradley, et al. (2001) and Jonnalagadda, et al. (2001) for details of the 130 
SFCTA model.   131 

Figure 2 is a flow diagram showing the relationships among DaySim’s component 132 
models, which are also listed in Table 2. The models themselves are numbered hierarchically 133 
in the table; subsequently in this paper, parenthetical numerical references to models refer to 134 
these numbers.  The hierarchy embodies assumptions about the relationships among 135 
simultaneous real world outcomes.  In particular, outcomes from models higher in the 136 
hierarchy are treated as known in lower level models.  It places at a higher level those 137 
outcomes that are thought to be higher priority to the decision maker.  The model structure 138 
also embodies priority assumptions that are hidden in the hierarchy, namely the relative 139 
priority of outcomes on a given level of the hierarchy.  The most notable of these are the 140 
relative priority of tours in a pattern, and the relative priority of stops on a tour.  The formal 141 



Bradley, Bowman and Griesenbeck, Journal of Choice Modelling, X(X), pp. XX-XX 

 

5 
 

hierarchical structure provides what has been referred to by Vovsha, Bradley and Bowman 142 
(2004) as downward vertical integrity. 143 

144 
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OUTPUT FILES

Short Term Choice
(once per person-day)

Tours
(once per person-tour)

Half-tours
(twice per person-tour)

Intermediate stops and trips
(once per trip)

INPUT DATA FILES

Activity/Trip
Scheduling

Trip ModeActivity
Location

Primary Activity
Scheduling

Long Term Choice (once per household)

Usual locations (once per person)

Representative
Population

School
(All students)

Work
(Student workers)

Auto Ownership
(Household)
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Data

Day Pattern
(activities & Home-
based tours for each

person-day)

Work
(Non-student workers)

Main Mode

Number & Purpose
of Intermediate

Stops

Person File
(one record per

person-day)

Tour File
(one record per

person-tour)

Trip File
(one record per

person-trip)

External Trips
by Purpose

LOS Skim Matrices, by Period
and Mode (from prior loop)

No./Purp. Of Wk-
Based SubTours

Primary Activity
Destination

Aggr.
LogSums

Aggr.
LogSums LogSums

144 
 145 

Figure 2: DaySim Flow Diagram 146 
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Model # Model Name Level What is predicted 

1.1 Synthetic Sample Generator Household 

Household size and composition, 
household  income, person age, gender, 
employment status, student status 

1.2 Regular Workplace Location Worker Workplace location zone and parcel 

1.3 Regular School Location Student School location zone and parcel 

1.4 Auto Ownership Household Auto ownership 

2.1 Daily Activity Pattern Person-day 
0 or 1+ tours for 7 activity purposes.  0 or 
1+ stops for 7 activity purposes 

2.2 Exact Number of Tours Person-day 
For purposes with 1+ tours, 1, 2 or 3 
tours. 

3.1 Tour Primary Destination Choice (Sub)Tour 
Primary destination zone and parcel 
(models are purpose-specific) 

3.2 Work-Based Subtour Generation Work Tour 
Number and purpose of any subtours 
made during a work tour 

3.3 Tour Main Mode Choice (Sub)Tour 

Main tour mode  

(models are purpose-specific) 

3.4 Tour Time of Day Choice (Sub)Tour 

The time period arriving and the time 
period leaving primary destination  

(models are purpose-specific) 

4.1 Intermediate Stop Generation Half Tour 

Number and activity purpose of any 
intermediate stops made on the half tour, 
conditional on day pattern 

4.2 Intermediate Stop Location Trip 

Destination zone and parcel of  each 
intermediate stop, conditional on tour 
origin,  destination, and location of any 
previous stops 

4.3 Trip Mode Choice Trip 
Trip mode, conditional on main tour 
mode 

4.4 Trip Departure Time Trip 

Departure time within 30 min. periods, 
conditional on time windows remaining 
from previous choices 

 147 

Table 2. Component Models of DaySim 148 



Bradley, Bowman and Griesenbeck, Journal of Choice Modelling, X(X), pp. XX-XX 

 

8 
 

Just as important as downward integrity is the upward vertical integrity that is achieved 149 
by the use of composite accessibility variables to explain upper level outcomes.  Done 150 
properly, this makes the upper level models sensitive to important attributes that are known 151 
only at the lower levels of the model, most notably travel times and costs.  It also captures 152 
non-uniform  cross-elasticities caused by shared unobserved attributes among groups of 153 
lower level alternatives sharing the same upper level outcome. 154 

Upward vertical integration is a very important aspect of model integration.  Without it, 155 
the model system will not effectively capture sensitivity to travel conditions. However, when 156 
there are very many alternatives (millions in the case of the entire day activity schedule 157 
model), the most preferred measure of accessibility, the expected utility logsum, requires an 158 
infeasibly large amount of computation.  So, for SACSIM approaches have been developed 159 
to capture the most important accessibility effects with a feasible amount of computation.  160 
One approach involves using logsums that approximate the expected utility logsum.  They 161 
are calculated in the same basic way, by summing the exponentiated utilities of multiple 162 
alternatives.  However, the amount of computation is reduced, either by ignoring some 163 
differences among decisionmakers, or by calculating utility for a carefully chosen subset or 164 
aggregation of the available alternatives.  The approximate logsum is pre-calculated and used 165 
by several of the model components, and can be re-used for many persons.  Two kinds of 166 
approximate logsums are used, an approximate tour mode/destination choice logsum and an 167 
approximate intermediate stop location choice logsum.  The approximate tour mode-168 
destination choice logsum is used in situations where information is needed about 169 
accessibility to activity opportunities in all surrounding locations by all available transport 170 
modes at all times of day.  The approximate intermediate stop location choice logsum is used 171 
in the activity pattern models, where accessibility for making intermediate stops affects 172 
whether the pattern will include intermediate stops on tours, and how many.   173 

The other simplifying approach involves simulating a conditional outcome.  For 174 
example, in the tour destination choice model, where time-of-day is not yet known, a mode 175 
choice logsum is calculated based on an assumed time of day, where the assumed time of day 176 
is determined by a probability-weighted Monte Carlo draw.  In this way, the distribution of 177 
potential times of day is captured across the population rather than for each person, and the 178 
destination choice is sensitive to time-of-day changes in travel level of service. 179 

In many other cases within the model system, true expected utility logsums are used.  180 
For example, tour mode choice logsums are used in the tour time of day models.   181 

 182 

3 Component Models of DaySim  183 
 184 
The models in the DaySim component of SACSIM were estimated using data from the 1999 185 
Sacramento Area Household Travel Survey, fielded by NuStats. The survey was a fairly 186 
standard place-based one-day travel diary survey, very similar to most other regional 187 
household travel surveys carried out in the US during the last decade.   188 

We do not have the space in this paper to provide details on the exact specification or 189 
estimation results for each component model. Table 1 provides a summary of most of the 190 
explanatory variables used in the models.  The reader is referred to the SACSIM Technical 191 
Memos (Bowman and Bradley, 2005-6), available on the website http://JBowman.net, as well 192 
as the SACSIM07 Model Reference Report (SACOG 2008). The following sections list some 193 
key aspects of the various DaySim component models.  Similar models are grouped together, 194 
for ease of presentation. 195 

   196 
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Table 1- Part 1: Variables included in   
Sacramento DaySim models                 
(P = predicted, X = explanatory)
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Household characteristics
Household size X X X X X X X
Household number of workers X X X X
Household income X X X X X X X X X X X
Household includes children X X X X X X X
Household includes people age 65+ X X X X X X X
Household is non-family household X X
Household number of driving age people X X X X X X
Household has no cars P X X X X
Household has fewer cars than workers P X
Household has fewer cars than adults P X X X X X
Housing unit type X
Person characteristics
Full time worker X X X X X X X
Part time worker X X X X X X X
Non-working adult X X X X X X
University student X X X X X X X
Driving age child X X X X X X X X X X X
Child age 5-15 X X X X X X X X
Child age under 5 X X X X X X X X
Age is 65 or older X X X X X X
Age is 51-65 X X
Age is 26-35 X X
Age is 18-25 X X
Gender X X X X X X
Usual workplace is home P X
Parcel-level land use variables
Service employment (density) X X X X X X
Educational employment (density) X X X X
Government employment (density) X X X X
Office employment (density) X X X X
Retail employment (density) X X X X X
Restaurant employment (density) X X X X X
Medical employment (density) X X X X X
Industrial employment (density) X X X
Total employment density X X X
Household density X X X X
University student enrollment (density) X X X X
K-12 student enrollment (density) X X X X X
Mixed use balance X X X X X X  197 

198 
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Table 1- Part 2: Variables included in   
Sacramento DaySim models                 
(P = predicted, X = explanatory)
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Parcel-level accessibility variables
Parking density X X X
Average parking price X X X X
Street intersection density X X X X X X X
Distance to nearest transit stop X X X X X
Zone-level accessibiliy variables
Auto and transit costs X X X X X
Auto, transit and non-motorized times X X X X X
Transit connectivity/availability X X X X X
Auto time on very congested links X X
Driving distance X X X X X
Mode choice accessibility logsum X X X X X
Mode/destination accessibility logsums X X X
Intermediate stop accessibility logsums X X
Endogenous activity pattern variables
Number of home-based tours in pattern P X X X X X
Pattern has multiple tours for the purpose P X X X
Pattern has stop(s) for the purpose P X X
Pattern includes work or school tour P X X
Purpose of tour P X X X X X X X
Tour is work-based subtour P X X X X X X
Intermediate stop purpose X P X X X
Number of intermediate stops on half tour P X X X
Outbound or return tour direction X X X X
Endogenous location, mode, TOD variables
Work tour is not to usual workplace X P
Tour mode is auto, transit, etc. P X X X
Mode used to get to work P X
Tour time periods of the day  P X X X X
Unscheduled time remaining in the day X P X X X
Trip mode is auto, transit, etc. P X
Trip time period of the day P  198 
 199 

200 
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3.1 Day Activity Pattern Model 200 
 201 
This model is a variation on the Bowman and Ben-Akiva approach, jointly predicting the 202 
number of home-based tours a person undertakes during a day for seven purposes, and the 203 
occurrence of additional stops during the day for the same seven purposes.  The seven 204 
purposes are work, school, escort, personal business, shopping, meal and social/recreational.  205 
The pattern choice is a function of many types of household and person characteristics, as 206 
well as land use and accessibility at the residence and, if relevant, the usual work location.  207 
The main pattern model (2.1) predicts the occurrence of tours (0 or 1+) and extra stops (0 or 208 
1+) for each purpose, and a simpler conditional model (2.2) predicts the exact number of 209 
tours for each purpose.  The “base alternative” in the model is the “stay at home” alternative 210 
where all 14 dependent variables are 0 (no tours or stops are made). 211 

Many household and person variables were found to have significant effects on the 212 
likelihood of participating in different types of activities in the day, and on whether those 213 
activities tend to be made on separate tours or as stops on complex tours. The significant 214 
variables include employment status, student status, age group, income group, car 215 
availability, work at home dummy, gender, presence of children in different age groups, 216 
presence of other adults in the household, and family/non-family status. For workers and 217 
students, the accessibility (mode choice logsum) of the usual work and school locations is 218 
positively related to the likelihood of traveling to that activity on a given day. For workers, 219 
the accessibility to retail and service locations on the way to and from work is positively 220 
related to the likelihood of making intermediate stops for various purposes. 221 

Simpler models were estimated to predict the exact number of tours for any given 222 
purpose, conditional on making 1+ tours for that purpose. An interesting result is that, 223 
compared to the main day pattern model, the person and household variables have less 224 
influence but the accessibility variables have more influence. This result indicates that the 225 
small percentage of people who make multiple tours for any given purpose during a day tend 226 
to be those people who live in areas that best accommodate those tours. Other people will be 227 
more likely to participate in fewer activities and/or chain their activities into fewer home-228 
based tours. 229 

The DaySim models implemented in Sacramento do not include explicit models of intra-230 
household interactions.  Although explanatory variables are used throughout the model 231 
system to take account of the characteristics of other household members, we do not 232 
explicitly link the activity patterns across individuals so that they travel together.  During the 233 
period that the Sacramento model system was being developed, the first such applied intra-234 
household interaction models of that type were being developed and applied for the 235 
Columbus and Atlanta regions. For Sacramento, on the other hand, the focus was placed on 236 
using finer level spatial detail (parcels) and temporal detail (30 minute periods), as well as on 237 
achieving upward integrity through consistent use of accessibility logsums at all levels of the 238 
model system. Adding models of explicit intra-household interactions may be a worthwhile 239 
additional during future model update projects (along with other potential improvements 240 
described in the final section of this paper). 241 

 242 
3.2 Generation Model for Work-based Subtours 243 
 244 
For this model, the work tour destination is known, so variables measuring the number and 245 
accessibility of activity opportunities near the work site influence the number and purpose of 246 
work-based tours. This model is very similar in structure to the stop participation and purpose 247 
models described next. 248 
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3.3 Generation Model for Intermediate Stops on Half-Tours 249 
 250 
For each tour, once its destination, timing and mode have been determined, the exact number 251 
of stops and their purposes is modeled for the half-tours leading to and from the tour 252 
destination.  For each potential stop, the model predicts whether it occurs or not and, if so, its 253 
activity purpose.  This repeats as long as another stop is predicted.  The outcomes of this 254 
model are strongly conditioned by (a) the outcome of the day activity pattern model, and (b) 255 
the outcomes of this model for higher priority tours.  For the last modeled tour, this model is 256 
constrained to accomplish all intermediate stop activity purposes prescribed by the activity 257 
pattern model that have not yet been accomplished on other tours. 258 

The estimation results for this model indicate that accessibility measures are important 259 
in determining which stops are made on which tours, as well as the exact number of stops. 260 
An important feature of this model system is that we do not predict the number and allocation 261 
of stops completely at the upper pattern level, as is done in the Portland and SFCTA models, 262 
or completely at the tour level, as is done in other models such as those in Columbus and 263 
New York. Rather, the upper level pattern model predicts the likelihood that ANY stops will 264 
be made during the day for a given purpose, at a level where the substitution between extra 265 
stops versus extra tours can be modeled directly. Then, once the exact destinations, modes 266 
and times of day of tours are known, the exact allocation and number of stops is predicted 267 
using this additional tour-level information. We think that this approach provides a good 268 
balance between person-day-level and tour-level sensitivities. 269 

 270 
3.4 Location Choice Models 271 
 272 
3.4.1 Usual Work and School Locations and Tour Primary Destinations 273 
 274 
The dependent variable in the usual location and tour destination models is the parcel address 275 
where the activity takes place. Since over 700,000 parcels comprise the universal set of 276 
location choice alternatives in the SACOG six-county region, it is necessary to both estimate 277 
and apply the location choice models using a sample of alternatives. The sampling of 278 
alternatives is done using two-stage importance sampling with replacement; first a TAZ is 279 
drawn according to a probability determined by its size and impedance, and then a parcel is 280 
drawn within the TAZ, with a size-based probability. 281 

Some differences among the models come from the assumed model hierarchy in Table 282 
1.For the usual work and school location models, auto ownership is assumed to be unknown, 283 
based on the assumption that auto ownership is mainly conditioned by work and school 284 
locations of household members, rather than the other way around.  For the tour destinations, 285 
auto ownership levels are treated as given, and affect location choice.  For university and 286 
grade school students who also work, the usual school location is known when usual work 287 
location is modeled; for other workers who also go to school, the work location is known 288 
when usual school location is modeled.  For the tour destination models, all usual locations 289 
are known. 290 

There are additional structural differences among these models.  For the two usual 291 
location models (work and school), the home location is treated as a special location, because 292 
it occurs with greater frequency than any given non-home location, and size and impedance 293 
are not meaningful attributes.  As a result, both of these models take the nested logit form, 294 
with all non-home locations nested together under the conditioning choice between home and 295 
non-home.  In the estimation data, all workers have a usual work location and all students 296 
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have a usual school location, so the model does not have an alternative called “no usual 297 
location”. 298 

Because a large majority of work tours go to the usual work location, the work tour 299 
destination model has this as a special alternative.  Therefore, the model is nested, with all 300 
locations other than the usual location nested together under the conditioning binary choice 301 
between usual and non-usual. (Nearly all observed school tours go to the usual school 302 
location.  Therefore, there is no school tour destination choice model.)   303 

Since there are no modeled usual locations for activities other than work and school, the 304 
destination choice model of all remaining purposes is simply a multinomial logit model. 305 

Two important variables in all of these models are the disaggregate mode choice logsum 306 
and network distance.  The logsum represents the expected maximum utility from the tour 307 
mode choice, and captures the effect of transportation system level of service on the location 308 
choice.  Distance effects, independent of the level of service, are also present to varying 309 
degrees depending on the type of tour being modeled.  In nearly all cases, sensitivity to 310 
distance declines as distance increases; in some cases this is captured through a logarithmic 311 
form of distance.  In other cases, where there is plenty of data to support a larger number of 312 
estimated parameters, a piecewise linear form is used to more accurately capture this 313 
nonlinear effect. 314 

In most cases the models include an aggregate mode-destination logsum variable at the 315 
destination.  A positive effect is interpreted as the location’s attractiveness for making 316 
subtours and intermediate stops on tours to this location.  A mix of parking and employment, 317 
at both the zone and parcel level, as well as street connectivity in the neighborhood, attract 318 
workers and tours for non-work purposes.  Also, parcel-based size variables and TAZ-level 319 
density variables affect location choice. 320 

 321 
3.4.2 Locations of Intermediate Stops  322 

 323 
For intermediate stop locations, the main mode used for the tour is already known, and so are 324 
the stop location immediately toward the tour destination (stop origin), and the tour origin.  325 
So the choice of location involves comparing, among competing locations, (a) the impedance 326 
of making a detour to get there, given the tour mode, and (b) the location’s attractiveness for 327 
the given activity purpose.  The model is a multinomial logit (MNL).   328 

Trip characteristics used in the model include stop purpose, tour purpose, tour mode, 329 
tour structure, stop placement in tour, person type, and household characteristics.  The most 330 
important characteristics are the tour mode and the stop purpose.  The tour mode restricts the 331 
modes available for the stop, and this affects the availability and impedance of stop locations.  332 
The availability and attractiveness of stop locations depend heavily on the stop purpose.  333 
Tour characteristics also affect willingness to travel for the stop, and the tendency to stop 334 
near the stop or tour origin.  These trip and tour characteristics tend to overshadow the effect 335 
of personal and household characteristics in this model.  336 

The main impedance variable is generalized time, as well as its quadratic and cubic 337 
forms, to allow for nonlinear effects.  It combines all travel cost and time components 338 
according to assumptions about their relative values.  Generalized time is used, instead of 339 
various separately estimated time and cost coefficients, because the intermediate stop data is 340 
not robust enough to support good estimates of the relative values.  Generalized time is 341 
measured as the (generalized) time required to travel from stop origin to stop location and on 342 
to tour origin, minus the time required to travel directly from stop origin to tour origin.  It is 343 
further modified by discounting it according to the distance between the stop origin and the 344 
tour origin.  The discounting is based on the hypothesis that people are more willing to make 345 
longer detours for intermediate stops on long tours than they are on short tours.  346 
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Additional impedance variables used in the model include travel time as a fraction of the 347 
available time window, which captures the tendency to choose nearby activity locations if 348 
there are tight time constraints on the stop, and proximity variables (inverse distance), which 349 
capture the tendency to stop near either the stop origin or the tour origin. 350 

 351 
3.5  Mode Choice Models 352 
 353 
3.5.1 Tour Main Mode 354 

 355 
The tour mode choice model determines the main mode for each tour (a small percentage of 356 
tours are multi-modal), There are eight modes, although some of them are only available for 357 
specific purposes. They are listed below along with the availability rules, in the same priority 358 
order as used to determine the main mode of a multi-mode tour: 359 

(1)  360 
Drive to Transit:  Available only in the Home-based Work model, for tours with a valid drive 361 
to transit path in both the outbound and return observed tour  362 

(2)  363 
Walk to Transit: Available in all models except for Home-based Escort, for tours with a valid 364 
walk to transit path in both the outbound and return observed tour periods. 365 

(3)  366 
School Bus: Available only in the Home-based School model, for all tours. 367 

(4)  368 
Shared Ride 3+: Available in all models, for all tours. 369 

(5)  370 
Shared Ride 2: Available in all models, for all tours. 371 

(6)  372 
Drive Alone: Available in all models except for Home-based Escort, for tours made by 373 
persons age 16+ in car-owning households. 374 

(7)  375 
Bike: Available in all models except for Home-based Escort, for all tours with round trip road 376 
distance of 30 miles or less. 377 

(8)  378 
Walk: Available in all models, for all tours with round trip road distance of 10 miles or less. 379 

 380 
Transit has less than 1percent mode share and Bicycle has less than 2 percent mode 381 

share for all purposes except Work and School.  In order to get enough transit and bicycle 382 
tours to provide reasonable estimates, the home-based non-mandatory purposes of shopping, 383 
personal business, meal and social/recreation were grouped in a single model, but using 384 
purpose-specific dummy variables to allow for different mode shares for different purposes.   385 

In general, it was possible to obtain significant coefficients for out-of-vehicle times, but 386 
not for travel costs or in-vehicle times. This is a typical result for RP data sets, particularly 387 
when there are few transit observations. As a result, many of the coefficients for cost and in-388 
vehicle time were constrained at values that met the following criteria: (1) the in-vehicle time 389 
coefficients meet the United States Federal Transit Administration (FTA) guidelines, (2) the 390 
imputed values of time are reasonable and meet FTA guidelines, and (3) the values were kept 391 
as close as possible to what the initial estimation indicated.  The resulting values of time and 392 
out-of-vehicle/in-vehicle time ratios are shown in Table 3. The number of transfers was not 393 
found to be significant in any of the models, however transfer wait time is included in the 394 
out-of-vehicle time coefficients.  Also, the higher the percentage of time in a Drive to Transit 395 
path that is spent in the car rather than on transit, the lower the probability of choosing it.  396 
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This is a result often found in other cities as well, which serves to discourage park-and-ride 397 
choices that include long drives followed by short transit rides. 398 

 399 
Model Value of time

($/hr) 
Ratio  

Walk to In-Vehicle 
Ratio  

Wait to In-Vehicle 

Home-Based Work $11.20 2.95 2.50 

Home-Based School $6.00 2.20 2.20 

Home-Based Escort $7.50 3.00 N/A 

Home-Based Other $7.50 2.72 2.72 

Work-Based $7.50 2.84 2.84 

Table 3: Tour Mode Choice Level of Service Coefficient Summary 400 

Two land use variables came out as significant in many of the models, increasing the 401 
probability of walk, bike and transit: 402 

Mixed use density: This is defined as the geometric average of retail and service 403 
employment (RS) and households (HH) within a half mile of the origin or destination parcel ( 404 
= RS * HH / (RS + HH)). This value is highest when jobs and households are both high and 405 
balanced. High values near the tour origin tend to encourage walking and biking, while high 406 
values near the tour destination more often encourage transit use.  407 

Intersection density: This is defined as the number of 4-way intersections plus one half 408 
the number of 3-way intersections minus the number of 1-way “intersections” (dead ends and 409 
cul de sacs) within a half mile of the origin or destination parcel. Higher values tend to 410 
encourage walking for School and Escort tours, where safety for children is an issue, and also 411 
to encourage walking, biking and transit for Home-Based Other tours. 412 

A number of different nesting structures were tested. In the nesting structure that was 413 
selected there are three combined nests: 414 

(1) Drive to Transit with Walk to Transit 415 
(2) Shared Ride 2 with Shared Ride 3+ 416 
(3) Bike with Walk 417 
These all gave logsum coefficients less than 1.0 but not significantly different from each 418 

other, so a single estimated nesting parameter applies to all 3 nests (as well as to the 2 419 
additional “nests” that only have one alternative each: Drive Alone, and School Bus).  The 420 
estimated logsum parameters are 0.51 for Work, 0.86 for School, and 0.73 for Other.  For 421 
Work-Based tours, it was not possible to obtain a stable estimate, so a constrained value of 422 
0.75 (similar to HBOther) was used.  No nesting was used for the Escort model, as it contains 423 
only 3 alternatives and is a very simple model. 424 

 425 
3.5.2 Trip Mode 426 

 427 
The trip-level mode is conditional on the predicted tour mode, but now uses a specific OD 428 
pair and a time anchor, and also the trip mode for the adjacent, previously modeled trip in the 429 
chain.  The majority of tours use a single mode for all trips, so this model only explains the 430 
small percentage of trips that are made by modes other than the main mode. The most 431 
common occurrence of this is a Drive Alone trip that is made as part of a Shared Ride tour 432 
after the passenger has been picked up or dropped off.  These cases are most common on 433 
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Escort tours, where predicting the trip(s) that is Drive Alone is mainly a function of the half 434 
tour (away from home or towards home) and the time of day. 435 

 436 
3.6  Auto Availability Model 437 

 438 
This model is applied at the household level, and determines the number of vehicles available 439 
to the household drivers.  It is structured as a multinomial logit (MNL) with five available 440 
alternatives:  0, 1, 2, 3, and 4+.  Key variables are the numbers of working adults, non-441 
working adults, students of driving age, children below driving age and income.  Statistically 442 
significant policy variables affecting car ownership include mode choice logsums measuring 443 
accessibility to the workers’ and students’ usual work and school locations, a mode-444 
destination choice logsum measuring accessibility from home to non-work activities, distance 445 
from home to the nearest transit stop, parking prices in the home neighborhood, and 446 
commercial employment in the home neighborhood.  Although the policy variables are 447 
significant, the model’s auto ownership elasticity with respect to changes in these variables is 448 
less than 0.1 in nearly all cases and often much lower, the lone exception being very low 449 
income households. 450 
 451 
3.7  Time of Day/Activity Scheduling Models 452 

 453 
DaySim employs a method of modeling time of day developed by Vovsha and Bradley 454 
(2004).  The time of day models explicitly model the 30 minute time periods of arrival and 455 
departure at all activity locations, and hence for all trips between those locations.  It thereby 456 
also provides an approximate duration of the activity at each activity location.  The model 457 
uses 48 half-hour periods in the day—3:00-3:29 AM, 3:30-3:59 AM, …, 2:30 AM-2:59 AM.  458 
Given the way that the activity diary data was collected, no tour begins before 3:00 AM or 459 
ends after 2:59 AM.  DaySim includes two types of time-of-day models: 460 

 461 
3.7.1 Tour Primary Destination Arrival and Departure Time 462 

 463 
For each home-based or work-based tour, the model predicts the time that the person arrives 464 
at the tour primary destination, and the time that the person leaves that destination to begin 465 
the return half-tour. The tour model includes as alternatives every possible combination of 466 
the 48 alternatives, or 48 x 49 / 2 = 1,716 possible alternatives. The model is applied after the 467 
tour primary destination and main mode have already been predicted.  Since entire tours, 468 
including stop outcomes, are modeled one at a time, first for work and school tours and then 469 
for other tours, the periods away from home for each tour become unavailable for 470 
subsequently modeled tours. 471 

 472 
3.7.2 Intermediate Stop Arrival or Departure Time 473 

 474 
For each intermediate stop made on any tour, this model predicts either the time that the 475 
person arrives at the stop location (on the first half tour), or else the time that the person 476 
departs from the stop location (on the second half tour). On the second (return) half tour, we 477 
know the time that the person departs from the tour primary destination, and, because the 478 
model is applied after the stop location and trip mode have been predicted, we also know the 479 
travel time from the primary destination to the first intermediate stop. As a result, we know 480 
the arrival time at the first intermediate stop, so the model only needs to predict the departure 481 
time from among a maximum of 48 alternatives (the same 30 minute periods that are used in 482 
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the tour models). This procedure is repeated for each intermediate stop on the half tour. On 483 
the first (outbound) half tour, the stops are simulated in reverse order from the primary 484 
destination back to the tour origin, so we know the departure time from each stop and only 485 
need to predict the arrival time.  As stops within a tour are modeled, the periods occupied by 486 
each modeled stop become unavailable for subsequently modeled stops and tours. 487 

A key concept in the time of day models is the “time window”. A time window is a set 488 
of contiguous time periods that are available for scheduling tours and stops.  When a tour or 489 
stop is scheduled, the portion of the window that it does not fill is left as two separate and 490 
smaller time windows.  The time periods at either end of a scheduled sequence of activities 491 
on a tour are only partially filled, but the time periods in between are completely filled.  It is 492 
possible to arrive at a tour or stop destination in a given time period if another tour ended in 493 
that period, and possible to leave a tour or stop destination if another tour began in that 494 
period, but it is not possible to arrive or depart in a time period that is already completely 495 
filled. 496 

Another key aspect is the use of shift variables. These are dummy variables interacted 497 
with the arrival time and the duration of the alternative.  If the arrival shift coefficient is 498 
negative, it means that activities tend to be made earlier (because the shift coefficient causes 499 
later arrival time alternatives to have lower utility), and if it is positive, it means that 500 
activities tend to be made later. If the duration shift coefficient is negative, it means that 501 
activities tend to be shorter (because the shift coefficient causes longer duration time 502 
alternatives to have lower utility), and if it is positive, activities tend to be longer. No 503 
departure shift coefficient is estimated because the departure shift is simply the sum of the 504 
arrival shift and the duration shift (e.g. if the arrival shift is an hour earlier and the duration 505 
shift is an hour longer, the departure shift is 0).  In the models, shift variables interact 506 
extensively with other characteristics of the person, day activity pattern and tour, as well as 507 
time-dependent attributes of the network, such as travel times and measures of congestion, to 508 
effectively represent their influence on time-of-day choice. 509 

The time of day models also use a variety of variables to represent scheduling pressure, 510 
conditional on what other activities have already been scheduled or remain to be scheduled 511 
for the day.  The overall scheduling pressure is given by the number of tours remaining to be 512 
scheduled divided by the total empty window that would remain if an alternative is chosen. 513 
The negative effect indicates that people are less likely to choose schedule alternatives that 514 
would leave them with much to schedule and little time to schedule it in. A similar variable is 515 
the number of tours remaining divided by the maximum consecutive time window. This is 516 
also negative, meaning that people with more tours to schedule will tend to try to leave a 517 
large consecutive block of time rather than two or more smaller blocks.  518 

Relative travel times across the day also influence time of day choice. The travel time 519 
for each period is based on the network travel times for the 4 periods of the day – AM peak, 520 
midday, PM peak, and off-peak. The variable is applied for both the outbound half tour (tour 521 
origin to tour destination) and the return half (tour destination to tour origin). For auto tours, 522 
the time is just the in-vehicle time, while transit time is in-vehicle time plus first wait time, 523 
transfer time, and drive access time. Walk access/egress time is not included, as that does not 524 
vary by time period.  These variables are not applied for walk, bike or school bus tours. 525 
Significant travel time effects were found for Work and Other tours and for Intermediate 526 
Stops, but not for School or Work-based Tours.  527 

Auto congestion may also cause time shifts within the AM peak and PM periods. For 528 
this purpose, the variable used was the extra time spent on links where the congested time is 529 
over 20 percent higher than the free flow time. This extra congested time was converted to 530 
shift variables by multiplying by the time difference between the period and the “peak of the 531 
peak”: 532 
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1. AM shift earlier: If the period is 6 AM to 8 AM, multiply by (8 AM – time) 533 
2. AM shift later: If the period is 8 AM to 10 AM, multiply by (time – 8 AM) 534 
3. PM shift earlier:  If the period is 3 PM to 5 PM, multiply by (5 PM – time) 535 
4. PM shift later: If the period is 5 PM to 7 PM, multiply by (time – 5 PM) 536 
 537 
With this formulation, the more positive the coefficient and the larger the congested 538 

time, the more that the peak demand is spread away from the peak of the peak. 539 
For Work tours, in both the AM and PM, the estimation results show a tendency to move 540 

the work activity earlier as the time in very congested conditions increases. For School tours 541 
and Work-based subtours, no significant congestion effects were estimated.  For Other tours, 542 
times in the PM peak were found to shift both earlier and later with high congestion.  543 

 544 
4 SACSIM System Equilibration  545 

 546 
In the overall system design of SACSIM, Figure 1 shows a cyclical relationship between 547 
network performance and trips: DaySim and the auxiliary trip models use network 548 
performance measures to model person-trips, which are then loaded to the network, 549 
determining congestion and network performance for the next iteration.  The model system is 550 
in equilibrium when the network performance used as input to DaySim and the other trip 551 
models matches the network performance resulting from assignment of the resulting trips.  552 
Network performance for this purpose is times, distances, and costs measured zone-to-zone 553 
along the paths of least generalized cost.  554 

Trip-based model systems with this same requirement have existed for at least thirty 555 
years (Evans, 1976), and the theory of system equilibrium for them is well developed now.  556 
Almost all convergent trip-based models, at some stage in an iteration process, use the 557 
method of convex combinations.  This is to update the current best solution of flows (zone-558 
to-zone matrices and/or link volumes) with a weighted average of the previous best solution 559 
of those flows and an alternative set of flows calculated by the new iteration. 560 

With the unit of analysis in DaySim being households instead of origin-destination pairs, 561 
we have options that are not normally available to trip-based models.  DaySim need not 562 
simulate the entire synthetic population in an iteration; it is able to run a selected sample of 563 
the population.  Since its runtimes are long but proportional to the number of households 564 
modeled, early system-iterations can be sped up by simulating small samples.   565 

The SACSIM equilibration procedure employs equilibrium assignment iteration loops 566 
(a-iterations) nested within iterations between the demand and assignment models (da-567 
iterations).  This is similar to the nested iteration in many trip-based model systems. 568 
Assignment is run for four time periods, and each one employs multi-class equilibrium 569 
assignment, with classes composed of SOV, HOVs not using median HOV lanes, and HOVs 570 
using them.  In the i-th da-iteration, DaySim is run on a subset of the synthetic population, 571 
consisting of the fraction 1/si (i.e. 100/si percent) of the households, starting with the mi-th 572 
household and proceeding uniformly every si households.  The user determines si and mi.  573 
DaySim scales up the synthesized trips by the factor si before they are combined with the 574 
estimated external, airport and commercial trips in mode-specific OD matrices for the four 575 
assignment time periods.  During the n-th a-iteration within the i-th da-iteration, link volumes 576 
are estimated for the iteration i OD matrices, and combined in a convex combination with 577 
link volumes from the prior da-iteration, using a user-specified combination factor (or step-578 
size) iλ .  This is the pre-loading method intended to prevent link volume oscillation between 579 
da-iterations.  The resulting estimated volumes are then combined with link volumes from the 580 
prior a-iteration using the TP+-determined step size α .  This is intended to prevent link 581 
volume oscillation between a-iterations. 582 
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As implemented, the equilibration procedure runs for a user-determined number (I) of 583 
da-iterations.  Within each iteration, the user controls the synthetic population subset used by 584 
DaySim (via si and mi), the weight ( iλ ) given during assignment to the link volumes 585 
associated with this iteration’s simulated trips, and the assignment closure criteria (Ni and gi). 586 
Bowman, Bradley and Gibb (2006) report the results of testing various combinations of these 587 
parameters.  588 

Eventually, certain applications of the activity model may need the equilibrium process 589 
to achieve higher precision in zone-to-zone times than the prototypical applications provide.  590 
Since the degree of precision is problem-specific (depends on the population and on 591 
congestion levels), empirical study should be pursued as needed on where to best find 592 
improvement, in either: (a) more system iterations with smaller step sizes and/or smaller first 593 
sample, (b) more simulation passes per household, (c) a smaller tolerance of the assignment’s 594 
relative gap closure criterion, especially in later system iterations, or (d) some combination of 595 
these. A separate requirement anticipated for some applications of SACSIM is to reduce the 596 
randomness of trip forecasts beyond what is inevitable from the Monte Carlo process at full 597 
sampling.  These applications require supersampling, which is running two or more 598 
simulations of the whole population after equilibrium is adequately achieved, and averaging 599 
their results.   600 

 601 
5 SACSIM Calibration and Validation  602 

 603 
SACSIM calibration and validation work has proceeded in three steps:  preliminary 604 
validation, base year calibration, and prediction validation.  Preliminary validation involved 605 
comparing model estimation and software application results to the household survey sample.  606 
It occurred primarily during DaySim model estimation and software development.  After 607 
each model was estimated, it was applied to the survey data.  Aggregate results for various 608 
subpopulations were checked, as were model sensitivities, to detect deficiencies in the model 609 
specifications, so they could be corrected.  After each model was implemented in the 610 
application software, it was again compared to the survey sample to find software bugs. 611 

A base year validation run consisted of running a base year 2000 scenario of the entire 612 
model system to an equilibrated state, and comparing aggregate results to the best available 613 
external information about the actual base year characteristics on a typical weekday.  This 614 
information comes from census data, transit on-board surveys, and screenline and other 615 
counts.  Calibration then involved iteratively adjusting parameters and repeating validation 616 
runs until the base year prediction adequately matches the external information.  Although all 617 
model calibration adjustments have a simultaneous impact on the model predictions, it is 618 
natural to calibrate sequentially from the top to the bottom of the DaySim model hierarchy, 619 
because adjustments to upper level models will tend to impact lower level model predictions 620 
more than vice versa.  Bowman and Bradley (2006) provide some further details on the initial 621 
calibration tests.   622 

Overall model validation was performed by comparing key model outputs to observed 623 
travel patterns for Years 2000 and 2005.  Long term models (usual place of work and auto 624 
ownership) were validated against the 2000 Census.  Short term models (day pattern, tour and 625 
trip frequency, tour and trip distribution and timing) were validated against the 2000 626 
household travel survey.   Aggregate assignment outputs for both transit and highway were 627 
validated against traffic counts (daily volumes, and direction volumes by four time periods) 628 
and transit volumes (daily passenger volumes by line, and daily station boardings for rail 629 
stations).  The SACSIM07 Model Reference Report (SACOG 2008a) provides details of the 630 
model calibration and validation results, 631 
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6 Sensitivity Testing and Evaluation  632 
 633 

Two sorts of sensitivity evaluations were performed on SACSIM:  cross sectional evaluations 634 
of travel sensitivity to land use variables, and “experimental” travel sensitivity to key 635 
exogenous variables.  Cross-sectional evaluations of land use sensitivity focused on 636 
correlation of travel to so-called “4D’s” variables such as density, mix of use, street pattern, 637 
and transit proximity.  Comparisons of SACSIM sensitivity to these land use variables to 638 
observed sensitivity in the 2000 household travel survey were made for each variable.  639 
Because SACSIM input and output files are parcel-point geography, characteristics of land 640 
use at place of residence or place of work can be described in much greater detail, and 641 
matched to similar characteristics observed in the travel survey in a way that is not possible if 642 
the model aggregates land uses to traffic analysis zones.  Figures 3 and 4 show how land use 643 
density (jobs plus dwelling units) within a quarter mile buffer around the residence parcel is 644 
related to daily VMT per household and non-auto mode share. The difference in behavior 645 
found in the survey households related to to this density variable is quite dramatic, and the 646 
SACSIM predictions match the observed trends quite well. This ability to capture detailed 647 
neighborhood density effects is a result of the fact that the models use parcel-level detail, and 648 
that they use a variety of urban design variables.  649 

Travel sensitivities to transit fares, auto fuel cost, highway capacity, and household 650 
income were tested experimentally, by synthetically increasing or decreasing the test 651 
variable, and correlating changes in model outputs to the test variables.  A summary of 652 
sensitivity test results is given in Table 4. For these tests, reasonability of the travel model 653 
sensitivity was judged by comparison to sensitivities observed in other research.  For 654 
example, the transit fare elasticity is roughly -.23, which is in the typical range. The cross-655 
elasticities for the other modes and for total trips are quite low, due to the fact that the transit 656 
mode share is very low to begin with, so mode shifts from transit have little relative effect on 657 
the other modes.  658 

The auto fuel cost elasticity on VMT is roughly -.13. This is somewhat lower than the 659 
typical long term fuel price elasticity estimated from time series data (-.2 to -.3), and there is 660 
clearly a question as to how accurately cross-sectional data from a period of stable fuel prices 661 
can capture behavioral responses to fuel price. Also, the tests below were done for the 2005 662 
situation, when there are few non-auto alternatives in several parts of the region.  In 663 
additional scenarios run for 2035, with more compact land uses and increased transit service, 664 
the fuel price elasticity for the forecasts appears somewhat higher, around -.18. 665 

The estimated elasticity of VMT with regard to highway capacity (+.144) also appears 666 
somewhat low, as time series analysis has revealed values in the range of +.3 to +.6.  Note, 667 
however, that this sensitivity test was done not by adding new highway links, but simply by 668 
increasing the capacity on all existing road network links, regardless of the level of 669 
congestion.  In real situations, roads tend to added and widened only where congestion levels 670 
are highest, so it is reasonable that the effect on demand would be higher. Further sensitivity 671 
tests could be done to more closely mimic real-world highway capacity improvements.  672 

 673 
 674 

675 
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Figure 3 677 
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Figure 4 680 
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 681 
Test variable Transit  

fare 
Auto fuel  

cost 
Highway 
capacity 

Household 
income 

Response variable: Elasticity Elasticity Elasticity Elasticity 
Total person trips -.001 -.010 +.012 +.119 
Vehicle trips +.004 -.036 +.021 +.151 
Vehicle miles traveled +.006 -.126 +.144 +.090 
Transit trips -.226 .151 -.035 -.415 
Walk and bike trips +.005 .067 -.055 -.091 

Table 4: Summary Results from Model Sensitivity Tests 682 
 683 

7 SACSIM Model Application  684 
 685 

SACSIM was used to prepare forecasts and analysis of the most recent long range regional 686 
transportation plan, adopted in March 2007, for which SACSIM was used to forecast to Year 687 
2035.  A unique aspect of the analysis prepared for the plan was a division of key travel 688 
metrics into “household-generated” travel, commercial vehicle travel and external travel.  689 
Because SACSIM accounts for all travel generated from households, including trips that in 690 
four-step models are lumped into “non-home-based” trips, a complete accounting of 691 
household-generated travel can be made.  This analysis capability is extremely useful for 692 
transportation planning, because travel decisions away from the home are affected by 693 
characteristics of land uses at place of residence, as well as by travel choices made in earlier 694 
trips during the day. 695 

SACSIM has also been used to prepare land use and transportation analysis for several 696 
transportation or development projects.  In one notable example, SACSIM was used to 697 
compare the transportation consequences of a land use decision for a major development 698 
project in the SACOG region (SACOG 2007).  A local agency was considering adopting a 699 
specific plan alternative that included 14,000 dwellings, over an alternative that included 700 
21,000 dwellings.  The higher development level provided more transit and non-motorized 701 
travel opportunities, and also allowed for improving the overall land use mix in the sub-702 
regional area.  Using SACSIM, SACOG was able to evaluate the effects of this decision by 703 
fully accounting for the travel of residents of the 7,000 dwellings in the most likely areas that 704 
would receive the development instead, if the lower density alternative were adopted.  705 
Importantly, this analysis kept the demographics of the “displaced” households constant.  The 706 
analysis showed that the lower density land use decision would increase overall vehicle miles 707 
traveled in the region by 150,000 per day.  Additionally, SACSIM allowed the overall effects 708 
to be split into the effects within the specific plan area, versus the effects elsewhere in the 709 
region due to relocating 7,000 dwellings that would otherwise be included in the plan.   710 

 711 
7.1  Application Issues 712 

 713 
The most time-consuming application issue has been the development of forecast year 714 
parcel/point datasets required by SACSIM.   As this has been the first model system of its 715 
kind to work at the parcel level, SACOG and the model developers needed to devise 716 
procedures for developing forecast year spatial data, with no examples from models 717 
developed elsewhere. We trust that our experiences from this project will prove useful to 718 
others who will be developing parcel-based travel demand models in the future. 719 
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Development of the model was based on parcel/point data from Year 2000 surveys and 720 
inventories of population, employment and land use.  Application of the model was based on 721 
synthesized datasets for the model base year (2005) and for all forecast years for the MTP.  722 
The SACSIM07 Model Reference Report (SACOG 2008a) provides a detailed discussion on 723 
the preparation of the model input data.   724 

The primary parcel/point data source was SACOG’s parcel-based land use database, 725 
called Place3s.  Place3s is a GIS-based land use scenario generator (Allen, et al. 1996).  726 
Scenarios are built at parcel level, with land uses characterized by “place type”, which 727 
includes assumptions about the type, density, and mix of uses.  SACOG uses a palette of 728 
about 50 place types.  Total development levels are controlled by aggregate county-level 729 
econometric forecasts adopted by the SACOG Board for use in the development of the MTP.  730 
Place3s was used to estimate dwelling units and employment (9 sectors) at parcel level. 731 

Even with the basic demographic variables forecasted at parcel level, other datasets that 732 
are very important for predicting travel behavior do not come naturally from Place3s, and 733 
were prepared separately.  These variables include:  small-area demographics needed to 734 
control the development of synthetic populations; K12 schools, colleges and universities; 735 
some sectors of employment (e.g. medical employment not associated with hospitals and 736 
large medical centers); paid off-street parking facilities; transit stops; and street-pattern 737 
variables. 738 

Demographics to control the development of synthetic populations were built up from 739 
the Place3s parcel-level estimates for dwelling units.  The control variables for the population 740 
synthesis are household size (1,2,3,and 4+ persons); workers per household (0,1,2, and 3+ 741 
workers); income level (5); and age of head-of-household (over/under 55 years).  742 
Demographic profiles based on control variables for three dwelling unit structure types 743 
(single family, multi-family 2-4 units, and multi-family 5+ units) were drawn from Year 744 
2000 Census tabulations for regional analysis districts within the region.  The profiles are 745 
applied to the Place3s estimates of dwellings by type at traffic analysis zone level.  The 746 
resulting files are used directly by SACOG’s 4-step travel model (SACMET), and are used as 747 
control files for the SACSIM population synthesis. 748 

School locations and types are built up at point-level from a Year 2005 inventory of 749 
schools to future years by adding future schools.  For K12 schools, future school needs are 750 
calculated at TAZ-level by tallying growth in school-age children in the synthetic 751 
populations.  For example, the Year 2035 land use forecasts require about 300 new K12 752 
schools.  Where possible, future school sites are identified in local agency general plans and 753 
school district plans.  In practice, only a minority of future K12 sites are explicitly identified 754 
in planning documents, and the majority of future K12 sites are manually identified based on 755 
the location of residential growth and judgment.  Future colleges and universities are based 756 
on known plans for these facilities. 757 

Place3s estimates medical employment associated with hospitals and large medical 758 
centers.  All other medical employment associated with smaller clinics, private offices, and 759 
other medical-related uses are included within estimates of office and service employment 760 
sectors.  Other medical employment is split out from these more aggregate categories based 761 
on proximity of parcel to the hospitals and large medical centers.  For parcels very near 762 
hospitals/medical centers, a higher percentage of the total office/service employment is 763 
medical; as distance increases, the percentage decreases.  Rates for this post-processing were 764 
based on Year 2005 employment inventories. 765 

Paid off-street parking facilities are built up at point-level from a Year 2005 inventory in 766 
a manner similar to the build-up of K12 schools.  The growth in paid off-street parking 767 
spaces is calculated at TAZ level, based on the growth in employment by density range.  In 768 
general, paid off-street parking is directly related to density of development:  as the density of 769 
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development on a parcel increases, the likelihood of paid off street parking, and prices 770 
charged, increases.  The “yields” of paid off-street parking are calculated at TAZ-level based 771 
on the amount of growth in several density ranges, with facility locations identified based on 772 
judgment within each TAZ.  The yield rates were computed from a Year 2005 inventory of 773 
parking facilities, and Year 2005 Place3s development density estimates.  Paid parking is 774 
also related to special uses, like colleges/universities and hospitals, and facilities are added at 775 
future locations of these uses. 776 

Proximity to transit is measured as orthogonal distance from parcel to the nearest transit 777 
station or stop in SACSIM.  Transit stops are also built up at point level from a Year 2005 778 
inventory of transit stops.   New future transit stop points are based on a comparison of 779 
forecast year and Year 2005 transit networks from the travel demand model.  Where new 780 
transit lines are added, new stops are added to the inventory.  In areas with little or no change 781 
in transit service, the Year 2005 stop inventory is used.  For rail and express bus facilities, 782 
stations and stops as coded in the travel demand model are used directly.  For fixed route bus 783 
services, the travel demand model stops under-predict actual stops.  This is because zone-784 
based travel models do not include sufficient detail to capture the stop-spacing for local bus 785 
routes, especially in urban areas.  In these areas, stops points are synthesized along the bus 786 
routes and added to the Year 2005 inventory points. 787 

Street pattern variables are used in several location and mode choice models in 788 
SACSIM, and are strongly related to non-motorized mode choice.  The key street pattern 789 
variables are the buffered densities or numbers of intersections of three types:  1-leg 790 
intersections (e.g. cul-de-sacs); 3-leg intersections (e.g. a “T”); and 4+-leg intersections (e.g. 791 
a four-way intersection).  Higher levels of 1-leg intersections are associated with lower 792 
likelihood of trip linking and non-motorized modes of travel; higher levels of 3- and 4+- leg 793 
intersections are associated with higher likelihood of trip linking and non-motorized travel 794 
modes.  While future densities and mixes of use in growth areas are captured in the Place3s 795 
land use scenarios, future street pattern is not.  Street patterns profiles for growth areas are 796 
“borrowed” from Year 2005 observed street patterns by place type and density level.   797 

Each one of these data issues required significant time and effort to address.  However, 798 
with the exception of transit stops, the data are prepared only once for each land use data run, 799 
and the process is becoming more routinized and efficient.  Virtually all of these issues need 800 
to be addressed for zone-based models, but the aggregate nature of the zones allows for the 801 
data to be developed with less rigor and hand-wringing.  The discipline of developing the 802 
datasets at parcel/point level simply requires that all the assumptions be laid out explicitly. 803 

 804 
8 Peer Review Assessment and Recommendations 805 

 806 
The SACSIM model system was the subject of a two-day peer review session, sponsored by 807 
the FHWA Travel Model Improvement Program (TMIP) in November 2008 (SACOG 808 
2008c). All members of the peer review panel had experience with implementing activity-809 
based models—four from the MPO perspective, and one from the model developer 810 
perspective. 811 

In general, the review panelists were very positive about the SACSIM model system. 812 
The aspects of the activity-based model component (DaySim) that the review panel 813 
commended most highly were:  814 

• The parcel-based approach 815 
• The tour-based approach (day-tour- trip hierarchy, time of day scheduling) 816 
• Treatment of university students throughout the model (UC-Davis and Sacramento 817 

State Univ.), including a separate population synthesis for on-campus housing. 818 
• The rigorous sensitivity testing performed 819 
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 820 
A variety of possible enhancements to the model system were also discussed. The 821 

specific improvements that the panel deemed highest priority were: 822 
• Related to road pricing: 823 
o Update the value-of-time coefficients, and improve the treatment of price (for 824 

example, a toll versus non-toll nest as part of mode choice) 825 
o Move to distributed values-of-time (a separate VOT for each person/tour, drawn 826 

from distribution) 827 
• Related to destination choice: 828 
o Change the specification of destination choice models to rely less on distance,  and 829 

more on mode choice logsums and other mode level of service measures 830 
• Related to mode choice: 831 
o Move toward adding additional pedestrian and bicycle supply variables to the 832 

model (examples are sidewalk and bicycle lane coverage as a percentage of street distance 833 
within walking/biking distance around each parcel) 834 

 835 
The last improvement mentioned above illustrates the type of additional detail that a 836 

parcel-level model can accommodate in order to allow analysis of urban design and non-837 
motorized travel. It is likely that such urban infrastructure data will be readily available in 838 
digital form for most MPO’s in the near future. 839 

 840 
9 Conclusions 841 
 842 
This article provides a detailed overview of the first parcel-based, activity-based travel 843 
demand model system to be used in urban forecasting, to the authors’ knowledge.  The model 844 
system was used to provide the forecasts for the latest Regional Transportation Plan (RTP) 845 
for the Sacramento region, and a Federal peer review of the model system was carried out. 846 
We can conclude that it is possible to create and apply a regional demand model system using 847 
parcel-level geography and half-hour time of day periods. Experiences thus far have pointed 848 
to major benefits of using detailed land use variables and urban design variables, but also to 849 
new challenges in providing parcel-level land use inputs for future years. Further research is 850 
under way to integrate parcel-level travel demand microsimulation models with land use 851 
models such as PECAS (in the Sacramento region) and UrbanSim (in the Seattle region).  In 852 
addition, Federal research projects are now underway to integrate the SACSIM model with 853 
dynamic traffic simulation models such as TRANSIMS and DYNUS-T, which can fully take 854 
advantage of the finer spatial and temporal detail in the travel demand forecasts, and can in 855 
turn provide DaySim with more accurate predictions of highway travel times and congestion. 856 
  857 

858 
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