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Abstract

This study develops a model of a person’s day activity schedule that can be used to forecast
urban travel demand.  It is motivated by the notion that travel outcomes are part of an activity
scheduling decision, and uses discrete choice models to address the basic modeling
problem—capturing decision interactions among the many choice dimensions of the
immense activity schedule choice set.

An integrated system of choice models represents a person’s day activity schedule as an
activity pattern and a set of tours.  A pattern model identifies purposes, priorities and
structure of the day’s activities and travel.  Conditional tour models describe timing, location
and access mode of on-tour activities.  The system captures trade-offs people consider, when
faced with space and time constraints, among patterns that can include at-home and on-tour
activities, multiple tours and trip chaining.  It captures sensitivity of pattern choice to activity
and travel conditions through a measure of expected tour utility arising from the tour models.
When travel and activity conditions change, the relative attractiveness of patterns changes
because expected tour utility changes differently for different patterns.

An empirical implementation of the model system for Portland, Oregon, establishes the
feasibility of specifying, estimating and using it for forecasting.  Estimation results match a
priori expectations of lifestyle effects on activity selection, including those of (a) household
structure and role, such as for females with children, (b) capabilities, such as income, and (c)
activity commitments, such as usual work levels.  They also confirm the significance of
activity and travel accessibility in pattern choice.  Application of the model with road pricing
and other policies demonstrates its lifestyle effects and how it captures pattern shifting—with
accompanying travel changes—that goes undetected by more narrowly focused trip-based
and tour-based systems.

Although the model has not yet been validated in before-and-after prediction studies, this
study gives strong evidence of its behavioral soundness, current practicality, potential to
generate cost-effective predictions superior to those of the best existing systems, and
potential for enhanced implementations as computing technology advances.

Thesis Supervisor: Dr. Moshe Ben-Akiva

Title: Professor of Civil and Environmental Engineering
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Introduction and Summary

1.1  Introduction

This thesis presents a model of the individual’s activity and travel scheduling decision that

can be used like traditional models for urban travel forecasting and analysis.  The work is

motivated by the well-established notion that travel demand is derived from the demand for

activities.  It should therefore be modeled as a component of an activity scheduling decision,

and models that fail to do this suffer from misspecification that may substantially undermine

their ability to forecast.  The second motivation is that, although much research has aimed at

improving our conceptual understanding of this phenomenon or developing advanced models

for capturing certain components of activity scheduling behavior, few have developed

models complete and simple enough to be used for general purpose urban travel forecasting.

Of these, none has done it with a scheduling decision that at least spans an entire day,

perhaps the most important temporal unit for activity scheduling.  Our objective is therefore

to develop a model of a person’s day activity schedule—the schedule of activities and travel

spanning a 24 hour day—that can be incorporated into urban forecasting model systems.  We

may subsequently refer to the day activity schedule as the activity schedule, or schedule, for

short.

A hypothetical example provides an intuitive understanding of the need for a model that

represents travel as a component of an activity scheduling decision.  Figure 1.1(a) depicts a

simplified representation of a person’s day activity schedule, showing it as a continuous path

in time and space.  This person spends time at home in the morning, travels by auto to her

workplace where she works throughout the day.  In the late afternoon she heads for home in

her car, but stops en-route at a familiar store to shop, then continues home where she remains
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for the rest of the evening.  Now suppose the state government decides to impose a peak

period toll on the highways in this person’s commute path, substantially increasing her

commute costs.  How might she respond?  If she is time sensitive she may breathe a sigh of

relief and continue her schedule as is, happy to pay the extra cost in exchange for a faster

commute.  If she is cost sensitive and has good transit connections between home and work

she may change modes for her commute (Figure 1.1(b)).  However, if the transit line does not

stop near her desired shopping location or she is uncomfortable carrying packages on the

transit vehicle, she may come straight home on her commute and either walk or drive to a

store after arriving home, depending on whether her neighborhood has walk-accessible

shops.  Alternatively, she may decide it is time to start planning her shopping activity more

carefully and include the shopping stop only occasionally in her schedule.  If she lacks good

transit connections, but has flexible work hours she may continue using her car, but work

earlier in the day and do her shopping on a separate tour1 to avoid the peak period tolls

(Figure 1.1(c)).  Or, she might decide to start working four ten-hour days, pay the peak

period toll in the afternoons, and shop during the day on her extra day off.  She may have the

freedom to begin working at home some days, and do her shopping in the middle of the day

(Figure 1.1(d)).

These are only some of the likely responses a person may make to a single policy initiative.

They include changes in destination, timing and mode, which we refer to as the travel

components of the schedule.  They also include activity participation adjustment, changes in

the number of tours, and trade-offs between at-home and on-tour activity locations.  These

attributes of the schedule we refer to as the activity pattern2 , since they define the

configuration, or pattern,  of the day’s activities.  In each case, changes in the travel

components are linked closely with changes in the activity pattern.  Persons with different

lifestyles and resulting activity objectives, such as the need to get children to and from day

care providers, might choose from a substantially different set of schedule alternatives.

                                                       
1 We define a tour as a journey beginning and ending at the same location.  This location is the base

of the tour.  Thus a journey beginning and ending at home is called a home-based tour.  We refer to
a work-based tour as a subtour, since it occurs in the midst of a home-based tour.

2 We also refer to the activity pattern as the day activity pattern or as the pattern.  The day activity
schedule model we subsequently develop explicitly represents the day activity pattern, and formally
defines its attributes.
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Other changes in activity and travel conditions, such as infrastructure changes, vehicle or fuel

taxes, parking fees or regulation, telecommute or transit incentive programs, and traffic

management could induce a similar variety of complex schedule adjustments involving travel

components and the activity pattern.

Work

Shop

Space

Time

(c) Time & pattern changes

Work

Shop

Space

Time

(d) Work at home

Space

Time

Work

Space

Time

Shop

Auto Transit

Shop

(b) Mode & pattern changes(a) Activity and travel schedule

Work

Work

Figure 1.1 Activity schedule adjustments to a peak period toll

(a) The schedule prior to the toll includes travel by auto to work, with a shopping stop on the homebound commute.
Possible responses to a peak period toll (shown shaded in gray) include (a) no change, (b) a mode change to avoid the toll,
(c) a time shift to avoid the toll, and (d) work at home.  In cases (b) through (d), the adjustment also involves a pattern
change, either the splitting of the shopping activity into a separate tour, or the shift from on-tour work to at-home work.
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1.2  Summary

1.2.1 Theory of activity-based travel demand

The literature establishes our objective of modeling travel demand as part of the activity

scheduling decision, of which it is a component.  The scheduling decision is motivated by the

individual’s desire to satisfy personal needs through activity participation, with at least a

desire or tendency toward maximizing some objective related to this needs satisfaction (Ben-

Akiva and Bowman, 1998).  Great heterogeneity of needs exists among people, correlated

with observable household and personal characteristics (Jones, Dix, Clarke et al., 1983).

People face constraints that limit their activity schedule choice.  Notably, activities are

sequentially connected in a continuous domain of time and space, and are interrupted on a

daily basis for a major period of rest.  Travel occurs primarily to achieve activity objectives

in the presence of these constraints (Hagerstrand, 1970).

Activity and travel scheduling occurs within a broader framework of interacting household

decisions and urban processes (Ben-Akiva, 1973; Ben-Akiva and Lerman, 1985; Ben-Akiva,

Bowman and Gopinath, 1996).  From the standpoint of our desire to model activity and travel

scheduling, four characteristics of the decision framework are most important.  First, the

scheduling decision is conditioned by the outcomes of longer term processes, including the

household’s lifestyle and mobility outcomes, as well as the activity opportunity outcomes of

the urban development process. Second, and closely related to the first, the scheduling

process is not temporally sequential, but is governed by commitments and priorities, within

the constraints of a given scheduling time period.  Third, a one-day schedule period is natural

because of the daily rest period’s regulating effect, but scheduling interactions occur over

even longer time periods.  Fourth, the scheduling process interacts with the performance of

the transportation system; the demand resulting from the aggregation of all individuals’

scheduling choices determines system performance, and the scheduling decisions are

influenced by perceptions of that system performance.

The biggest problem facing the activity schedule modeler is the immense number of schedule

alternatives from which the activity scheduler may choose; the scheduling decision involves
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the selection of activity purpose, sequence, timing, location, mode and route for many inter-

related activities.  The process can be viewed as comprising two stages:  choice set

generation—the search for alternatives—and the choice of one alternative from the choice

set3.  Within this basic structure many alternative assumptions can be made about the nature

of the process.  The most frequently assumed protocol for modeling decisions is that of utility

maximization from an exhaustively determined feasible set of alternatives.  This is not

realistic in the context of such a large set of alternatives, but successful methods of

implementing alternative protocols for choice problems approaching this size have not been

developed.

The review of activity-based travel behavior theory has sharpened the modeling objective.

We aim to model travel demand decisions as components of a day activity schedule,

including the interacting dimensions of activity purpose, priority, timing, location, and travel

mode.  The model should be conditioned on longer-term urban processes, and household

lifestyle and mobility outcomes, and interact with processes that determine transportation

system performance attributes.  Finally, the model needs to be tractable and accurately

represent the scheduler’s need to simplify a decision that has countless feasible outcomes.

1.2.2 Models of activity and travel scheduling

We supplement the behavior-theoretical requirements to assure the development of a model

that is technically sound, has adequate detail to be sensitive to relevant policies, has practical

resource requirements for implementation and use, and produces valid forecasts.

Given the modeling requirements, a review of approaches that have been used in attempts to

make activity-based travel forecasting practical leads to the modeling approach taken in this

research, a nested system of discrete choice models.  Markov and semi-Markov approaches

represent the scheduling decision as a sequence of transitions, following the temporal

sequence of the day, with transitions between states corresponding to trips between activities.

Their fundamental weakness is their basis in a decision sequence tied to the temporal activity

                                                       
3 For a general discussion of the choice process, including definitions of choice set (the alternatives

considered), universal set (the feasible alternatives), choice set generation and other terms, see
Section  2.4 .
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sequence, rendering them unable to adequately represent a decision process that is governed

more by commitments and priorities than by sequence.

Rule-based models, reviewed in Section 3.3 , simulate schedule outcomes, employing a

complex search rule accompanied by a simpler choice model, frequently with iteration

occurring between search and choice.  These systems are based on various decision theories,

such as cognitive limitation or the notion of a search that terminates with acceptance of a

satisfactory alternative.  Existing rule-based simulations face two important challenges.

First, they rely on a detailed exogenous activity program or schedule that determines all or

much of the activity participation decision, as well as other important attributes such as

location and timing.  Thus, although the resulting schedules may be fairly complete in scope,

important major components of the schedule are not modeled.  Second, they rely on

unproven search heuristics and their decision protocols can be extremely complex.  Extensive

data and validation requirements accompany their complexity.  Although rule-based

simulations are attractive because of the freedom they give to attempt new and potentially

improved decision protocols, the accompanying challenges make them unlikely to yield a

comprehensive, validated scheduling model in the near future.

In contrast, utility maximization, usually employed in tandem with simple deterministic

choice set generation by econometric model systems, is a much simpler protocol for which

the schedule scope is a less formidable modeling challenge.  The protocol has a solid basis in

consumer theory.  Although its use of a large choice set pushes it beyond the limits of purely

representing rational consumer behavior, the protocol has been successfully used and

validated in discrete choice travel demand model systems where the size of the choice set

exceeds the number a person can rationally consider.

Econometric models, systems of equations representing probabilities of decision outcomes,

can be viewed in two subclasses, discrete and mixed discrete-continuous.  Discrete choice

models partition the activity schedule outcome space into discrete alternatives.  They deal

with the big universal set by subdividing decision outcomes and aggregating alternatives.

For example, the simplest models subdivide outcomes by modeling trip decisions instead of

an entire day’s schedule, and aggregate activity locations into geographic zones.
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Mixed discrete-continuous models focus attention on the continuous time dimension of the

activity schedule, seeking to improve on its traditionally missing or weak aggregate

representation in discrete choice models. They combine continuous duration models with

discrete choice models for other dimensions of the schedule.  However, they have not yet

expanded in scope to include most dimensions of the activity schedule, nor have they

incorporated duration sensitivity to time-variant activity and travel conditions.  Their use in

models satisfying the requirements we have identified awaits further methodological

development.

1.2.3 Discrete choice modeling approaches

Over time, discrete choice modelers have tried to improve behavioral realism by including

more and more dimensions of choice in an integrated system matching the natural hierarchy

of the decision process.  Lower dimensions of the scheduling hierarchy are conditioned by

the outcomes of the higher dimensions.  For example, choice of travel mode for the work

commute is conditioned by choice of workplace.  At the same time the utility of a higher

dimension alternative depends on the expected utility4 arising from the conditional

dimension's alternatives.  In our example, the choice of workplace is influenced by the

expected utility of travel arising from all the available commute modes.

Nested logit models effectively model multidimensional choice processes where a natural

hierarchy exists in the decision process, using conditionality and expected utility as described

above.  The expected utility of the conditional dimension is commonly referred to as

accessibility because it measures how accessible an upper dimension alternative is to

opportunities for utility in the lower dimension.  It is also often referred to as the "logsum",

because in nested logit models it is computed as the logarithm of the sum of the

exponentiated utility among the available lower dimension alternatives (Ben-Akiva and

Lerman, 1985, Chapter 10).

                                                       
4 The utility arising from the conditional dimension’s alternatives is the maximum utility among the

alternatives.  This is a random variable, and its expected value is the expected utility referred to
here, sometimes also referred to as expected maximum utility.
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The models are disaggregate, representing the behavior of a single decisionmaker.  A Monte-

Carlo procedure is often used to produce aggregate predictions. In other words, the models

make predictions with disaggregate data, requiring the generation of a representative

population.  The model is applied to each decisionmaker in the population—or a

representative sample—yielding either a simulated daily travel itinerary or a set of

probabilities for alternatives in the choice set.  The trips in the itinerary can then be

aggregated and assigned to the transport network, resulting in a prediction of transport

system performance.  This process may require replications to achieve statistically reliable

predictions.

The simplest and oldest subclass of discrete choice model systems divides the activity

schedule into trips5.  One of the earliest of the integrated trip-based systems, developed for

the Metropolitan Transportation Commission (MTC) of the San Francisco Bay area is

reviewed in Section 3.4.3 (Ruiter and Ben-Akiva, 1978).  More recently, models have been

developed that combine trips explicitly in tours, including the Stockholm model system

reviewed in Section 3.4.4 (Algers, Daly, Kjellman et al., 1995).

The main behavioral criticism of the trip- and tour-based discrete choice model systems is the

division of the schedule outcome into separate pieces—trips or tours—and the failure to

represent at-home activity participation.  Otherwise, they satisfy the identified theoretical and

practical requirements.  Although their practicality is closely tied to their undesirable division

of the schedule into pieces, advances in computing technology make further integration of

the schedule representation an attractive possibility.  Thus, we choose the discrete choice

approach.

1.2.4 The day activity schedule model system

The day activity schedule is viewed as a set of tours and at-home activity episodes tied

together by an overarching day activity pattern, or pattern for short (Figure 1.2).  Decisions

about a specific tour in the schedule are conditioned by the choice of day activity pattern.

                                                       
5 A trip is defined as the journey from one activity location to the next.  It may involve travel by more

than one mode.
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This is based on the notion that some decisions about the basic agenda and pattern of the

day’s activities take precedence over details of the travel decisions.  The probability of a

particular day activity schedule is therefore expressed in the model as the product of a

marginal pattern probability and a conditional tours probability

p schedule p pattern p tours pattern( ) ( ) ( | )=

where the pattern probability is the probability of a particular day activity pattern and the

conditional probability is the probability of a particular set of tours, given the choice of

pattern.

Day Activity Schedule

Day Activity Pattern

Tours

Figure 1.2 The day activity schedule

An individual’s multidimensional choice of a day’s activities and travel consists of tours interrelated in a day activity
pattern.

The day activity pattern represents the basic decisions of activity participation and priorities,

and places each activity in a configuration of tours and at-home episodes.  Each pattern

alternative is defined by (a) the primary activity of the day, (b) whether the primary activity

occurs at home or away, (c) the type of tour for the primary activity, including the number,

purpose and sequence of activity stops, (d) the number and purpose of secondary tours, and

(e) purpose-specific participation in at-home activities.  For each tour, details of time of day,
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destination and mode are represented in the conditional tour models.  Within each tour, the

choice of timing, mode and primary destination condition the choices of secondary stop

locations.

We assume the utility of a pattern includes additively a component for each activity, a

component for the overall pattern, and a component for the expected utility of its tours.  The

activity components can capture basic differences among people in the value of various kinds

of activity participation.  The pattern component captures the effect of time and space

constraints in a 24-hour day.  The expected utility component captures the effect of tour

conditions on pattern choice. Through it the relative attractiveness—or utility—of each

pattern, depends not just directly on attributes of the pattern itself, but also on the maximum

utility to be gained from its associated tours.  Patterns are attractive if their expected tour

utility is high, reflecting, for example, low travel times and costs.  This ability to capture

sensitivity of pattern choice—including inter-tour and at-home vs on-tour trade-offs—to

spatial characteristics and transportation system level of service distinguishes the day activity

schedule model from tour models, and is its most important feature.

The day activity schedule model also improves on tour models’ ability to represent the time

dimension by explicitly modeling the time of each one of the inter-related tours in the

pattern. With these features, the day activity schedule model satisfies the identified behavior-

theoretical requirements.

1.2.5 The Portland day activity schedule model system

The empirical implementation for Portland, Oregon, tests the feasibility of achieving the

requirements for a practical forecasting system without compromising the theoretical

requirements.  Secondly it tests the importance of the integrated day activity schedule

representation; is there evidence that the extra cost and complexity yield improvements in

model performance?

We adopt a structure in which tours are assumed to be conditionally independent, given the

pattern choice.  For home-based tours, tour timing conditions the joint choice of tour mode

and destination.  Work-based subtours are modeled conditional on the work tour, and these
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condition any stops occurring before or after the primary activity. At each conditional level,

the probability is represented by a multinomial logit model.

Figure 1.3 shows the overall structure of the activity-based model system.  Lower level

choices are conditioned by decisions modeled at the higher level, and higher level decisions

are informed from the lower level through expected maximum utility variables.

Day Activity Pattern

Home based tours
times of day

Home based tours
mode and destination

work-based
subtours

Intermediate stop
locations

for car driver tours

INPUT
households
zonal data

network data

OUTPUT
OD Trip matrices

by mode, purpose, time
of day and income class

Pattern (and
associated tour)
probabilities

Expected tour time-of day
utilities

Tour time-of-day
probabilities

Expected tour mode and
destination utilities

Tour mode and
destination
probabilities

Expected subtour and
intermediate stop utilities
(not in current implementation)

Figure 1.3 Portland day activity schedule model system

Table 1.1 shows the five main types of models included in the system, as well as the types of

variables included in each of the model types.  The variables include important lifestyle

categories and mobility decisions, attributes of the activity and travel environment, and the

expected utility variables from the conditional models.  The entire system includes 633

estimated parameters, including 297 measuring the importance of lifestyle and mobility

variables, 95 measuring the importance of the activity and travel environment—including
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expected utility, and 241 measuring unexplained preferences and the influence of marginal

choice dimensions on conditional dimension utility.

Table 1.1 Model and variable types in the Portland day activity schedule model system

Model / Variable Types Lifestyle
variables (hh

structure, role,
capabilities,

activity
commitments)

Mobility
variables
(residence

land use, auto
ownership)

Destination
activity

conditions
(land use)

Travel
conditions
(Network

times, costs)

Conditional
model

expected
utility (i.e.,
accessibility

logsums)
Day Activity Pattern 4 4 4

Home-based Tour
Times of Day 4 4 4

Home-based Tour
Mode and Destination 4 4 4 4

Work-based Subtour
Mode and Destination 4* 4 4

Intermediate Stop Location for
Car Driver Tours 4* 4 4 4

*these are included only as aggregate categories in the current model system

As implemented, the home-based tour predictions are aggregated into zone-to-zone counts of

half-tours6 for each of several income classes.  The work-based subtour and intermediate

stop7 models are applied to these counts, using aggregate categorical variables, and do not

supply the upper level models with measures of expected maximum utility. This design

compromise substantially reduces the time required to apply the model in a production

setting, making it feasible to apply the entire model system using 300mhz Pentium-based

microcomputers.  This compromise should be eliminated in subsequent production

implementations of the model system as advances in computing technology allow.  As

discussed in Chapter 6, it makes the pattern model insensitive to differential effects of travel

conditions on patterns with different numbers of secondary stops.

In the day activity pattern model, likelihood ratio tests were conducted to test the collective

significance of groups of variables in the pattern model.  The tests support the importance of

variables in the four lifestyle categories used in the model:  household structure, role in

household, personal and financial capabilities, and activity commitments.  They support the

                                                       
6 A half-tour is either portion of a tour between the origin and the primary destination.  It includes

more than one trip if activities occur between the origin and primary destination.
7 An intermediate stop is a stop for activity during a half-tour.  Each intermediate stop adds a trip to

the half-tour.
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importance of the secondary at-home maintenance activity parameters in subsistence and

leisure patterns, indicating that the identification of secondary at-home maintenance is

important in the pattern choice set definition8.  The tests also indicate that it is important in

the choice set definition to distinguish the placement of secondary activities on the pattern in

several ways: (a) whether they occur on the primary tour or a separate tour, (b) relative to the

primary activity in the primary tour, and (c) specific to pattern purpose and secondary

activity purpose.  Finally, a test supports the importance of the tour expected maximum

utility parameters as a group.  This is an important result in light of the major hypothesis of

this study that it is important to represent travel demand in the context of the day activity

schedule.  With these expected maximum utility variables, changes in tour utility, caused by

changes in the transport system performance or in spatial activity opportunities, have a

significant effect on the choice of pattern.  Such effects cannot be captured by tour or trip-

based travel demand models.  Testing of the pattern model’s multinomial logit assumption

remains as a future objective.  The need probably exists for nesting, and perhaps more

complex correlation structures, because of the multidimensional nature of the pattern choice.

For example, strong random utility correlation probably exists among patterns that share

primary purpose.  Nevertheless, the tests conducted provide strong evidence, in addition to

the individual parameter tests of the previous sections, in support of the basic model

structure, utility function structure and lifestyle variable categories of the day activity

schedule model.

1.2.6 Model application and evaluation

The model system demonstrates the benefits of its design in various policy applications,

including peak period pricing.  There, in response to a toll levied on all travel paths during

the morning and evening peak travel periods, the model predicts not only shifts in travel

                                                       
8 Pas (1982), adopting the approach of Reichman (1976), places all out-of-home activities in the three

broad categories of subsistence, maintenance and leisure.  He defines work and school as
subsistence, and shopping and personal business as maintenance.  We adopt these categories for in-
home activities as well, defining subsistence as activity, including education, devoted to the current
or future generation of household income, maintenance as non-income-generating activities
required to maintain a household, and leisure as optional activities engaged in for enjoyment.  We
also use the term discretionary interchangeably with leisure.



26 The Day Activity Schedule Approach to Travel Demand Analysis

mode and timing, but also shifts in pattern purpose and structure.  As shown in Table 1.2, the

net result is an increase in the predicted number of tours for leisure purposes; increases in

leisure tours induced by pattern changes more than offset leisure tour decreases caused by the

peak period toll.

Table 1.2 Peak period toll--induced leisure travel captured by the day activity schedule model

Percent change in number of tours,
by tour purpose, in response to $.50 per mile

peak period toll on all roads
Time of day Work Maintenance Leisure
A.M. peak period -7.1% -8.4% -6.2%
P.M. peak period -7.4 -7.7 -1.5
Midday 3.1 3.6 2.8
Outside peaks 6.8 2.3 2.7
Total -2.5% -0.3% +.8%

How does the model capture this induced demand?  Increased peak period travel costs reduce

expected maximum mode/destination utility (logsums) in the peak period alternatives of the

times-of-day choice models, and expected maximum time of day utility in the pattern choice

model, where patterns with tours that rely most heavily on peak period auto travel become

relatively less attractive.  Thus, there is a shift away from patterns with subsistence tours in

the pattern model, toward all other pattern types.  The net change in maintenance and leisure

tours could be positive or negative, because the increase in number of maintenance and

leisure patterns, and the introduction of secondary tours on changed patterns, tend to offset

the pattern simplification effect for these purposes.  In the example, the model actually

predicts a net increase in leisure tours.

The above explanation of model response to the peak period tolls excludes the impact on

intermediate stop location models and work-based tours.  These too are affected by the peak

period tolls, through the toll’s direct effect on stop utility, as well as pattern changes and tour

destination changes.  However, by omitting the expected utility connection of intermediate

stops to home-based tours, the model system underestimates the toll’s tendency to reduce trip

chaining during the peak period.
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The previous analysis ignores the lifestyle effects in schedule choice and the associated

potential heterogeneity of response to the toll policy.  Predicted pattern shifts are analyzed in

each of four activity pattern dimensions—primary activity purpose, primary tour type,

secondary tours, and at-home maintenance activity—for 22 population segments, defined by

household structure and role, capabilities, activity commitments and mobility decisions.  The

model captures much heterogeneity in pattern choice and in response to the toll policy,

clearly demonstrating the importance of explicitly modeling heterogeneity in the pattern

choice.

Analysis of model response to additional policies, including transit improvements, vehicle

ownership restrictions, fuel taxes, auto registration fees, parking regulation, neighborhood

walkability improvements, mixed use development, and ITS highway capacity increases, and

telecommunications advances indicate that the day activity schedule model structure enables

the capture of pattern shifts and associated changes in travel demand in a great variety of

situations.  However, in some cases, the implemented model’s sensitivity to the policy would

be limited because of coarse resolution of schedule dimensions or because of missing

variables in the specification.  For one example, coarse spatial resolution limits the model’s

ability to capture the effect of walkability improvements.  For another example, the model

lacks variables such as the possession of a credit card or a home computer with modem, that

if included might enable it to capture pattern changes caused by improvements in information

technology.

1.2.7 Conclusions

The overall conclusion of this study is that a travel forecasting model system based on a

discrete choice model of the day activity schedule is practical and captures anticipated

activity pattern shifting, with associated travel changes, that previous models have missed.

The day activity schedule model, specified in Chapter 4, satisfies a rich set of requirements

derived from the literature on activity-based travel demand, providing the foundation for the

development of behaviorally improved travel demand forecasting models. Its full-day scope;

detail of pattern, activity and travel dimensions; and integrated structure give the model
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design three important realistic performance capabilities.  First, it can capture the trade-offs

people consider as they face time and space constraints in scheduling their day’s activities.

These include variations in activity participation, on-tour versus at-home activity location,

number of tours, trip chaining, timing, destination and travel mode.  Second, it can

realistically capture the significant influence of lifestyle-based heterogeneity on schedule

choice by identifying lifestyle and mobility factors in each of the model’s many scheduling

dimensions.  Third, it can capture the impact of exogenous factors upon all dimensions of

schedule choice, even if the factors only act directly in one dimension.  Importantly, this

includes the influence of activity accessibility—including travel conditions—on the choice of

activity pattern.

The empirical implementation has shown that, though compromises were made in the

representation of the activity schedule to enable practical use of the approach, it can handle

the scope of the activity schedule at a level of detail matching or exceeding trip or tour-based

systems.  The model system demonstrates the benefits of its design in various policy

applications, such as peak period pricing, capturing pattern shifts and resulting travel demand

effects that trip and tour-based models cannot capture.

1.2.8 Research topics

This study creates many opportunities for fruitful research and development, to verify and

exploit the benefits of the day activity schedule approach in travel forecasting, to enhance it

by addressing unresolved issues, and to integrate it with related models of household choice,

urban development and transport systems.  It can also be  evaluated for theoretical

weaknesses, serving as grist for the further development of theory and models of activity and

travel behavior.  Specific research topics include (a) model validation; (b) development of

efficient, consistent application procedures with known confidence levels; (c) testing and

enhancement of the day activity schedule model, including the 570 alternative pattern,

integration of expected utility from secondary stops and subtours, generalized day activity

pattern correlation structures, temporal and spatial resolution, secondary tours conditioned by

primary tour outcomes, and conditioning of model on usual workplace and commute mode;

(d) procedures to combine data from enhanced surveys; (e) schedule model enhancements
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that require improved data sets, including improved activity purpose resolution,

telecommunications effects, effects of unusual transportation conditions, and heterogeneity;

(f) techniques to improve computational efficiency and incorporate alternative decision

protocols; (g) integration of activity and mobility models, using expected schedule utility to

explain mobility choices; and (h) reconciliation of the day activity schedule model

specification with formal theories of transport economics and home production economics.

1.2.9 Outline of the thesis

In Chapter 2, the theory of activity-based travel demand is examined, resulting in a set of

behavior-theoretical requirements for an activity-based travel demand model system based on

a day activity schedule.  Chapter 3 studies previous attempts to model travel demand as part

of a larger activity schedule, leading to the selection of the discrete choice modeling

approach.  Chapter 4 presents the concepts and mathematical form of the day activity

schedule model, and identifies important model design issues.  Chapters 5 and 6 present the

results of an empirical implementation in Portland, Oregon, that (a) demonstrates the

practical feasibility a day activity schedule model system satisfying the behavioral

requirements of Chapter 2, and (b) tests the importance of the day activity schedule

representation.  Chapter 7 draws the final conclusions of the thesis and discusses specific

ideas for future research to build on those conclusions.
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2 

Theory of Activity-based Travel Demand

In the first section of this chapter an examination of the literature establishes our objective of

modeling travel demand as part of the activity scheduling decision.  Given this objective, we

place the activity scheduling decision in a broader decision framework, then consider how

activity scheduling is affected by longer term lifestyle decisions and outcomes, and face the

principal challenge of modeling activity scheduling behavior, namely the immense set of

alternatives from which the activity schedule is chosen.  This leads to a set of theoretical

requirements for the development of an activity-based travel demand model.

2.1  The characteristics of activity and travel demand

One of the most fundamental and well-known principles is that travel demand is derived

from activity demand.  This principle implies a decision framework in which travel decisions

are components of a broader activity scheduling decision, and calls for modeling activity

demand.  Chapin (1974) theorized that activity demand is motivated by basic human desires,

such as survival, social encounters and ego gratification.  Activity demand is also moderated

by various factors, including, for example, commitments, capabilities and health.

Unfortunately, it is difficult to model the factors underlying this demand, and little progress

has been made in incorporating the factors in travel demand models.  However, a significant

amount of research has been conducted on how household characteristics moderate activity

demand.  This research concludes that (a) households influence activity decisions, (b) the

effects differ by household type, size, member relationships, age, gender and employment

status and (c) children, in particular, impose significant demands and constraints on others in

the household (Chapin, 1974; Jones, Dix, Clarke et al., 1983; Pas, 1984).
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Hagerstrand (1970) focused attention on constraints--among them coupling, authority, and

capability--which limit the individual's available activity options.  Coupling constraints

require the presence of another person or some other resource in order to participate in the

activity.  Examples include participation in joint household activities or in those that require

an automobile for access.  Authority constraints are institutionally imposed restrictions, such

as office or store hours, and regulations such as noise restrictions.  Capability constraints are

imposed by the limits of nature or technology.  One very important example is the nearly

universal human need to return daily to a home base for rest and personal maintenance.

Another example Hagerstrand called the time-space prism: we live in a time-space

continuum and can only function in different locations at different points in time by

experiencing the time and cost of movement between the locations.

The concepts of activity-based demand, and time and space constraints, have also been

incorporated in the classical model of the budget-constrained utility-maximizing consumer.

Becker (1965) made utility a function of the consumption of commodities that require the

purchase of goods and the expenditure of time. DeSerpa (1971) explicitly identified the

existence of minimum time requirements for consumption of goods.  Evans (1972)

generalized the model, making utility a function only of activity participation; formulating a

budget constraint based on a transformation which relates the time spent on activities, the

goods used in those activities and the associated flow of money; and introducing coupling

constraints which, among other things, allow the explicit linking of transportation

requirements to the participation in activities.  Jara-Diaz (1994) extended an Evans type

model explicitly to allow the purchase of goods at alternative locations, each associated with

its own prices, travel times and travel costs, all of which enter the time and budget

constraints.  He also included a transformation relating the purchase of goods to required

trip-making.  In maximizing utility, the consumer chooses how much time to spend on

various activities, how many trips to make overall, what goods to buy and where, and the

travel mode for each trip.  These efforts to incorporate activities, time and space into the

formal economic model of the consumer stop short of addressing important aspects of the

scheduling problem, such as temporally linking activities or allowing for the chaining of trips

between activity locations.
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A substantial amount of analysis has been done to refine the notion of activity-based travel

demand, test specific behavioral hypotheses, and explore modeling methods. We present here

only a few highlights.  Pas and Koppelman (1987) examine day-to-day variations in travel

patterns, and Pas (1988) and Hirsch, et al (1986) explore the representation of activity and

travel choices in weekly activity patterns.  Kitamura (1984) identifies the interdependence of

destination choices in trip chains.  Kitamura, et al (1995) develop a time- and distance-based

measure of activity utility that contrasts with the typical travel disutility measure.  Hamed

and Mannering (1993) and Bhat (1996b) explore methods of modeling activity duration.

Bhat and Koppelman (1993) propose a framework of activity agenda generation.

For extensive summaries of other results, and access to reading lists, the interested reader can

examine one or more of the published reviews of this literature.  Damm (1983) compiles a

list of empirical research, categorizes the hypotheses tested, lists the explanatory variables

associated with each class of hypothesis, and presents the statistical results of parameter

estimates.  Golob and Golob (1983) examine the literature by categorizing 361 works by

primary and secondary focus, with the five focus categories being activities, attitudes,

segmentations, experiments, and choices. Kitamura (1988) updates the review, categorizing

works by the topics of activity participation and scheduling, constraints, interaction in travel

decisions, household structure and roles, dynamic aspects, policy applications, activity

models and methodological developments.  Perhaps the best recent review of the theoretical

contributions in activity-based travel demand analysis is that of Ettema (1996) who describes

contributions from the fields of geography, urban planning, microeconomics and cognitive

science.

In summary, the literature establishes our objective of modeling travel demand as part of the

activity scheduling decision, of which it is a component.  The scheduling decision is

motivated by the individual’s desire to satisfy personal needs through activity participation,

with at least a desire or tendency toward maximizing some objective related to this needs

satisfaction.  Great heterogeneity of needs exists among people, correlated with observable

household and personal characteristics.  People face constraints that limit their activity

schedule choice.  Notably, activities are sequentially connected in a continuous domain of

time and space, and are interrupted on a daily basis for a major period of rest.
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We next examine the context of the activity and travel scheduling decision.

2.2  Activity and travel decision framework

Figure 2.1 shows how activity and travel scheduling decisions are made in the context of a

broader framework.  They are part of a set of decisions made by a household and its

individual members, and in that context they interact with the urban development process and

the performance of the transportation system. (Ben-Akiva, 1973; Ben-Akiva and Lerman,

1985; Ben-Akiva, Bowman and Gopinath, 1996).

Mobility and Lifestyle
(work, residence, auto ownership,

activities, etc.)

Urban Development

Activity and Travel Scheduling
(sequence, location, mode, etc.)

Implementation and
Rescheduling

(route, speed, parking, etc.)

Transportation System
Performance

Household Decisions

Figure 2.1 Activity and travel decision framework

Many household decisions, occurring over a broad range of timeframes, interact with each other and with the urban
development process and transportation system performance.

In the figure, the urban development box represents decisions of governments, real estate

developers and other businesses.  Governments may invest in infrastructure, provide services,

and tax and regulate the behavior of individuals and businesses.  Real estate developers

provide the locations for residential housing and businesses.  Where a firm chooses to locate,

and its production decisions, affect job opportunities in that area.  This conditioning of
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individual behavior by urban development outcomes is represented in the figure by the

downward pointing arrow joining the urban development and household decision boxes.  The

corresponding upward pointing arrow represents the fact that household decisions, such as

residential choice, also influence urban development decisions.  Taken together, the two

arrows represent the interplay of household and urban development decisions in markets,

such as real estate and employment, that establish conditions under which individual

households and developers must operate.

Urban development and household decisions affect performance of the transportation system,

such as travel volume, speed, congestion and environmental impact.  At the same time,

transportation system performance affects urban development and individual decisions.

Household and individual choices, including (a) lifestyle and mobility decisions, (b) activity

and travel scheduling, and (c) implementation and rescheduling, fall into distinct time frames

of decision making.  Lifestyle and mobility decisions occur at irregular and infrequent

intervals, in a time frame of years.  Activity and travel scheduling occurs at more frequent

and regular intervals.  Unplanned implementation and rescheduling decisions occur within

the day.  Outcomes of the longer term processes condition the shorter term decisions, and are

influenced by expected benefits associated with anticipated short term decisions.

We define lifestyle broadly, as a set of individual and household attributes, established as

outcomes of major life decisions and events, and the gradual accumulation of minor changes,

habits and preferences, that determines needs and preferences for activities, and  the

resources available for their satisfaction. The lifestyle formation processes are strongly

influenced by the accumulation of mobility, activity and travel outcomes.  Lifestyle includes

household structure (such as single adult,  married couple with pre-school children or non-

family adult group); individual role in the household (such as principal income earner or

childcare giver); activity priorities, commitments and habits (such as absolute and relative

devotion to job, property maintenance, hobbies, recreation and participation in civic,

religious or social organizations); and financial and personal capabilities and limitations

(such as wealth, income, vocational skills and physical disabilities).
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Mobility outcomes are attributes, established by lifestyle-constrained decisions and events,

that determine the availability and cost of access to activities.  They are dominated by clearly

defined choices occurring on an irregular and infrequent basis, but can also involve unchosen

events such as a job transfer and emergent phenomena such as the gradual selection of a

favorite shopping location.  Although mobility decisions occur within a given lifestyle

context, some of these decisions may be so major as to cause significant lifestyle changes.  A

mobility decision cannot be conditioned by the more frequent activity and travel decisions,

but is influenced by expectations about the benefits to be gained from the activity and travel

opportunities made possible by the choice, given the current lifestyle.  Mobility decisions

include location choices for work, residence, school and other repetitive activities determined

by lifestyle; auto acquisition and other transportation arrangements; and arrangements for

repetitive conduct of other activities by electronic or other non-travel means.

The activity and travel schedule is a set of activities conducted by a person over a continuous

period of time, each activity characterized by purpose, priority, location, timing, and means

of access.  It is natural to view the schedule as spanning a one day time period because of the

regulating effect of the overnight rest period.  However, day-to-day interactions occur in

scheduling decisions, so the schedule can also be viewed as having a longer time period.  The

schedule, although carried out by an individual, may be partly determined or influenced by

the household.  Alternatively, it can be viewed as a household schedule, including a set of

activities for each member, and identifying activities in which members participate jointly.

The schedule is the outcome of two processes depicted by separate boxes in Figure 2.1,

activity and travel scheduling , and implementation and rescheduling.  Activity and travel

scheduling yields a planned schedule.  It is conditioned by the longer-term lifestyle and

mobility outcomes.  Given these constraints, and a scheduling period, the decisionmaker may

freely arrange activities in various ways to best achieve activity objectives according to his or

her priorities.  Although the resulting schedule has a temporal sequence, the scheduling

process is not temporally sequential.  Instead, it is governed by commitments and activity

priorities.  Each component of the schedule is determined with basic knowledge of the other

components of the schedule, and its placement is strongly conditioned by the placement of

higher priority components of the schedule
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Implementation and rescheduling yield an implemented schedule; during the scheduling

period decisions are made to fill previously unscheduled time with unplanned activities, and

rescheduling occurs in response to unexpected events.  It can be viewed as the reiteration of

the scheduling process, employing schedule adjustments at each step rather than replanning

the entire schedule.  The schedule adjustment decision is based on revised objectives and

constraints, informed by the most recent events.

The framework presented here is consistent with the notions of Chapin, Hagerstrand and the

activity-based consumer demand economists.  Urban development and transportation system

outcomes determine many of Hagerstrand’s constraints.  Lifestyle and mobility decisions are

conditioned by the same underlying factors that Chapin identified as motivating activity

selection.  They, along with urban development and transportation system outcomes

determine many of Chapin’s moderating factors that also influence activity choice.

Likewise, they determine many of the time and space constraints incorporated in the activity-

based consumer economists’ models of consumer behavior.

From the standpoint of our desire to model activity and travel scheduling, four characteristics

of the decision framework are most important.  First, the scheduling decision is conditioned

by the outcomes of longer-term processes, including the household’s lifestyle and mobility

outcomes, as well as the activity opportunity outcomes of the urban development process.

Second, and closely related to the first, the scheduling process is not temporally sequential,

but is governed by commitments and priorities, within the constraints of a given scheduling

time period.  Third, a one-day schedule period is natural because of the daily rest period’s

regulating effect, but scheduling interactions occur over even longer time periods.  Fourth,

the scheduling process interacts with the performance of the transportation system; the

demand resulting from the aggregation of all individuals’ scheduling choices determines

system performance, and the scheduling decisions are influenced by perceptions of that

system performance.
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2.3  Lifestyle basis of activity decisions

Activity theory and the activity scheduling decision framework suggest that accurately

modeling activity and travel behavior might depend upon a careful representation of the

lifestyle and mobility outcomes.  We hypothesize that lifestyle factors are very important in

explaining the activity and travel scheduling decision.  The lifestyle attributes of household

structure; individual role in the household; activity priorities, commitments and habits; and

financial and personal capabilities may all be important factors in the activity and travel

scheduling decision.  The first three determine needs and preferences, whereas financial and

personal capabilities determine the resources available for their satisfaction.  We next

describe how each of these attributes may affect activity scheduling, noting observable

variables that might be used in empirical studies to capture the effects.

Household structure.  Household structure is defined by the number, personal capabilities

and relations among household members.  Household structure affects the activity selection

of its members, namely the balance of time given to subsistence, maintenance and leisure

activity.  The household time required for each of subsistence and maintenance activities

naturally grows with household size, but at a slower rate because of scale economies.  These

economies may be greater for families9 than for nonfamilies because of greater role

specialization.  On the other hand, the subsistence and maintenance activity requirements

placed on adults in the household are greater in families when children and disabled members

are present, and may vary substantially with the number and age of children.

Household structure may also affect the tendency to conduct activity at home or away.

Larger households, especially families, may more easily satisfy social needs in at-home

leisure activities.  On the other hand, families often have more chauffeur’s tasks, to provide

activity access for non-driving children.

                                                       
9 We define a household as one or more persons living together.  We define families as household

subsets in which the members are related by blood, marriage or long term cohabitation
commitment.
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In light of this discussion, potentially important household structure categories include

household size, family vs nonfamily, number of children in various age groups, and the

presence of disabled members.

Role specialization.  Role specialization allocates household activities by type to particular

members of the household.  For example, one member may be responsible for subsistence

and another for maintenance.  The benefit of scale economies should be a natural force

toward role specialization in households, especially in families where it is aided by the

stability of the cohabitation arrangement.  Some role specialization, such as relative workload

commitment, is directly observable.  Other specialization, such as responsibility for certain

maintenance tasks and childcare, is harder to observe.  Nevertheless, good proxies may exist,

arising from prevailing social mores or natural selection.  Of particular importance are gender

and age, with pronounced gender effects likely in families with children, and age effects

likely in multigenerational families.  Observable variables that may capture significant role

specialization in activity scheduling behavior include relative workload (defined as

individual’s usual weekly work hours minus the average hours per working age adult),

gender interacted with household structure, and categories for adult children and senior

adults in families with other adults.

Activity commitments, priorities and habits.  The lifestyle formation process establishes

commitments, priorities and habits for activity participation.  Some of these outcomes may

be schedule-specific, determining the periodic participation in a particular activity at

prescribed times.  Examples include the office worker’s lifestyle defined in part by regular

work activity from nine to five, five days per week, or the church member’s lifestyle that

includes attendance at religious services at the same times every week.  Other outcomes may

be less schedule-specific, but still determine the allocation of time to various types of

activity, such as the homeowner’s time commitment for maintaining the residence, or the

sports fan’s priority for watching athletic events on television.  These lifestyle outcomes

include individual attributes such as usual work hours, as well as household attributes such as

the number of working adults.  Although work commitments and home ownership are

usually collected in surveys from which activity and travel models are developed, many

important lifestyle decisions in this category are not.
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Financial and personal capabilities.  We adopt the view taken in the activity-based

transportation economics and home production economics literature (see for instance,

Gronau, 1986) that recognizes the trade-offs in the use of time and money for satisfaction of

activity objectives, treating income as an endogenous variable in the process because of the

household’s ability to choose the level of work participation.  In our modeling framework,

income is endogenous to the lifestyle formation process, where it is determined and treated as

exogenous in the activity and travel scheduling process.  There, higher income carries with it

more activity options as well as a higher value of time.  Wealth is also an important lifestyle

outcome that partially determines income, but may also have a profound impact on mobility,

activity and travel decisions because of the activity opportunities and security it provides the

household.  Personal capabilities, determined by the mixing of natural endowment, personal

development and special events in the lifestyle formation process, vary substantially.  They

also significantly influence activity and travel scheduling choices, by shaping the choice set

and affecting the costs and benefits of various activity alternatives.

Household, and sometimes personal, income information is often available in surveys as a

direct measure of financial resources.  We usually lack a direct measure of wealth, although

auto ownership is a mobility outcome that probably correlates with wealth and might serve as

a proxy.  Occupation and the presence of a mobility impairing disability are measures of

personal capability.

2.4  The choice process and the complexity of the activity scheduling
decision

The decision framework, and the lifestyle factors influencing activity and travel demand,

give some picture of the nature of activity and travel decisions.  However, we still need a

model of the decision that characterizes the schedule outcome and approximates the

scheduler’s decision process.  In this section we discuss this process, and in that context face

its most challenging characteristic, the immense set of scheduling alternatives.

Every choice has three important elements, including (a) a set of alternatives, (b) a

decisionmaker, and (c) a decision protocol, or set of rules.  The set of all feasible alternatives
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is often referred to as the universal set, whereas the set of alternatives the decisionmaker

actually considers is called the choice set.  The alternatives in the choice set are defined to be

mutually exclusive and collectively exhaustive, so that the decisionmaker must choose one

and only one alternative from the choice set.

The alternatives.  The biggest problem facing the activity schedule modeler is the size of the

universal set.  The scheduling decision involves the selection of activity purpose, timing,

location, mode and route for many inter-related activities.  From the standpoint of travel

forecasting it is important to model timing, location, mode and route for all activities because

these determine the transport network demand.   It is important to include purpose, because

of its strong interaction with the other dimensions.  It is also important to include these

dimensions for all activities in the schedule because of the interdependency caused by time

and space constraints.

The challenge is to represent adequately a decision process having infinite feasible outcomes

in all these dimensions.  Table 2.1 lists dimensions of the activity and travel scheduling

decision, and provides a crude estimate of the number of alternatives faced in each dimension

by the individual.  This indicates the size of the problem for a one-day scheduling period, the

minimum required to capture the desired within-day scheduling interactions.  Some of the

dimensions—notably timing and location—are continuous.  However, if for illustration

purposes we simplify by transforming these dimensions into discrete categories, ignoring

purpose and assuming a person participates in  10 activities during a day, we get a

conservative estimate of 1016  schedule alternatives.  The universal set size would further

multiply if the schedule was viewed as a household outcome, including the necessary

schedule dimensions for all household members, or as a weekly outcome, including the

dimensions for each day of the week.
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Table 2.1 An estimate of the number of day activity schedule alternatives faced by an individual

The large number turns the challenge of adequately representing the process into a combinatorial problem.

Number of activities per day 10

Sequence 10!

Timing 10 per activity 100

Location 1000 per activity 10,000

Mode 5 per activity 50

Route 10 per activity 100

Total 1016

The decisionmaker.  Furthermore, the decisionmaker possesses limited resources and

capabilities for making this complex decision.  Information processing limitations prevent us

from being aware of all available alternatives, fully understanding the alternatives we are

aware of, and distinguishing similar alternatives.  Gathering the information takes time,

energy and, often, money that are all in limited supply.  The result is that decisionmakers act

on incomplete information, especially when the choice involves a large, complex alternative

set.  Like the decisionmaker, the modeler must simplify.  Unlike the decisionmaker, who can

simplify any way he or she pleases, the modeler must simplify in a manner matching the

behavior of the decisionmakers.

The decision protocol.  A variety of decision protocols may be employed to make decisions,

but all of them can be described in terms of a two-stage process of (a) choice set generation,

in which the choice set is selected from the universal set, and (b) choice, in which one

alternative is chosen from the choice set.  The process can be deliberative or reactive (Rich

and Knight, 1991;  as cited in Ettema, Borgers and Timmermans, 1995).  In a deliberative

process all the alternatives are identified before any are evaluated, and the two stages are

conducted sequentially.  In a reactive process the evaluation of some alternatives can lead to

the identification of additional alternatives, and the two stages are partially completed in an

iterative fashion until the choice is finally made.

In models of decisions one of the most commonly assumed decision protocols is a

deliberative process in which an exhaustive search is followed by a utility maximization
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choice among all feasible alternatives.  The utility function serves as a composite criterion, a

scalar transformation of multiple criteria.  The use of this decision protocol in choices with

large universal sets can be criticized, as we have just done.  The large set makes it unrealistic

to assume an exhaustive search followed by the rational evaluation of a utility function for

every feasible alternative (Thill, 1992).

Several alternative decision protocols have been hypothesized to represent how individuals

cope with complex alternative sets.  These include (a)non-exhaustive search, (b) selection

based on habit, (c) adaptive decisions, which adjust prior decisions in response to changing

conditions, (d) satisfaction rules that stop the search when a satisfying alternative is found,

and (e) bounded rational decisions (Simon, 1957), in which a non-exhaustive search

generates a manageable choice set, to which a utility-based decision rule is applied.

However, none is accompanied by a proven modeling method that has been used successfully

in a practical model of a decision as complex as the activity schedule.

In summary, this examination of the scheduling choice identifies the immense

multidimensional universal set as the most challenging aspect of the activity schedule

modeling problem.  In choosing a modeling approach it is important to (a) retain the

dimensions of the set, representing inter-dimensional decision interactions, (b) retain

activities spanning at least a one-day timeframe, representing inter-activity decision

interactions, and (c) use a decision protocol that can represent without distortion the behavior

of decisionmakers who can’t rationally consider all feasible schedule alternatives.

2.5  Behavior-theoretical modeling requirements

Our study of the theory of activity-based travel demand leads to several summary statements,

gathered together as Table 2.2, that serve as a set of theoretical requirements for

incorporating activity-based travel theory in a travel forecasting system.
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Table 2.2 Behavior-theoretical requirements of the activity-based travel demand forecasting model

1. Model travel demand decisions as components of an activity schedule outcome.
2. Represent as a single schedule outcome all activity spanning a time period of at least one day,

preserving space and time constraints and associated decision interactions across all activities.
3. Include purpose, priority, timing, location and mode for all activities and associated travel,

retaining decision interactions among all dimensions and activities.
4. Condition activity schedule choice on outcomes of longer term processes, including

a) activity opportunities;
b) lifestyle outcomes of household structure, role within household, capabilities, and

activity commitments and priorities; and
c) household mobility decisions.

5. Represent the scheduling decision as a process governed by commitments and priorities, rather
than temporal sequence, within the constraints of the scheduling time period.

6. Interact schedule choice with transportation system performance attributes.
7. Use a decision protocol that can represent without distortion the behavior of decisionmakers who

cannot rationally consider all feasible schedule alternatives.
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Models of Activity and Travel Schedules

The previous chapter supplies a set of requirements for incorporating activity-based travel

theory into a travel demand forecasting model.  This chapter leads us to a specific modeling

approach.  Since behavior-theoretical requirements are not the only consideration in

developing a sound practical model, Section 3.1  augments the list of requirements.  The

remainder of the chapter is devoted to examining alternative approaches that have been used

in attempts to bring activity-based travel theory into practical forecasting models.  In the end,

it leads directly to the modeling approach taken in this research, a nested system of discrete

choice models.

We focus on the model of activity and travel scheduling, considering lifestyle and mobility

primarily as they affect activity and travel scheduling decisions.  We do not consider models

of implementation and rescheduling behavior (see, for example, Cascetta and Cantarella,

1993; Mahmassani, Hu, Peeta et al., 1994; Antoniou, Ben-Akiva, Bierlaire et al., 1997) or

land use (see, for example, Webster, Bailey and Paulley, 1988; Anas, 1994; Owers,

Echenique, Williams et al., 1994; Putman, 1995; Wegener, 1995).

3.1  Model system requirements

An activity-based travel demand model system should first be theoretically sound, both

behaviorally and mathematically; lacking this assurance, we cannot rely on the results.

Second, sufficient resolution is required to capture behavior that affects the aggregate

phenomena of interest.  This includes resolution of the universal set as well as resolution of

the factors explaining choice.  As an example of the universal set resolution, the resolution of

the time dimension must be fine enough to capture time-of-day shifts in response to
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congestion pricing and the effects of such shifts on traffic congestion.  As an example of

explanatory factor resolution, the characterization of residential neighborhood walkability

must be accurate enough to capture effects that influence decisions to walk instead of drive

for secondary activities in the schedule.  Third, the resource requirements of the model must

allow it to be implemented.  Data is needed for estimating model parameters, and a different

set of data is needed to validate the model.  To use the model for prediction we must be able

to generate its input variables.  The model must also be technically and financially feasible to

develop, maintain and operate.  This includes the need for maintainable software, reasonable

computational requirements, and usable procedures.  Finally, it must produce valid results;

not only must the data be available for validation, but the model must also prove itself in

validation.  These requirements, listed in Table 3.1, combined with the detailed behavioral

requirements of Table 2.2, establish a basic set of requirements for the development of an

activity-based travel demand forecasting model.

Table 3.1 Requirements of the activity-based travel demand forecasting model

1. Theoretically sound for accurate results
a) behaviorally
b) mathematically

2. Activity schedule resolution for policy sensitive information
a) universal alternative set
b) explanatory factors

3. Practical resource requirements for implementation
a) data for estimation, validation and model inputs
b) maintainable logic (software)
c) affordable computation (hardware)
d) usable operator procedures

4. Valid results

3.2  Overview of modeling approaches

No previously existing model system satisfies all the requirements of an activity-based travel

demand forecasting model.  As we shall see in the models reviewed below, none provides a

full day’s scope and a complete representation of all schedule dimensions.  Nevertheless,

they provide insight into the nature of the modeling problem, and the techniques employed

may provide the foundation for an extended or enhanced model that satisfies the
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requirements.  In fact, the day activity schedule model presented in Chapter 4 is a direct

descendent of the discrete choice model systems presented in this chapter.

The following presentation of modeling approaches is two-tiered.  This section provides an

overview of three distinct model classes—Markov, rule-based and econometric.  Examples

of  rule-based simulations and econometric models are reviewed in more detail in subsequent

sections.

Markov modeling approaches for trip chaining were explored extensively in the 1970’s.

They represent the scheduling decision as a sequence of transitions, following the temporal

sequence of the day, with transitions between states corresponding to trips between activities.

The schedule is defined by a matrix of transition probabilities.  Each matrix element is the

probability of transition from one state to another.  Each activity state is characterized by its

important attributes, such as location and travel mode.  Early implementations of the model

estimated transition probabilities from observed data with no behavioral model of the

transition probability.  Subsequent semi-Markovian models employed discrete choice or joint

discrete-continuous choice models for the transition probabilities, thus enabling the models to

be used for forecasting (see, for example, Lerman, 1979).  However, no models expanded the

scope of the state definition to accommodate all the required dimensions of a full day’s

activity schedule.  Other weaknesses of the approach include the difficulty of

accommodating history dependence and time-variance of the transition probabilities.  These

reflect the fundamental weakness of the approach—its basis in a decision sequence tied to the

temporal activity sequence.  This renders it unable to represent adequately a decision process

that is governed more by commitments and priorities than by sequence.  For more detailed

reviews of Markov models, see Jones (1976), Horowitz (1980), and Timmermans and

Golledge (1990).

The rule-based simulation approach has been popular for modeling the activity schedule

since the 1970’s.  Rule-based models focus most of their attention on choice set generation,

employing a complex search rule that yields a very small choice set.  A simple choice model

is used to represent the choice from this set, frequently with iteration occurring between

choice set generation and choice.  These models simulate schedule outcomes rather than
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calculating schedule probabilities.  All rule-based simulations developed to date deal with the

big universal set by limiting the decision scope and omitting important dimensions of the

activity and travel scheduling decision.

Econometric models, perhaps the most popular models of travel demand, have gradually

evolved toward an activity schedule representation of demand.  They usually employ simple

deterministic choice set generation rules and focus attention on the complex representation of

a utility-based multi-dimensional choice.  No iteration occurs between search and choice.

These models are systems of equations representing probabilities of decision outcomes.  To

get aggregate forecasts the probabilities can be aggregated directly or used to simulate

schedule outcomes before aggregation.  Econometric models can be viewed in two

subclasses, discrete and mixed continuous-discrete.

Discrete choice models partition the activity schedule outcome space into discrete

alternatives.  They deal with the big universal set by subdividing decision outcomes and

aggregating alternatives.  For example, the simplest models subdivide outcomes by modeling

trip decisions instead of an entire day’s schedule, and aggregate activity locations into

geographic zones.  Over time, discrete choice modelers have tried to improve behavioral

realism by including more and more dimensions of choice in an integrated model system.

Our review of discrete choice models will emphasize their evolutionary development, leading

to the currently presented day activity schedule model.

Research on mixed continuous-discrete models has become active in the 1990s (see for

example, Hamed and Mannering, 1993; Bhat, 1996a).  Developers of mixed discrete-

continuous models have focused their attention on the continuous time dimension of the

activity schedule, seeking to improve on its traditionally missing or weak aggregate discrete

representation in discrete choice models.  Duration models are employed jointly with discrete

models of other choice dimensions.  Continuous-discrete models have not yet expanded in

scope to include most dimensions of the activity schedule, nor have they yet incorporated

sensitivity to time-variant activity and travel conditions.  Their use in models satisfying the

requirements we have identified awaits further methodological development, and we provide

no subsequent in-depth reviews.
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3.3  Rule-based simulations

We have already described rule-based simulations as sequential decision rules predicting

decision process outcomes, and noted their focus of attention on choice set generation.  These

systems are based on various decision theories, such as cognitive limitation or the notion of a

search that terminates with acceptance of a satisfying alternative.  A simple utility-based

decision rule is often used in the choice stage of the decision protocol.  Rule-based

simulations achieve simplification by subdividing the decision process into separate

sequential steps.  Additionally, all rule-based simulations developed to date achieve

simplification by limiting the decision scope, omitting important dimensions of the activity

and travel scheduling decision.

A great variety of rule-based simulations is possible, and they are harder to subclassify than

the econometric systems.  We review three particular model systems which, although they do

not characterize the entire class of rule-based simulations, are important examples and

demonstrate some of its variety.  The STARCHILD system (Recker, McNally and Root,

1986b; Recker, McNally and Root, 1986a) is the earliest example reviewed in this class,

modeling the activity and travel scheduling decision as a classification and choice process.

AMOS (RDC Inc., 1995) is a recent example that has been partially implemented in the

Washington, D.C. area, representing the decision as a search for a satisfactory adjustment.

SMASH (Ettema, Borgers and Timmermans, 1993; Ettema, Borgers and Timmermans, 1995)

was developed in the Netherlands, and represents the scheduling decision as a sequence of

schedule building decisions.

3.3.1 STARCHILD:  classification and choice

STARCHILD (Figure 3.1) starts with a detailed activity program that must be supplied from

outside the model.  The activity program identifies many details of the schedule, including

activity purpose, participation, duration and location, as well as constraints on sequence,

timing and coupling of activities.  It then models the scheduling decision as a four-step

process which yields the timing and sequence of the activities in the program.  Choice set

generation occurs in the first two steps.  Feasible alternatives are exhaustively enumerated
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with careful attention to constraints.  They are then classified, using a statistical similarity

measure, and one alternative is chosen to represent each of approximately 3-10 classes.  The

remaining two steps comprise the choice process.  A decision rule is used to eliminate some

alternatives.  In the prototype which was developed, all inferior alternatives are eliminated,

according to an intuitive objective criterion.  A multinomial logit model then represents a

utility maximizing choice among the remaining non-inferior alternatives.  The developers of

STARCHILD conceived the activity schedule as a plan, which is followed by

implementation and rescheduling, but did not develop the latter model.

Mobility and Lifestyle
Activity Program

--purpose
--participation
--duration
--location
--constraints (timing, space-
   time, coupling, sequence)

Activity Schedule
(timing and sequence)

Choice Set Generation
--enumerate
--classify and sample

Implementation & Rescheduling

Choice
--eliminate
--maximize utility

Figure 3.1 STARCHILD model system

STARCHILD takes an externally supplied activity program and simulates the scheduling decision.  Choice set generation
involves enumerating, classifying and sampling the schedule alternatives.  This is followed by a simple utility maximization
choice.

STARCHILD’s key features are its detailed representation of constraints in the identification

of feasible alternatives, and the use of a classification method to generate the choice set.  As

a model intended for use in forecasting travel, it has two key weaknesses.  First, it relies on

external sources to predict important dimensions of the activity and travel schedule,
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including activity participation, purpose, location and travel mode.  Second, the classification

and sampling rule may inadequately represent the true choice set.  The rule generates a very

small choice set with only one alternative of each distinctively different class, whereas

people may frequently choose from a small choice set of similar competing alternatives.

3.3.2 AMOS:  search for a satisfactory adjustment

AMOS (Figure 3.2) requires as input an even more detailed activity schedule than

STARCHILD.  This, however, is because AMOS is designed as a switching model.  Given a

baseline schedule and a policy change, it chooses a basic response, such as a mode change,

which limits the domain of search for a feasible adjustment.  A structured search rule then

completes the choice set generation stage, yielding one feasible adjustment.  A simple choice

model accepts or rejects the adjustment.  If the adjustment is rejected then the structured

search is repeated until an acceptable adjustment has been found.  If no acceptable alternative

is found for the desired basic response, then the process can loop back to the choice of

another basic response.
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Activity and Travel Scheduling

Adjust Schedule

Choice Set Generation

Baseline Activity and
Travel Schedule

--purpose --timing
--participation --duration
--sequence --location

--mode

Basic Policy
Response

Search for Feasible
Adjustment

Choice
(Acceptance)

multinomial
choice

(neural net)

structured
search rule

Multinomial
choice

Figure 3.2 AMOS model system

AMOS takes a detailed schedule and searches for an acceptable adjustment to a specific policy change.  The process
involves the selection of a basic policy response which narrows the domain of search.  This is followed by the search for one
feasible adjustment and the decision to accept the adjustment or continue the search.

The basic response model is policy specific.  Six policies are included in the prototype for

Washington, D.C.:

1. Workplace parking surcharge
2. Improved bicycle and pedestrian facilities
3. combination of 1 and 2
4. Workplace parking surcharge with employer-supplied commuter voucher
5. Peak period driver charge
6. combination of 4 and 5

The basic response is modeled as a multinomial choice from a set of eight alternatives:

1. No change
2. Change departure time to work
3. Switch to transit
4. Switch to car/vanpool
5. Switch to bicycle
6. Switch to walk
7. Work at home
8. Other
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The prototype implements the multinomial choice model via the combination of a neural

network and a multinomial logit model (MNL).  The neural network predicts an output signal

for each alternative, which is a scalar function of 36 decisionmaker characteristics under the

policy change.  The MNL converts the output signals to probabilities by using the output

signal as the only explanatory variable in the utility function.  The parameters of the basic

response model are estimated from data supplied by a policy-specific stated preference

survey.

Given a basic response, a context specific search rule is used to find a feasible schedule

adjustment.  Figure 3.3 shows a portion of the prototype’s search rule for a basic response of

mode change from single occupant vehicle to transit.  The rule checks first for the presence

in the baseline schedule of stops on the way to work.  If it finds some, it assumes they cannot

be chained in the new transit commute, and switches them into a home-based tour before

work.  Then it checks to see if the revised schedule allows for timely arrival at work.  The

rule continues like this to make schedule adjustments and feasibility checks, eventually

arriving at a feasible alternative.  Each time a schedule adjustment is needed, the adjustment

is made via an intuitive decision rule or a simple choice model.  The entire rule allows, in

order of priority, changes to sequence and at-home stops, mode, and timing.
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Check baseline schedule:  stops home-to-work?

switch stops to home-based tour before work

Arrival time at work within allowable limits?

All activity sequences
been considered?

Feasibility check:
e.g. wake up time

YN

Y

N

Move discretionary
stops to after work

Resequence stops

N

Y

Are there work-to-
home stops?

Not
OK

OK

Mode change
is SOV to

Transit

N Y
etc.

Figure 3.3 A portion of the AMOS context specific search

AMOS search for a feasible schedule adjustment, given the basic policy response of a mode change from single occupant
vehicle to transit.  (source:  RDC Inc., 1995)

In summary, AMOS has two key features.  First, it is a policy-specific switching model.

Because it is anchored in a baseline schedule and predicts switches based on policy-specific

survey data, it has great potential to be very informative in predicting short-term responses to

specific policy changes.  The second key feature is the three-step decision protocol of basic

response, structured search and satisfaction-based decision.

AMOS has a few weaknesses linked to its design.  First, it requires custom development for

each policy.  Second, validation is needed for each specific policy response model, and the

availability of revealed preference data for this validation is very unlikely.  Third, it does not

forecast long run effects.  Fourth, it requires the exogenous forecast of a baseline schedule

for each application of the model.  Fifth, the basic response and search models may

inadequately represent the search process; the structured search sequence may not match the

way some people search, and may systematically bias the predicted outcomes.  Beyond these

five design-related weaknesses, the prototype implementation of AMOS suffers from an
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incomplete scope; it is unable to predict changes in non-work schedules, or changes in

activity participation, purpose, duration or location.

3.3.3 SMASH:  sequential schedule building

SMASH (Figure 3.4) starts with a detailed activity program similar to that required by

STARCHILD.  Through an iterative process it gradually builds a schedule using activities

from the program.  In each iteration it starts with a schedule (a blank schedule in the first

iteration) and conducts a generic non-exhaustive search, enumerating all schedule

adjustments which would insert, delete or substitute one activity from the agenda.  It then

chooses one of the potential adjustments from the choice set and continues the search, or

accepts the previous schedule and ends the search.  Conceptually, the model could be used as

a rescheduler, being rerun after the conduct of each activity, but the prototype was not

implemented in this way.

Activity and Travel Scheduling and
Rescheduling

Mobility and Lifestyle

Activity Program
--purpose --available times
--frequency --expected duration
--priority --location
--last time conducted

Choice
Either: choose an adjustment

and continue search
   or accept current schedule

Conduct one activity

Choice Set Generation
Enumerate all schedule adjustments which
insert, delete or substitute one activity from
agenda

Figure 3.4 SMASH model system

SMASH starts with a detailed activity program and an empty schedule.  Then it builds the schedule by adding, deleting or
substituting one program activity at a time.  A decision is made each time whether or not to accept the current schedule and
stop the building process.



56 The Day Activity Schedule Approach to Travel Demand Analysis

The choice between schedule adjustment and schedule acceptance is implemented as a nested

logit model.  Schedule acceptance occurs when the utility of the schedule acceptance

alternative is greater than that of all the schedule adjustments under consideration in the

iteration.  A schedule is more likely to be accepted if it has a lot of scheduled activity time,

little travel time, includes the high priority activities from the program and lacks schedule

conflicts.

The key feature of SMASH is the schedule construction process with a cost-benefit based

stopping criterion.  SMASH has three major weaknesses.  First, it relies on an externally

supplied detailed activity program which includes several important dimensions of the

activity schedule, including desired participation, purpose, duration, location and mode of

travel.  Second, it requires a very complex survey for model estimation.  Respondents must

step through the entire schedule building process.  Finally, the non-exhaustive search

heuristic may be inadequate, and needs to be validated.  Its method of restricting the search

domain may systematically exclude alternatives which people frequently choose.

3.3.4 Summary evaluation of rule-based simulations

Recalling the purpose of this examination, to identify promising approaches for development

of an activity-based travel demand forecasting model satisfying the requirements in Table 2.2

and Table 3.1, we evaluate the rule-based simulations in terms of their potential in the short

term to satisfy the requirements.  All three examples face two important challenges.  First,

they rely on a detailed exogenous activity program or schedule that determines all or much of

the activity participation decision, as well as other important attributes such as location and

timing.  Thus, although the resulting schedules may be fairly complete in scope, important

major components of the schedule are not modeled.  That is, they are not conditioned by the

long term urban and lifestyle processes, nor do they interact with the transportation system

attributes.

Secondly, all three examples rely on unproven search heuristics.  STARCHILD relies on an

arbitrary similarity criterion to sample the universal set, while AMOS relies on a complex

arbitrary decision tree for finding schedule adjustments.  SMASH’s carefully reasoned
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heuristic is nevertheless unvalidated.  For two of the three, AMOS and SMASH, the decision

protocol is also extremely complex, which may partly explain why the scope of the

scheduling model is so narrow in the prototype models.  Extensive data and validation

requirements accompany their complexity.

The attractiveness of rule-based simulations is the freedom they give to attempt new decision

protocol models that may better represent human behavior in the activity scheduling

decision.  However, the above challenges this presents make it unlikely that such an approach

can yield a comprehensive, validated scheduling model in the near future.

In contrast, utility maximization is a much simpler protocol for which the schedule scope is a

less formidable modeling challenge.  The protocol has a solid basis in consumer theory.

Although the large universal alternative set pushes it beyond the limits of purely representing

rational consumer behavior, the protocol has been successfully used and validated in discrete

choice travel demand model systems where the universal set far exceeds such limits.  In the

next section we examine such systems.

3.4  Discrete choice models

3.4.1 Discrete choice methods

As mentioned in the introductory review, discrete choice travel demand model systems deal

with the big universal set by subdividing decision outcomes and aggregating alternatives.

They attempt to retain behavioral realism by linking the component models of the system in a

hierarchy that matches the natural hierarchy of the decision process.  Lower dimensions of

the scheduling hierarchy are conditioned by the outcomes of the higher dimensions.  For

example, choice of travel mode for the work commute is conditioned by choice of workplace.

At the same time the utility of a higher dimension alternative depends on the expected utility

arising from the conditional dimension's alternatives.  In our example, the choice of

workplace is influenced by the expected utility of travel arising from all the available

commute modes.
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Nested logit models effectively model multidimensional choice processes where a natural

hierarchy exists in the decision process, using conditionality and expected utility as described

above.  The expected utility of the conditional dimension is commonly referred to as

accessibility because it measures how accessible an upper dimension alternative is to

opportunities for utility in the lower dimension.  It is also often referred to as the "logsum",

because in nested logit models it is computed as the logarithm of the sum of the

exponentiated utility among the available lower dimension alternatives.  For more detail, see

Ben-Akiva and Lerman (1985, Chapter 10).

The models are disaggregate, representing the behavior of a single decisionmaker.  A Monte-

Carlo procedure is often used to produce aggregate predictions. In other words, the models

make predictions with disaggregate data, requiring the generation of a representative

population.  The model is applied to each decisionmaker in the population—or a

representative sample—yielding either a simulated daily travel itinerary or a set of

probabilities for alternatives in the choice set.  The trips in the itinerary can then be

aggregated and assigned to the transport network, resulting in a prediction of transport

system performance.  This process may require replications to achieve statistically reliable

predictions.

3.4.2 Trips and tours

Within the class of discrete choice model systems we identify two subclasses, based on how

each divides the decision outcomes.  The simplest and oldest subclass divides the activity

schedule into trips.  Some more recent models combine trips explicitly in tours.

Figure 3.5 compares the two subclasses according to their representation of a hypothetical

day activity schedule: the person departed for work at 7:30 A.M., traveling by transit.  At

noon she walked out for personal business, returning to work at 12:50 P.M.  At 4:40 P.M. she

returned home from work, again by transit.  That evening at 7:00 P.M. she drove to another

location to shop, returning home at 10:00 P.M.  The trip-based model represents the schedule

as six one-way trips.  The "direction" of the trips is usually portrayed in terms of trip

production and attraction rather than direction of movement.  In the tour-based model the
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trips are explicitly connected in tours, introducing spatial constraints and direction of

movement.  We will look at an example of both modeling approaches.

H

PB

W

S

Transit

walk

Auto

7:30 am

4:40 pm

7 pm
10 pm

noon 12:50 pm

x2

H

PB

W

S

Transit

walk

Auto

x2

x2
H

W

trip-based model:

actual schedule:

tour-based model:

H

PB

W
Transit

walk

H

S
Auto

Figure 3.5 Trip and tour-based model subdivision of the day activity schedule

Trip-based models subdivide the schedule into one-way trips.  Tour-based models separate the schedule into tours.

3.4.3 Trip-based system

The first integrated trip-based disaggregate model systems were developed during the mid

1970's for Washington D.C.  (Ben-Akiva, Adler, Jacobsen et al., 1977) and for the

Metropolitan Transportation Commission (MTC) of the San Francisco Bay area (Ruiter and

Ben-Akiva, 1978).  We review here the demand model portion of the MTC system.  It

consists of three major components, as shown in Figure 3.6(a).  The mobility and lifestyle

component represents long-term decisions related to auto ownership and home-based work

trips.  Short term activity and travel decisions deal with other home-based trips and non-

home-based trips.  Each model component is conditioned by choices at the higher level, and
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the activity and travel models influence the mobility and lifestyle models via measures of

expected utility.  Figure 3.6(b) shows detail of the mobility and lifestyle component of the

model system.  The system explicitly models work travel decisions for the primary and

secondary workers in the household.  Arrows in the figure show how the models are

integrated: solid arrows indicate conditionality; dashed arrows indicate expected utility.  For

example, the number of autos chosen in the auto ownership model is conditioned by the

choice of workplace; the model assumes the workplace is known when it models the auto

ownership decision.  The auto ownership decision itself conditions the mode choice model.

The model also accounts for the influence on auto ownership of ease of travel to shopping

and work, by including variables of expected utility generated by the shopping destination

and mode choice and work mode choice models.

Mobility and Lifestyle

Activity and Travel

--Auto ownership
--Home based work trips

Home Based Other trips

Non-Home Based Trips

work trip
frequency

work place

auto ownership

mode

Mobility and Lifestyle
Primary worker

work trip
frequency

work place

mode

Secondary worker

shop trip
destination and

mode
(a) (b)

Figure 3.6 The MTC trip-based model system

(a) Three major components of the MTC model system, and (b) details of the mobility and lifestyle component, showing
integration of the models via conditionality (solid arrows) and expected utility (dashed arrows).  (Source: Ruiter and Ben-
Akiva, 1978)

In summary, key features of the trip-based model systems, exemplified by the MTC system,

are the composition of disaggregate choice models and the integration via conditionality and
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measures of expected utility according to the decision framework.  The model’s weaknesses

come from its subdivision of the day schedule.  The key weakness is the sequential modeling

of home-based and non-home-based-trips as opposed to the explicit representation of tours.

This hurts its ability to predict correctly scheduling changes, such as trip chaining, that can

occur in response to changing conditions.  The  trip frequency models are not sensitive to

changes affecting other dimensions of the schedule.

The MTC model system has been continuously updated since its development in the mid-

70's, and is being used as the transportation planning model for the San Francisco Bay area

(Kollo and Purvis, 1989; Metropolitan Transportation Commission Planning Section, 1997).

3.4.4 Tour-based system

Tour-based systems were first developed in the late 1970's and 80's in the Netherlands (Daly,

van Zwam and van der Valk, 1983; Gunn, van der Hoorn and Daly, 1987; Hague Consulting

Group, 1992), and are being used extensively there and elsewhere in Europe, with the most

recent systems being developed in Stockholm, Sweden (Algers, Daly, Kjellman et al., 1995)

and Salerno, Italy (Cascetta, Nuzzolo and Velardi, 1993).  We review here the Stockholm

system as an example of this class.  Figure 3.7 shows how the tours for various purposes are

explicitly modeled.  Work tour decisions are conditioned by the mobility and lifestyle

decisions, and condition all other activity and travel decisions.  The model system heavily

uses expected utility measures, strengthening the connections across dimensions of the

activity and travel scheduling decision.
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Mobility & Lifestyle
--car ownership
--work location

Business

Recreation
(indoor)

School

Shopping
(2 types)

Personal
Business (4)

Social
(2 types)

Work Tours

Activity and Travel

Figure 3.7 The Stockholm tour-based model system

Work tour decisions are conditioned by the mobility and lifestyle decisions, and condition all other activity and travel
decisions.

The work tour decision, Figure 3.8 , includes the household's decision of who will work

today, how the household's autos will be allocated among the workers, and the travel mode

for workers who do not use a household auto.

Work

Auto
Allocation

Mode

Figure 3.8 The Stockholm nested logit work tour model

The work tour model represents household work participation, auto allocation among workers, and commute mode in a
conditional hierarchy
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The model of household shopping tours, Figure 3.9 , conditioned by the work decision,

determines how many shopping activities the household will undertake, who will perform

them, on what type of tour they will be performed, and the tour mode and destination.  A

shopping activity can be assigned to one or more household members.  If it is assigned to a

worker, the existing options are to conduct the activity on a home-based or work-based tour,

or chained to the work tour en route between work and home.

B C AB AC BC ABCA

Frequency

Assignment
to Individuals

Tour Type

Mode

Destination
Home
based

Work
based

Chained
in work

tour

(c)  Tour Type

(b) Assignment to Individuals(a)  Shopping tours

Figure 3.9 The Stockholm shopping tours model

(a) The Stockholm shopping tours model.  (b) Each shopping activity is assigned to one or more household members.  (c) If
a shopping activity is assigned to a worker, the tour type model determines whether the activity occurs on a home-based
tour, a work-based tour, or chained in the work tour.

To summarize the tour-based approach, the key features are the explicit representation of

tours and trip chaining within tours.  The Stockholm example also explicitly models

household decisions.  The key weaknesses are the lack of an overarching pattern connecting

the day's tours, and the failure to integrate the time dimension into the model structure.

These may prevent the model from accurately predicting some inter-tour schedule

adjustments, such as splitting a chained tour into two tours, and time-of-day adjustments.

Tour-based systems represent the most advanced state of the practice of disaggregate travel

demand modeling.  These systems have been carefully validated and are being widely

applied.
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3.4.5 Summary evaluation of trip and tour-based discrete choice model systems

The main behavioral criticism of the trip and tour-based discrete choice model systems is the

division of the schedule outcome into separate pieces, trips and tours, respectively.

Otherwise, they satisfy the behavioral requirements laid out in Table 2.2.  They are able to

retain many interactions among the dimensions of the schedule through the conditionality

and expected utility mechanisms.  They fit in the broader decision hierarchy; that is, they are

conditioned by longer-term outcomes and interact with the transportation system

performance.  As already mentioned, they have been extensively validated, demonstrating

their ability to perform reasonably well in forecasting despite their utility maximization

assumption in the presence of very large universal sets.

The models also satisfy most of the requirements of Table 3.1.  They employ well-accepted

econometric techniques for statistically estimating and testing the model specification.  As

already mentioned, they have been used and validated extensively in practice.  On the other

hand, their practicality is closely tied to their undesirable division of the schedule into pieces.

In conclusion, discrete choice models provide a mechanism for integrating the dimensions of

the day activity schedule.  Indeed, they have successfully evolved over the years toward such

an integrated representation.  Furthermore, a principal barrier to further integration has been

the level of resources required for implementation, and advances in computing technology

are causing that barrier to recede.  Thus, we choose this approach.
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The Day Activity Schedule Model System

4.1  Introduction and overview of the model system

In the last two chapters we presented theoretical background and a review of past modeling

approaches for a practical activity-based travel demand model system.  This provided us with

a set of requirements and the selection of discrete choice analysis as the preferred approach.

In this chapter we present a model of the activity and travel scheduling choice.  It takes an

evolutionary step within the category of discrete choice models, beyond trip-based and tour-

based models, to represent the choice of a full day’s schedule.  We refer to this as the day

activity schedule or, more simply, the activity schedule or schedule.  Thus we call the model

a day activity schedule model.

Demand for activity and travel is viewed as a utility maximizing individual’s choice of one

day activity schedule from a discrete set of all possible schedules.  The choice is modeled

using an integrated system of logit and nested logit models that can calculate the probability

of each schedule alternative.

We use a one day time period because of the day’s primary importance in regulating activity

and travel behavior.  People organize their activities in day-sized packages, allowing

substantial interactions among within-day scheduling decisions as they cope with time and

space constraints while attempting to achieve their activity objectives.

As noted in Chapter 2, a time period longer than one day would enable the model to capture

inter-day scheduling interactions.  Discrete choice methods have been developed for these

interactions, and demonstrated for shopping activity (Hirsh, Prashker and Ben-Akiva, 1986).

However, we model a one-day schedule because computational costs for model operation
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grow exponentially with the number of days in the schedule, and seven-day activity and

travel surveys are not currently available for model estimation.  The model presented in this

chapter can capture important day-of-the-week variation by customizing the empirical

specification of schedule utility for different days of the week.

As also noted in Chapter 2 and implemented in the tour-based model reviewed in Section

3.4.4, the schedule can be defined as a household schedule, explicitly capturing interactions

among household members.  Since this also multiplies the size of the problem, we instead

capture household interactions implicitly by differentiating the empirical specification of

schedule utility according to household structure and the individual’s role in it.

The day activity schedule is viewed as a set of tours and at-home activity episodes tied

together by an overarching day activity pattern  (Figure 4.1).  Decisions about a specific tour

in the schedule are conditioned, or constrained, by the choice of day activity pattern.  This is

based on the notion that some decisions about the basic agenda and pattern of the day’s

activities take precedence over details of the travel decisions.  The probability of a particular

day activity schedule is therefore expressed in the model as the product of a marginal pattern

probability and a conditional tours probability

prob schedule prob pattern prob tour attributes pattern( ) ( ) ( | )=

where the pattern probability is the probability of a particular day activity pattern and the

conditional probability is the probability of the pattern’s tour attributes.

The day activity pattern represents the basic decisions of activity participation and priorities,

and places each activity in a configuration of tours and at-home episodes.  Each pattern

alternative is defined by (a) the primary activity of the day, (b) whether the primary activity

occurs at home or away, (c) the type of tour for the primary activity, including the number,

purpose and sequence of activity stops, (d) the number and purpose of secondary tours, and

(e) purpose-specific participation in at-home activities. Table 4.1 gives a hypothetical

example of an activity and travel diary, and Table 4.2 shows the attributes explicitly modeled

for the day activity pattern.
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Day Activity Schedule

Day Activity Pattern

Tours

Figure 4.1 The day activity schedule

An individual’s multidimensional choice of a day’s activities and travel consists of tours interrelated in a day activity
pattern.

For each tour, details of time-of-day, destination and mode are represented in the conditional

tour models.  Within each tour, the choice of timing, mode and primary destination condition

the choices of secondary stop locations.  Table 4.3 shows the tour attributes explicitly

modeled by the conditional tour models for the example.

The choice of pattern is not independent of the conditional tour decisions.  The relative

attractiveness—or utility—of each pattern, depends not just directly on attributes of the

pattern itself, but also on the maximum utility to be gained from its associated tours. Patterns

are attractive if their expected tour utility is high, reflecting, for example, low travel times

and costs.  The model system captures this effect by using measures of expected utility from

the conditional tour models to explain pattern choice, an example of the use of expected

utility in nested systems of discrete choice models described in Chapter 3.  This ability to

capture sensitivity of pattern choice—including inter-tour and at-home vs on-tour trade-

offs—to spatial characteristics and transportation system level of service distinguishes the

day activity schedule model from tour models, and is its most important feature.  The day

activity schedule model also improves on tour models’ ability to represent the time

dimension by explicitly modeling the time of each one of the inter-related tours in the
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Table 4.1 Hypothetical example--activity and travel diary

Begin End Activity or travel
6:00 a.m. 7:15 get ready for work
7:15 7:45 drive alone to work at 872 4th Ave
7:45 12:00 Work
12:00 12:10 walk to lunch at 905 4th Ave
12:10 12:35 Lunch
12:35 12:45 walk back from lunch
12:45 4:30 Work
4:30 5:00 drive alone to pick up daughter at school, 1325 Lakeview

Blvd.
5:00 5:10 drive home with daughter
5:10 6:00 fix supper
6:00 6:30 eat supper
6:30 7:20 read paper and relax
7:20 7:30 drive to school for PTO meeting
7:30 9:00 PTO meeting
9:00 9:10 drive home
9:10 10:30 watch TV
10:30 6:00 Sleep

Table 4.2 Hypothetical example—day activity pattern attributes

The model explicitly translates the diary example in Table 4.1 into these day activity pattern attributes.

Pattern attribute Example value
Primary activity work on tour
primary tour type no stop before

work-based subtour
maintenance stop after

Secondary tours 1 leisure tour
at-home maintenance activity yes

Table 4.3 Hypothetical example—tour attributes

The model explicitly translates the diary example in Table 4.1 into these tour attributes

Tour Tour attribute Example value
Primary tour departure time to a.m. peak period

primary destination zone 12
mode auto drive alone
departure time from p.m. peak period
stop after location zone 329

Work-based subtour departure time to midday
destination zone 12
mode walk
departure time from midday

Secondary tour departure time to after p.m. peak
mode auto drive alone
destination zone 329
departure time from after p.m. peak
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pattern. With these features, the day activity schedule model satisfies the behavior-theoretical

requirements of Table 2.2.

4.2  Mathematical form of the model system

Having described the day activity schedule model with words, figures and an example in the

last section, we now present its mathematical form.

4.2.1 Day activity schedule probability

The day activity schedule s is characterized by an activity pattern  and the characteristics of

the pattern’s tours:

s p c t T s St p= ∀ ∈ ∈( ,{ , }), ,

where p is a pattern, chosen from the set P of available patterns; Tp is the set of tours in p,

with index t; ct is the vector of characteristics of tour t, chosen from set Ct; and S is the set of

available activity schedules.

The characterization of p identifies the purpose of each activity a in its set of activities, Ap,

and locates each activity, either at home or on a particular tour t in Tp.  It also identifies the

most important activity, a Ap
1 ∈ .  If a1 occurs on a tour we call this the primary tour,

denoted t Tp
1 ∈ , and refer to the other tours as secondary.  Thus we have

p A T a t p Pp p= ∈( , , , ),1 1

The probability of s is expressed as

prob s prob p prob c p prob c c p s S
t t t

t T

t t
p

( ) ( ) ( | ) ( , ),= ∈
∈
≠

∏1 1

1

| , (1)
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where we have assumed conditional independence of the secondary tours, given the primary

tour.  We may adopt the stronger assumption that all tours are conditionally independent,

given the pattern, and express the schedule probability as

prob s prob p prob c p s St
t Tp

( ) ( ) ( | ),= ∈
∈
∏ . (2)

4.2.2 Pattern model

Assume a choice of pattern p from choice set P can be represented by a random utility model,

where

U V p Pp p p= + ∈ε , , (3)

is p’s utility with systematic component Vp and random component ε p .  In the MNL model

ε p  is Gumbel distributed, independently and identically (IID) across patterns, and the

probability that p will be chosen is

prob p
V

V
p P

P
p

P
p

p P

( )
exp( )

exp( )
,= ∈

′
′∈
∑

µ

µ
, (4)

where µ P is the scale parameter.  We assume the utility of a pattern includes additively a

component Va for each activity, a component 
~

Vp  for the overall pattern, representing the

effect of time and energy limitations and activity synergy, and a component Vt  for the

expected utility of each tour t, given pattern p.  This yields

V V V V p Pp p a
a A

t
t Tp p

= + + ∈
∈ ∈
∑ ∑~

, , (5)

where Vt  is the utility of tour t Tp∈ .
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4.2.3 Tour model

The schedule model, (1) or (2), requires a conditional probability for each tour t in the

pattern.  Assume a choice of alternative ct from choice set Ct  can also be represented by a

random utility model, where

U V c C t T p Pc c c t t pt t t
= + ∈ ∈ ∈ε , , , (6)

is ct’s utility with systematic component Vct
 and random component ε ct

.  In the MNL model

the conditional probability that ct will be chosen, given pattern p, is

prob c p
V

V
c C t T p Pt

t
c

t
c

c C

t t p
t

t

t t

( | )
exp( )

exp( )
, , ,= ∈ ∈ ∈

′
′∈
∑

µ

µ
, (7)

where µ t is the scale parameter.

The log of the denominator is the expected value of the maximum utility among available

alternatives for this tour, given p.  That is, it is the expected utility measure for this tour

required in the pattern utility function, (5).  Specifically,

V V E U t T p Pt t
t

c
t

c C c C
c pt

t t
t t

t
= + = ∈ ∈

∈ ∈
∑1

µ
µ γ µln exp( ) / (max ), , , (8)

where γ is Euler’s constant (~ 0.577).  The constant term γ µ/ t  can be ignored.

4.2.4 Tour model details

The choice of a tour is itself multidimensional.  We assume that decisions related to the

overall tour and its primary activity condition the decisions about secondary stops.  Tour

level decisions include departure times h from home and from the primary activity, primary

destination d and tour mode m.  Conditional secondary stop decisions include attributes of
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any secondary stops, including subtours, ds, and stops before, db, or after, da, the primary

destination.  We thus express the tour probability as

prob c p prob h m d p prob d d d h m d p

c C t T p P
t s b a

t t p

( | ) ( , , | ) ( , , | , , , ),

, , .

=
∈ ∈ ∈

(9)

4.3  Model design issues

Several model system design issues arise at those points where the demands of the modeling

problem push the limits of the chosen modeling methods, given the available data and

computational power.  They point to areas where additional research and development are

needed.  Nearly all the issues relate to the biggest modeling challenge of the day activity

schedule, the immense universal set of alternatives.

4.3.1 Conditional independence

The day activity schedule model must address the fact that a schedule can include any

number of conditional tours.  In theory, it could handle this through a conditional hierarchy

among tours, and implement a pure nested logit model with a nesting level for each tour.

However, in practice such a structure would be cumbersome, intractable, and perhaps

insufficiently supported by the data for parameter estimation.  Alternatively, the model

assumes conditional independence among tours, given the pattern, using (1), with conditional

independence among secondary tours, or (2), with conditional independence among all tours.

Similarly, the tour model system assumes conditional independence of intermediate stop

locations, given attributes of the tour and primary stop.  In such cases, it is important to

include in the marginal choice dimension the attributes of the joint decision that would be

correlated in the conditional dimension.  For instance, suppose that tours are assumed to be

conditionally independent, as in (2).  If secondary tour mode choice depends on primary tour

mode choice, then either primary tour mode choice should be modeled as an attribute of the

pattern in the marginal pattern choice model, or else the more complex model form of (1)

should be adopted, with the secondary tour modeled conditional on primary tour outcome.
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4.3.2 Additive expected maximum utility

In the two cases just noted where conditional choices are conditionally independent, the

model needs to accommodate the effect of multiple conditional choices on the marginal

choice.  It handles this via multiple expected utility measures combined additively in the

marginal choice utility functions.  In most cases this requires estimating a separate parameter

for each expected utility measure.  This serves two purposes.  First, it accommodates the

possibility of importance differences among the conditional model expected utilities.

Secondly, it accommodates the possibility of scale differences that may exist between two

expected utility measures that are used together but come from different conditional model

specifications.  For instance, the importance of expected tour utility may be different for a

secondary leisure tour than for a primary subsistence tour, and the scale of these two

measures may also be different since they come from two different tour model specifications.

It may be difficult to specify desirable interactive effects among these measures, because it

requires identifying the difference in scale of the two measures.

4.3.3 Utility correlation assumptions

Choice models with multidimensional choice sets are prone to correlation among subsets of

alternatives.  It is very likely that, although the day activity schedule specification in Section

0addresses the issue via the nesting of correlated subsets, some substantial correlations

remain that may distort the model’s predictions.

First, the day activity schedule includes many dimensions and only some of them are nested.

Of particular importance for further investigation is the form of the day activity pattern

model.  For example, it is likely that the subsistence pattern alternatives share unobserved

attributes related to the subsistence purpose.

Second, even within one dimension it is sometimes difficult to eliminate shared unobserved

attributes among subsets of alternatives.  In particular, in spatial choice dimensions,

alternatives physically near each other are likely to share unobserved  attributes affecting

utility.
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Third, in some cases simple nesting may not adequately represent the utility correlation.

Even in a simple two-dimensional model, the nested logit form requires the assumption of no

correlation among alternatives sharing the same conditional dimension outcome.  For

example, for a mode and destination choice modeled by nested logit with marginal mode

choice and conditional destination choice, the assumptions allow alternatives to share

unobserved mode attributes but do not allow them to share unobserved destination attributes.

In reality it is impossible to specify fully the attributes in either dimension, so the assumption

is always violated.  At issue is whether they can be fully enough specified in one of the

dimensions so that distortions caused by the violation are inconsequential.  If not, a more

general model form is required, such as multinomial probit that allows shared unobserved

attributes in both dimensions via a more generally specified error correlation structure.  The

issue may arise in the pattern choice , where correlations by purpose, location (home or

away) and tour structure may all be significant.

This creates a dilemma because the complexity of the decision also makes the more general

model forms intractable.  We are forced to either model simpler outcomes, such as trips,

without a behavioral basis, or to seek a nesting structure that adequately represents the

correlation among utilities.  It is theoretically possible, sometimes practically feasible, and

certainly desirable, to test the correlation conditions required by the nested logit model (Ben-

Akiva and Lerman, 1985, Chapters 7 and 10; McFadden, 1987), seeking a specification that

best satisfies them.  As computing technology continues to advance it may also become

possible to specify models that allow more general correlation structures in cases where the

nested logit assumptions are most severely violated.  Important future research agenda

include identifying these violations and developing more general models to accommodate

them.

4.3.4 Choice set generation

A weakness of all discrete choice models is their dependence on availability information that

is difficult to determine.  This is important with the day activity schedule because of the

effect of time and space constraints on alternative availability, and the difficulty of accurately

judging availability for such a complex outcome.  If availability is incorrectly judged when
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model parameters are estimated, then their estimates may be biased.  If availability is judged

the same way when the model is applied, then the parameter bias may have little effect,

provided the relation of the flawed availability judgment and the true availability process has

not significantly changed.  However, it is not desirable to rely on hope for such favorable

cancellation of error.

The problem of choice set generation is sometimes handled by probabilistic models of

alternative availability, but such models are too cumbersome for the large multidimensional

day activity schedule choice set.  Instead, it relies on deterministic availability rules.  Time

and space constraints—important elements of activity-based travel theory—can be

incorporated in the model system by explicitly evaluating alternative availability at each

conditional level of the model, taking into consideration schedule attributes determined in

marginal models that restrict conditional opportunities.  They might also be incorporated for

a particular dimension of the schedule decision by observing the distribution of outcomes in

the data sample and considering unobserved outcomes as unavailable.  The first method

suffers from imprecision because of coarse time and space resolution of the day activity

schedule.  The second method suffers from imprecision because it infers availability from a

sample.  Its policy sensitivity is limited for the same reason.  Nevertheless, careful use of

these methods can provide reasonable approximations of important constraints.

4.3.5 Lifestyle outcomes versus day activity schedule choices

Activity schedule decisions such as destination and mode often closely reflect long-term

decisions or habits.  The day activity schedule model fits within the larger decision

framework in which lifestyle and mobility outcomes can be modeled.  The question arises

whether to model these closely related long-term outcomes or to rely only on the day activity

schedule decision.  Usual workplace, usual work travel mode, usual weekly work hours, and

usual amounts of time spent in other activity purposes (i.e., activity program) are all prime

candidates for modeling the lifestyle outcome, and then using it to condition the daily

scheduling decision.
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An important benefit of modeling the long term outcomes is that the expected utility

measures used in conditional models carry this information, which is likely to substantially

influence intermediate conditional choice.  For example, activity pattern choice, which

occurs between the usual workplace choice and the daily work destination choice in the

choice hierarchy, is probably influenced by usual work location.  If usual workplace is not

modeled and work destination is only modeled in the day activity pattern, then the expected

work tour utility used to explain pattern choice treats all possible work locations equally, in

the sense that it doesn’t weigh more heavily those that match the usual work location.  One

result is that the pattern model cannot capture any tendency of people who live far from their

usual work location to more frequently work at home.  If, on the other hand, the usual

workplace is modeled, then the day activity schedule work destination choice model can

include a dummy variable for the usual work location, with a large positive parameter

because people tend to go to their usual work location.  In this case the expected tour utility

will be naturally weighted to favor patterns for which it is easy to get to the usual work

location.  Through this variable, the model can capture the tendency to work at home

associated with distance from the usual workplace.

The disadvantage of modeling closely correlated lifestyle and daily outcomes is the increased

model complexity.  This increases the cost of model development and substantially increases

operation, because each additional dimension in a fully connected nested hierarchy multiplies

operational cost by the number of alternatives in the dimension.

A compromise approach is to condition the calculation of expected utility on the conditional

choices that closely reflect longer-term decisions.  For instance, the work tour expected

utility measure used to explain pattern choice could be conditioned by work mode and

destination choice.  In this way, an approximation of the lifestyle-conditioned expected utility

would be available without the extra cost.
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The Portland Day Activity Schedule Model System

5.1  Introduction

This chapter is the first of two describing an empirical implementation for Portland, Oregon,

of the day activity schedule model presented in Chapter 4.  The empirical study has three

purposes.  First, it tests the feasibility of achieving the Table 3.1 requirements for a practical

forecasting system, without compromising the theoretical requirements.  Second, it tests the

importance of lifestyle, mobility outcomes, and activity accessibility on pattern choice.  In so

doing, it examines closely specific lifestyle and mobility effects.  Third, it tests the

importance of the integrated day activity schedule representation for travel forecasting; does

the design improve the ability to predict travel response to relevant exogenous changes?

This chapter presents model specification details, parameter estimation results and statistical

tests.  Special attention is given to the specification of the day activity pattern, including its

choice set, utility function structure and the effects of lifestyle differences on pattern

preferences.  The chapter closes with a summary of model and survey design issues related to

the empirical implementation.  It supports the empirical study’s first purpose by

demonstrating a successfully estimated model system, identifying points where the demands

of the modeling problem push the limits of the chosen modeling methods, and pointing to

areas where additional research and development are needed.  Clear statistical evidence of

the significance of lifestyle, mobility and accessibility strongly support the study’s second

purpose.

Chapter 6 provides model application results for two policy scenarios, and analyses how the

model would handle several other exogenous changes.  It supports the first purpose by
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demonstrating the system’s ability to forecast, and identifying how design compromises

impact the results.  It supports the second and third purposes by showing lifestyle variation in

pattern choice, as well as pattern and travel adjustments that trip-based and tour-based

models could not produce.

5.2  Development history

This research has been facilitated by, and interspersed with, a parallel effort to implement an

operational pilot of the model for Metro, the metropolitan planning organization serving

Portland, Oregon, and surrounding counties.  Some of the model design presented in Chapter

4 occurred in 1996 as the first phase of the pilot implementation.  The model system was then

developed for the pilot implementation during 1996 and 1997.  Subsequently, further

research effort went into the design of the upper levels of the model system, namely the day

activity pattern.  This work was expedited by the availability of tour models that had been

developed for the pilot implementation according to the earlier design work.  The model

system reported here is thus a hybrid.  The conditional tour models are components of a

production pilot system, whereas the day activity pattern is a non-production model

incorporating additional research activity.  In some cases, which we subsequently note, the

implementation of the tour models sacrifices design features for the sake of computational

performance required by the initial production implementation.  When it is important to

distinguish the model system presented in this thesis from the initial production version

implemented for Portland, we refer to the former as the demonstration system, and to the

latter as the production system.10

                                                       
10 The model parameter estimates and application software for the production system were developed

by Mark Bradley, using the system design specified by the author.  This includes the estimation
results presented in Section  5.5  and Appendix B, and the software that generated the production
system application results presented in Chapter  6.
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5.3  The Portland sample data

In 1994, a household survey was carried out in Portland and surrounding counties.

Background data was collected about the household and its members, and each member of

the household completed a two-day diary listing all on-tour activities, major at-home

activities, and all travel.  Figure 5.1 shows the form used by respondents for each activity

reported.  The survey contained roughly 5,000 households, giving more than 10,000 persons

and 20,000 person-days of travel and activities, and is the primary source of choice

information for model development.  We subsequently refer to these data as the RP data.

Stated preference (SP) experiments were also carried out in conjunction with the household

survey.  One experiment looked at mode choice, time of day choice, route choice and travel

frequency in response to changes in travel times, fuel costs, transit fares and hypothetical

tolls introduced on major roads.  It provided supplemental information for the estimation of

traveler values of time used in the analysis of the RP data.

In order to use the  survey data in model estimation, it was necessary to perform the

following steps:

1. merge corresponding household, person, activity, and location data,
2. translate the activity and travel sequences into tours and day activity patterns, as

defined for the model system,
3. draw samples of alternative locations for all destination choice dimensions and the

residential choice dimension of the model system,
4. attach zonal land use data to tour origins and alternative destinations,
5. attach zone-to-zone car and transit times, costs and distances to all possible tour

origin/destination pairs.

Of these five items, translation of the activity and travel sequences into day activity patterns

and tours is the most different from data preparation activities usually done for trip or tour-

based systems.  Respondents did not report activity priorities, upon which the model

structure depends.  Therefore, rules based on activity purpose, location and duration were

used to assign priorities to activities.  Rules were also used to translate a large number of

reported activity purposes into the three categories of subsistence (work or school),

maintenance and leisure (also referred to as discretionary), and to translate a large number of
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Figure 5.1(a) Portland activity and travel diary form, page 1
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Figure 5.1(b) Portland activity and travel diary form, page 2
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inter-modal trip sequences into a smaller set of inter-modal tour mode choice alternatives.

Appendix A provides details of how the data translation occurred.

Although over 5,000 households reported over 20,000 person days in the survey, many

responses were incomplete or otherwise not usable.  Only 17,000 home-based tours were

usable for estimation of the tour models.  The loss due to incomplete reporting was much

more severe for day activity patterns because of greater data needs in these models.  Day

activity patterns were screened from the original data set of 21,508 schedules if they occurred

on a weekend (4778); lacked information on residence zone (1884); lacked any data required

to translate the day activity schedule into the model’s schedule definition (72); lacked usual

weekly work hours if worker (6550), income (3109), or home ownership (59); or reported

work activity but no employed status (741).  The resulting pattern estimation data set

includes only 6475 patterns.  The poor screening survival rate yields a high probability of

undetected sampling bias, and deserves attention to improve the collection of key data items

in future surveys.  The greatest data losses came from the failure of households to report

income and failure of workers to report usual work hours.  The former is a well-known

problem, but the latter is new because usual work hours, which has been seldom used in the

past, is a valuable lifestyle variable in the activity pattern model11.

5.4  Day activity schedule model system

We adopt the basic structure of (2), repeated here,

prob s prob p prob c p s St
t Tp

( ) ( ) ( | ),= ∈
∈
∏ (2)

in which tours, t, are conditioned by the choice of pattern, p, and all tours except work-based

subtours are assumed to be conditionally independent, given the pattern choice.  For home-

based tours, tour timing, h, conditions the joint choice of tour mode, m,  and primary

                                                       
11 The production version of the model uses full-time and part-time work status instead of usual work

hours.  These provide less information in each observation, but in the Portland sample a far higher
percentage of respondents supplied this information.
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destination, d.  Work-based subtours, ds, are modeled conditional on the work tour, and these

condition any stops occurring before, db, or after, da, the primary activity.  db and da are

generically referred to as intermediate stops, and treated as conditionally independent.  This

generalizes the tour probability of (9) to

prob c p prob h p prob m d h p prob d m d h p

prob d d m d h p prob d d m d h p c C t T p P
t s

b s a s t t p

( | ) ( | ) ( , | , ) ( | , , , )

( | , , , , ) ( | , , , , ), , , .

=
⋅ ∈ ∈ ∈

(10)

Figure 5.2 shows the overall structure of the activity-based model system.  Lower level

choices are conditioned by decisions modeled at the higher level, and higher level decisions

are informed from the lower level through expected maximum utility variables.

Day Activity Pattern

Home based tours
times of day

Home based tours
mode and destination

work-based
subtours

Intermediate stop
locations

for car driver tours

INPUT
households
zonal data

network data

OUTPUT
OD Trip matrices

by mode, purpose, time
of day and income class

Pattern (and
associated tour)
probabilities

Expected tour time-of day
utilities

Tour time-of-day
probabilities

Expected tour mode and
destination utilities

Tour mode and
destination
probabilities

Expected subtour and
intermediate stop utilities
(not in current implementation)

Figure 5.2 Portland day activity schedule model system
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Table 5.1 shows the five main types of models included in the system, as well as the types of

variables included in each of the model types.  The variables include the lifestyle categories

discussed in Chapter 2; mobility decisions of residence location, work location and auto

ownership; attributes of the activity and travel environment including zonal attributes and

travel times and costs; and the expected utility variables from the conditional models.

Residence area land use is included in the models at the traffic zone (TAZ) level.

Destination land use variables and network times and costs for car and transit are used in the

mode and destination models and the intermediate stop location models.  These variables are

not used directly in the times of day or activity pattern models, but their influence is captured

through the “accessibility logsum” variables, which are the expected maximum utility arising

from conditional models, as already discussed.

Table 5.1 Model and variable types in the Portland day activity schedule model system

Model / Variable Types Lifestyle
variables (hh

structure, role,
capabilities,

activity
commitments)

Mobility
variables
(residence

land use, auto
ownership)

Destination
activity

conditions
(land use)

Travel
conditions
(Network

times, costs)

Conditional
model

expected
utility (i.e.,
accessibility

logsums)

Day Activity Pattern 4 4 4

Home-based Tour
Times of Day 4 4 4

Home-based Tour
Mode and Destination 4 4 4 4

Work-based Subtour
Mode and Destination 4* 4 4

Intermediate Stop Location for
Car Driver Tours 4* 4 4 4

* these are included only as aggregate categories in the current model system

As implemented in the pilot, the home-based tour predictions are aggregated into zone-to-

zone counts of half-tours for each of several income classes.  The work-based subtour and

intermediate stop models are applied to these counts, using aggregate categorical variables,

and do not supply the upper level models with measures of expected maximum utility. This

design compromise substantially reduces the time required to apply the model in a

production setting, making it feasible to apply the entire model system using 300mhz

Pentium-based microcomputers.  This compromise should be eliminated in subsequent

production implementations of the model system as advances in computing technology
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allow.  As discussed in Chapter 6, it makes the pattern model insensitive to differential

effects of travel conditions on patterns with different numbers of secondary stops.

5.5  Tour models

The tour decisions are modeled conditional on the activity pattern outcome, in the conditional

sequence identified in (10).  We present the design and estimation results, level by level,

starting with the tour time of day models and proceeding through the intermediate stop

models.

5.5.1  Home-based tour time-of-day models

Once the day activity pattern is determined in terms of the number, purpose and trip chain

type of all tours during the day, the time of day models determine the sequencing and

duration of these tours and the out-of-home activities that comprise them.  We distinguish

five different time periods:

1. Early 3:00 AM to 6:59 AM
2. AM Peak 7:00 AM to 9:29 AM
3. Midday 9:30 AM to 3:59 PM
4. PM Peak 4:00 PM to 6:59 PM
5. Late 7:00 PM to 2:59 AM

For each tour, the time of day model predicts the combination of departure time from home

and departure time from the primary activity.   There are twenty-five combinations of start

and end periods.  However, all pairs extending overnight were eliminated in application

because the number of overnight tours is insignificant, leaving the fifteen combinations

shown below.  All intermediate activities occurring within a half-tour are assigned to the

same time period.
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(1) Early—
Early

(2) Early—
AM Peak

 (3) Early—
Midday

 (4) Early—
PM Peak

 (5) Early—
Late

(6) AM Peak—
AM Peak

 (7) AM Peak—
Midday

 (8) AM Peak—
PM Peak

 (9) AM Peak—
Late

(10) Midday—
Midday

(11) Midday—
PM Peak

(12) Midday—
Late

(13) PM Peak—
PM Peak

(14) PM Peak—
Late

(15) Late—
Late

We have estimated three separate tour time of day models, one for work/school tours, a

second for maintenance tours, and a third for discretionary tours.  Various person and

household variables are used as independent variables, as well as logsums from the lower

level mode/destination choice models.  Tour purpose and tour type are also used as variables,

meaning that the time-of-day models are applied conditionally on the results of the day

activity pattern model. These models take into account whether or not there are intermediate

activities on the half-tours, whether it is a primary tour or a secondary tour, and whether or

not a work/school tour is also made during the day.  The estimation results are shown in

Table 5.2 and Table 5.3, with parameters again grouped by subset of alternatives.

Note that it was only possible to get a significant mode/destination logsum coefficient for the

work/school model.  This coefficient could be estimated only on the peak period logsums,

but in the final model this parameter was constrained to apply to all three time periods.  For

the non-work tour purposes, no significant logsum coefficients could be estimated, although

there was an indication of a result in the range 0.05 to 0.20.  Lacking stronger evidence, we

have constrained the maintenance and discretionary models to have the same logsum

coefficient as the work/school model.

Time of day is one of the most difficult aspects to include in full detail in the model system.

This is partially due to the lack of variation in network time and cost data across times of

day, but is mainly due to the fact that the number of possible combinations of activity

sequences and start and end times for all activities across the day is immense, particularly if

we wish to use short time periods such as fifteen minutes or one hour.  We have chosen an
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Table 5.2 Home-based work/school tour times of day choice model

Observations 7443 Alternative / variable Coeff. T-
Stat.

Final log(L) -12736 6- AM Peak—Late
Rho-squared (0) 0.368 Constant -2.057 -9.2
Rho-squared (c) 0.075 No intermediate stops 0.4983 2.2
Alternative / variable Coeff. T-

Stat.
Intermed. stop on way back home 1.746 7.0

Logsum variables Male, single worker 0.6793 3.1
Mode / destination choice  logsum 0.175 3.3 7- Midday—Midday

1- Early combinations Constant -1.04 -7.4
Constant- Early-Early -3.074 -17.0 No intermediate stops -0.8178 -6.6
Constant- Early-AM peak -3.17 -16.7 Part time worker 1.104 8.3
Constant- AM peak-AM peak -5.076 -11.2 1+ non-working adult in hhld 0.694 5.5

2- Early—Midday 8- Midday—PM Peak
Constant -1.496 -8.1 Constant -1.55 -10.9
No intermediate stops12 -0.2794 -3.1 Intermed. stop on way back home 1.045 7.6
Full time worker 1.407 9.2 Part time worker 0.6398 5.2
Age is under 35 -0.3322 -3.4 Male, no children are in hhld 0.8838 6.7
Male, no children in hhld 0.6681 6.5 Female, no children are in hhld 0.4365 3.2
Children over age 12 are in hhld 0.7253 5.5 Household income is under 30K 0.4485 3.8
Children under age 5 are in hhld 0.5195 3.8 9 – Midday—Late

3- Early—PM Peak  or Late Constant -1.823 -9.5
Constant- Early – PM peak -3.026 -11.5 No intermediate stops 0.7554 4.4
Constant- Early – Late -5.456 -18.1 Intermed. stop on way back home 1.522 7.5
Intermed. stop on way back home 0.6805 4.9 Age is under 25 1.244 10.5
Full time worker 2.275 9.0 Male, no children are in hhld 0.4102 3.7
Male 0.612 5.6 Household income is under 30K 0.4679 4.0

4- AM Peak—Midday Household income is over 60K -0.593 -3.7
Constant 0.05433 0.6 10 – Late combinations
Intermed. stop on way from home 0.8926 13.3 Constant – PM peak – PM peak -4.686 -16.1
Age under 20 1.334 11.8 Constant – PM peak – Late -2.886 -13.7
Male, children over 12 are in hhld 0.4845 4.2 Constant – Late – Late -3.674 -15.9
Female, children are in household 0.4864 6.2 No intermediate stops 0.6219 3.4

5- AM Peak—PM Peak Part time worker 0.628 3.8
Intermed. stop on way back home 0.6956 8.4 Age is under 25 0.7022 3.9
Full time worker 1.357 17.0 Male, no children are in hhld 0.5364 3.4
Household income is over 60K 0.2442 4.2 Female, children under 5 are in

hhld
1.202 5.0

Female 0.1455 2.5

approach that distinguishes the major time periods in the day. There is still a great deal of

room for improving this aspect of the model.

                                                       
12 This variable is a dummy variable; it takes the value 1 if the tour has no intermediate stops, and 0

otherwise.  Throughout this document, dummy variables are not explicitly denoted as such.  Instead,
the variable description is worded to avoid confusion as to whether the variable is a dummy or can
take on values other than 0 or 1.  That is, the description of a dummy variable describes the
conditions under which it takes the value 1, and the description of a regular variable describes the
variable itself.
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Table 5.3 Home-based non-work tour times of day choice models

Maintenance Discretionary

Observations 5876 3513

Final log(L) -9228.7 -5787.4
Rho-squared (0) 0.42 0.392

Rho-squared (c) 0.126 0.117

Alternative group Alternative / variable Coeff. T-Stat. Coeff. T-Stat.
Logsum variables Mode / destination choice  logsum 0.175 constr. 0.175 constr.
1- Early combinations Constant- Early-Early -6.026 -19.7 -4.7 -11.9

Constant- Early-AM peak -6.373 -19.8 -3.321 -13.3

Constant- AM peak-AM peak -3.851 -14.3 -2.971 -12.6

Secondary tour 1.459 10.1

No intermediate stops 1.31 5.2

Intermediate stop on way from home 1.183 4.1

Subsistence tour made during the day -2.115 -10.3 -1.115 -2.8

Full time worker 0.5257 4.4 0.5396 1.8

Age is over 65 0.7721 2.9

2- Early or AM peak—Midday Constant- Early-Midday -5.319 -14.4 -3.046 -9.5

Constant- AM peak-Midday -1.268 -11.0 0.004247 0.0

Secondary tour -0.8329 -6.6

No intermediate stops -0.4637 -3.7 -1.079 -6.1

Intermediate stops, both directions 1.314 8.3 0.8681 3.3

Household income is under 15K 0.5662 3.4

Age is over 65 0.7228 5.4 0.2733 1.8

Subsistence tour made during the day -2.354 -6.3

3- Early or AM Peak—
PM Peak or Late

Constant - Early-PM peak -4.527 -14.0 -4.078 -6.5

Constant- Early-Late -5.49 -10.9 -3.294 -7.4

Constant- AM peak-PM peak -3.544 -16.5 -1.29 -4.6

Constant- AM peak-Late -4.811 -12.5 -2.627 -7.0

Secondary tour -3.11 -5.2 -3.031 -5.8

No intermediate stops -0.867 -2.8
Intermediate stops, both directions 1.129 2.6

4- Midday—Midday Secondary tour 0.3142 2.6

Intermediate stop on way from home 0.7611 8.7 0.7641 5.2

Age is over 65 0.5536 6.2 0.3545 3.3

No children are in household 0.358 5.4

Subsistence tour made during the day -1.38 -11.1 -1.681 -9.2

5- Midday—PM peak Constant -0.5367 -5.2 -0.483 -2.6

No intermediate stops -0.4483 -4.3 -0.6384 -3.5

Secondary tour -0.4893 -4.6

Children under age 12 are in hhld -0.4783 -4.6

Intermediate stops, both directions 0.7021 4.5 0.8306 2.8

Age is under 20 0.8789 3.9

6- Midday—Late Constant -3.174 -15.6 -0.8297 -3.7

No intermediate stops -1.332 -4.1 -1.393 -5.5

Secondary tour -0.8405 -3.2
Age is under 20 1.312 3.6

5.5.2 Home-based tour primary destination and mode choice models

Once the day activity pattern is determined in terms of number, purpose, hierarchy, trip chain

type, and times of day of each tour, the model system predicts the primary mode and
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Table 5.3 Home-based non-work tour times of day choice models (continued)

Maintenance Discretionary

Alternative group Alternative / variable Coeff. T-Stat. Coeff. T-Stat.
7- PM peak—PM peak Constant -2.597 -15.3 -2.057 -10.9

Secondary tour 1.041 8.6 1.404 6.7

No intermediate stops 0.6305 4.2

Full time worker 0.4076 4.3

Subsistence tour made during the day 0.2062 1.6

Intermediate stop on way from home 0.7849 4.5

8- PM peak—Late Constant -2.641 -24.4 -0.8091 -7.0

Intermediate stop on way back home 0.583 5.0 0.862 5.8
Full time worker 0.6669 5.9 0.3426 3.5

Subsistence tour made during the day 1.644 11.4 0.483 3.8

Secondary tour 1.215 9.2

9- Late—Late Constant -2.839 -19.7 -2.664 -10.6

Secondary tour 0.8704 5.5 2.034 9.5

Full time worker 0.732 6.6 0.3746 3.0

Age is under 35 0.3291 3.3 0.4955 4.9

Subsistence tour made during the day 0.7225 4.9 0.5486 3.8

No intermediate stops 0.397 2.3

Children under age 12 are in hhld -0.5221 -4.1

2+ adults, 1+ non-worker in hhld 0.3132 2.6

destination for each tour. It predicts the probability that each zone will be the primary tour

destination, and that each of nine possible modes will be the main mode of the tour.  The nine

possible main modes are:

1. Auto drive alone
2. Auto drive with passenger
3. Auto passenger
4. MAX (light rail) with auto access
5. MAX (light rail) with walk access
6. Bus with auto access
7. Bus with walk access
8. Bicycle
9. Walk only

In reality, separate trips on the same tour can use different modes.  This occurs in about 3%

of cases in the Portland survey data, with the most common combination being auto drive

alone in one direction and drive with passenger in the other direction.  To include these cases

in model estimation, a set of rules was used to translate all possible mode combinations into

the nine modeled modes.  Although it has not been done here, the most important mode

combinations could be explicitly modeled in the mode choice alternatives.
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For destination choice, alternative sampling procedures are used in parameter estimation and

model application, using a sample of 21 alternatives from the full set of 1244 zones. Sampled

alternatives are weighted according to their sampling probability to achieve consistent

estimates, while keeping the number of choice alternatives manageable for model estimation

and application (see Ben-Akiva and Lerman, 1985).

The mode/destination models use household and person data as well as network distance,

time and cost data.  In the course of testing, it was found that the RP data would not support

estimation of reasonable coefficients for both the time and cost variables for any of the tour

purposes.  This is probably due to the fact that both parking costs and traffic congestion are

fairly low in Portland (at least at the level of definition in the data), meaning that both car

costs and car travel times are strongly related to distance and thus highly correlated with each

other.  Another possible explanation is that transit usage is very low in Portland, and those

who do use transit may be basing their choice on factors other than travel time and cost.

For these reasons, the values of travel time are constrained to be equal to those estimated

from the concurrent stated preference survey.  Another attractive feature of the SP data is that

it looked directly at reactions to congestion pricing--an important policy measure to be

analyzed with the model and that does not exist in Portland presently.  The SP-based values

of time were estimated separately for home-work trips and home-other trips, and were

estimated for three different income classes.  The values are shown in Table 5.4.  The

variation is greater between income classes than it is between purposes, particularly for the

work trips.

The SP-based values of time were used to calculate “generalized time” for the car and transit

modes (the total time and cost utility divided by the car drive alone time coefficient), which

is used as a variable in the mode/destination choice models shown below in Table 5.5.  In

other words, the values of time are used to translate all time and cost data into equivalent

drive alone minutes.  In each of the mode/destination models, a utility function was estimated

that contains linear, quadratic and cubic terms for this generalized time.  The results are

highly significant, with the same general shape in all the models.  The function is slightly S-

shaped, with disutility rising sharply at first, then leveling off a bit, and then rising more
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sharply again at very high travel times (Figure 5.3).  When the model is applied to the

estimation data set, this function gives a reasonable match to the actual distribution of tour

distances in the data for all modes.

Table 5.4 Values of time estimated from stated preference data

Home  to Work Travel Home to Other Travel

Annual Household Income Annual Household Income

Type of travel time Less than
$30,000

$30,000-
60,000

More than
$60,000

Less than
$30,000

$30,000-
60,000

More than
$60,000

Drive alone In-vehicle          8.9        12.3        17.7        12.2        12.2        23.7

Drive w/pass. In-vehicle          9.4        13.1        18.8          7.9          7.9        15.3

Transit In-vehicle          5.8          8.1        11.6          1.6          1.6          3.1

Transit Walk        21.5        29.7        42.8        29.4        29.4        56.9

Transit Headway*          4.9          6.8          9.8          9.8          9.8        19.0

Transit Boardings**        39.0        53.9        77.8        75.0        75.0      145.2

All values are in cents per minute, except for Transit Boardings, which is cents per boarding.
*Used to estimate wait time:  estimated wait time equals headway/2.
**Equivalent to number of transfers plus one.

The other mode-specific variables in the models are mostly related to age, gender and

household type.  The car availability variables are very strong, particularly for the car driver

and transit alternatives.
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Figure 5.3 Estimated disutility of generalized time in the tour models
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Table 5.5 Home-based tour mode/destination choice models

Work/School Maintenance Discretionary
Observations 7353 5852 3488

Final log(L) -23455.8 -20186 -13660.5
Rho-squared (0) 0.335 0.284 0.188

Alternative / variable Coefficient T-st. Coefficient T-st. Coefficient T-st.

Car and transit modes
SP-based generalized time (min) -0.06668 -23.2 -0.1763 -36.7 -0.1262 -21.2

SP-based generalized time squared 3.52E-04 8.3 0.001514 14.7 7.70E-04 6.9
SP-based generalized time cubed -1.10E-06 -6.3 -5.59E-06 -9.3 -2.03E-06 -3.6

Drive alone
Car competition in hhld* -1.981 -19.5 -0.8392 -9.5 -1.163 -7.5

Age is under 20 -1.292 -9.7 -0.4316 -2.1 -0.5352 -3.1

Age is over 45 0.2951 3.9 0.2722 3.6

Age is over 65 -0.3434 -3.7

Income is over 45K 0.2389 3.8

Children under age 5 are in hhld 0.2937 2.7 -0.357 -3.0
Female in 2+ adult HH with 1+ non-worker -0.4483 -3.6

2+ adults in household, all workers 0.1852 2.3 -0.2505 -2.6

No intermediate stops -0.6925 -9.3 0.1852 2.3

Secondary tour 0.3176 4.0 -0.3256 -3.1

Leave home before AM peak -0.265 -2.1 1.115 3.5 0.8652 2.5

Leave home during AM peak -0.1664 -1.9 0.5792 6.2 0.5061 3.8

Drive with passenger
Constant -3.334 -16.4 -1.593 -11.6 -1.512 -9.4

Log of distance (miles) -0.4338 -10.6 -0.3063 -10.8 -0.4475 -12.1

Car competition in hhld* -0.9051 -5.1 -0.5058 -5.1 -0.9564 -5.9

Age is under 25 -0.3338 -1.8 -0.7288 -4.0 -1.204 -7.2

Male 0.651 4.6 0.4878 4.0

Children are in household 0.406 4.3

Female, children under 5 are in hhld 1.317 6.1 1.388 10.2 1.391 8.5

Female, children 5 to 11 are in hhld 0.6648 5.7 0.8226 5.3

Male in 2+ adult HH with 1+ non-worker -1.026 -4.3 0.5894 6.6 0.3886 2.9

Single adult, no children in hhld -1.814 -4.9 -1.596 -8.4 -1.591 -8.7

Intermediate stop on way from home 1.014 7.5 0.1306 1.5 0.3891 3.1

Intermediate stop on way back home 0.8121 5.6 0.2859 3.2 0.2749 2.0

Leave home in PM peak or later 0.6638 8.2 0.7675 7.6

Car passenger
Constant -2.671 -15.5 -2.41 -16.3 -2.017 -11.2

Car competition in hhld* -0.5533 -3.4
Age is under 25 0.6181 4.7 0.744 4.6

Female 0.3747 3.5 0.7871 8.4 1.142 11.2

2+ adults, 1+ non-worker, no children 0.553 5.4 0.3525 3.2

Single adult -0.9054 -4.9 -1.197 -7.5 -1.113 -7.3

Secondary tour -0.5366 -4.9 -0.7501 -5.8

Leave home before AM peak -0.558 -3.0 0.8411 2.0 1.201 2.8

Return home after PM peak -0.6223 -3.4 0.6168 4.6 0.6849 4.5

Leave home in PM peak or later 0.6518 4.9 0.669 3.9

Transit with walk access
Constant -4.536 -7.3 -4.541 -3.8 -2.416 -1.7

MAX LRT constant -0.319 -2.1 -1.712 -2.3 -0.5283 -1.2

No car in household 1.045 5.9 2.178 6.5 1.917 4.8

Car competition in hhld* 0.8529 2.3 0.8264 2.2

Secondary tour -0.5801 -2.0 -1.611 -5.1

Hhld within 1/4 mi. of transit, origin zone 1.73 6.4 4.561 3.8 0.5758 0.9

Empl. within 1/4 mi. of transit, dest. zone 1.875 3.2 1.62 1.2
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Table 5.5 Home-based tour mode/destination choice models (continued)

Work/School Maintenance Discretionary
Alternative / variable Coefficient T-st. Coefficient T-st. Coefficient T-st.

Park and ride
Constant -4.553 -3.8 -1.169 -2.9 -1.418 -2.7

MAX LRT constant -0.319 -2.1 -1.712 -2.3 -0.5283 -1.2

Car competition in hhld* -0.8869 -3.5

Secondary tour -1.979 -1.8 -2.069 -3.4

Return home after PM peak -2.353 -3.3

Mixed use within half mile of dest. zone 3.14E-04 4.8 4.19E-04 1.9

Empl. within 1/4 mi. of transit, dest. zone 2.223 1.8

Bicycle
Constant -3.24 -10.2 -3.772 -10.0 -3.184 -9.3

Travel time (min) -0.09731 -6.2 -0.1107 -8.0 -0.0925 -7.6

Travel time squared 4.88E-04 2.2

Travel time cubed -9.95E-07 -1.3

Female -0.9397 -4.0 -0.5491 -1.7 -0.7731 -2.1

Mixed use within half mile of origin zone 5.19E-04 3.4

Mixed use within half mile of dest. zone 2.12E-04 2.7

Walk only
Constant -1.496 -7.0 -2.828 -11.2 -1.94 -7.0

Travel time (min) -0.0422 -19.9 -0.04804 -18.1 -0.03695 -18.0

Age is under 20 0.7079 3.3

Age is under 35 0.4211 2.8

Female, children under 5 are in hhld 1.224 5.5 0.614 2.3

Female, children 5 to 11 are in hhld 1.177 6.2

No intermediate stops 1.502 8.0 1.239 5.5

Secondary tour 0.3535 2.2

Mixed use within half mile of origin zone 6.06E-04 8.0

Mixed use within half mile of dest zone 2.78E-04 5.0

Destination is in origin zone 0.4912 2.5 1.128 7.1 1.714 10.0

Destination land use
Destination is in origin zone 0.3622 3.4 0.2781 3.9 0.3104 3.0

Number households within half-mile radius 3.34E-04 11.4 3.33E-04 8.5
Mixed use within half-mile radius -0.00102 -14.1 -7.60E-04 -8.1

Employment within half-mile radius 3.55E-05 18.0 3.78E-05 9.2

Retail employment within half-mile radius -1.91E-04 -10.0 1.63E-04 8.0 -1.97E-04 -5.7

Fraction of land used for recreation 1.161 7.6 2.026 9.1

Log of relevant size variable** 1.0 constr 1.0 constr 1.0 constr

*  Car competition  means  <1 vehicle per worker for work/school, <1 vehicle per adult for other purposes.
** Size variables are  total employment for work/school tours, retail + service employment for maintenance tours and retail
+ service employment + households for discretionary tours.

5.5.3 Work-based subtour and intermediate stop models

We did not estimate models to predict work-based subtour time of day, but instead apply

fixed fractions based on the shares observed in the survey data.  As one would expect, the

time of day fractions are strongly correlated with the times of day the work tour begins and

ends.

This still leaves us to predict the mode and destination of the work-based subtours.  The

mode-destination choice model is very similar to the models for home-based tours described

above, except now the choices are strongly dependent on the mode used to go between home
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and work.  In particular, the mode to work determines whether or not a car is available for

any work-based tours made during the day, and each mode alternative includes a dummy

variable with an estimated coefficient that increases its utility if the mode was used to get

from home to work.  Estimation results are shown in Table 5.6.

Table 5.6 Work-based tour mode/destination choice model

Work-Based Tours
Observations 1331
Final log(L) -4270.1
Rho-squared (0) 0.328
Alternative / variable Coeff. T-stat.
Car and transit modes
SP-based generalized time (min) -0.1234 -18.7
SP-based generalized time squared 6.23E-04 5.9
SP-based generalized time cubed -1.01E-06 -2.7
Drive alone
Household income is over 60K -0.4665 -3.1
Leave work in AM peak 1.005 2.6
Leave work in PM peak or later 0.7945 1.8
Drive with passenger
Constant -2.062 -11.1
Drive with passenger to work 1.089 3.1
Log of distance (miles) -0.2479 -3.1
Car passenger
Constant -2.539 -13.2
Car passenger to work 1.861 4.6
Transit
Constant -walk access -1.565 -4.0
Constant- park and ride -3.583 -3.4
Constant - MAX LRT 0.4805 0.6
Transit to work 0.5864 1.1
Bicycle
Constant -5.461 -6.6
Bicycle to work 3.426 4.8
Travel time (min) -0.1015 -3.1
Mixed use in half-mile radius 4.83E-04 1.8
Walk only
Constant 0.6105 2.0
Walk only to work 1.227 2.4
Travel time (min) -0.1064 -7.9
Travel time squared 4.50E-04 2.8
Travel time cubed -4.93E-07 -1.0
Mixed use in half-mile radius 4.73E-04 6.5
Destination is origin zone 0.4369 2.9
Destination land use
Households in half-mile radius 3.12E-04 5.1
Mixed use in half-mile radius -0.001042 -7.6
Employment in half-mile radius 1.84E-05 4.9
Log of retail + service employment 1.0 constr
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The final models in the tour model subsystem determine the locations for intermediate

activities.  The structure, sampling procedure and model specification are analogous to those

of the mode/destination models described above, with a few important differences.  First, the

model is conditioned by all other tour and work subtour decisions, and takes the tour mode as

given for the intermediate stop.  Second, the travel costs, times and distances used in the

utility functions and for sampling of alternatives include only the extra amount required to

make the stop relative to making no intermediate stop.

This model was estimated only for auto driver tours, and uses only mode (drive alone vs.

drive with passenger), time of day, income class, tour origin and tour destination as variables,

the only variables available in application because of the aggregate application procedure.

Estimation results are presented in Table 5.7.  Graphs of the disutility of generalized travel

time for work-based subtours and intermediate stops are shown in Figure 5.4.

Table 5.7 Intermediate activity location choice models for car driver tours

Work/Sch.  Tours Other Tours
Observations 3016 2630
Final log(L) -8602.6 -6966.1
Rho-squared (0) 0.077 0.143
Alternative / Variable Coeff. T-stat. Coeff. T-stat.
Car driver modes
SP-based generalized time (min) -0.1387 -16.8 -0.2405 -24.8
SP-based generalized time squared 6.03E-04 4.0 0.002298 9.8
SP-based generalized time cubed -8.38E-07 -1.0 -9.21E-06 -5.8
Specific locations
tour origin zone 1.084 7.0 0.6321 4.3
tour origin zone * drive w/pass 1.051 4.8
tour origin zone * AM peak 1.196 5.0
tour origin zone * PM peak 0.4804 2.1 -0.4251 -1.5
tour destination zone 0.329 2.3 -0.05166 -0.4
tour dest zone * drive w/pass 0.4438 2.2
tour dest zone * midday 0.678 3.9
tour dest zone * from home 0.784 4.5
Location land use
Mixed use in half-mile radius -2.19E-04 -7.3 -2.52E-04 -6.5
Log of retail + service employment 1.0 constr. 1.0 constr.
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Figure 5.4 Estimated disutility of generalized time in subtours and intermediate stops

5.6  Day activity pattern model

In this section we examine the details of the day activity pattern model specification.  We

start by defining the pattern choice set and the structure of the pattern utility function.  Then,

taking the pattern utility function, component by component, we discuss expectations and

results of parameter estimation.  Finally, we present a summary of the specification and the

results of specification tests.

5.6.1 Pattern model choice set

As mentioned in the model system overview, the day activity pattern represents the basic

decisions of activity participation and priorities, and places each activity in a configuration of

tours and at-home episodes.  The definition of the pattern alternatives determines the choice

set, and significantly affects how well the model satisfies the stated requirements of adequate

scope and detail.  We first present the pattern definition, and then evaluate it in terms of

scope and detail.
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5.6.1.1  Pattern definition

The pattern choice set includes 570 alternatives, each defined by (a) the primary activity of

the day, (b) whether the primary activity occurs at home or away, (c) the type of tour for the

primary activity, including the participation and purpose of any intermediate stops before or

after the primary stop and, for subsistence patterns, the participation and purpose of a work-

based subtour, (d) the number and purpose of secondary tours, and (e) whether at-home

maintenance activities are conducted.

Table 5.8 lists these dimensions of the choice set and, for each dimension, how the space is

partitioned into alternatives.

Table 5.8 Day activity pattern choice dimensions and choice set for each dimension

Day activity pattern dimension Choice set within dimension
Primary activity

purpose subsistence, maintenance, leisure
location at-home, on-tour

Primary tour structure
intermediate stop(s) before primary destination none, maintenance, leisure
subtour (subsistence patterns only) none, maintenance, leisure
intermediate stop(s) after primary destination none, maintenance, leisure

Secondary tours, number and purpose none, 1 maintenance, 1 leisure, 2+ maintenance,
2+ leisure, 2+ mixed (1+ maintenance & 1+ leisure)

At-home maintenance activity participation yes, no

To provide a sense of the distribution of pattern choice among the members of the sample

used for parameter estimation, Table 5.9 through Table 5.11 provide distributions among

certain dimensions and combinations of dimensions.

5.6.1.2  Scope

To satisfy the scope requirement, every possible pattern of activity spanning a 24-hour day

must fit into exactly one pattern alternative in the choice set.  Stated this way, the scope

requirement is easy to satisfy by defining alternatives in aggregate categories that span the

space of the choice set.  For purposes of model estimation, the attributes used to define the

categories must be present in the data set, or else adequate rules must exist for translating

reported attributes into modeled attributes.  As noted in Section 5.3 , the choice set requires
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Table 5.9 Sample pattern distribution by primary activity, at-home vs on-tour and primary tour type

Pattern description Percent in sample
Subsistence at home 2.6
Maintenance at home 7.7
Leisure at home 5.3
Subsistence on tour

without a work-based subtour
no extra stops 29.0
stop before 3.9
stop after 9.3
stop before and after 3.0

with a work-based subtour
no extra stops 5.0
stop before .6
stop after 2.2
stop before and after 0.7

Maintenance on tour
no extra stops 10.6
stop before 3.7
stop after 4.4
stop before and after 2.4

Leisure on tour
no extra stops 6.8
stop before 1.0
stop after 1.2
stop before and after 0.6

Table 5.10 Sample pattern distribution by primary activity and at-home maintenance participation

Pattern description Percent in sample
Subsistence at home

without at-home maintenance 1.7
with at-home maintenance .9

Maintenance at home 7.7
Leisure at home

without at-home maintenance 3.8
with at-home maintenance 1.5

Subsistence on tour
without at-home maintenance 39.2
with at-home maintenance 14.4

Maintenance on tour
without at-home maintenance 6.8
with at-home maintenance 14.4

Leisure on tour
without at-home maintenance 4.0
with at-home maintenance 5.7

All primary activity types
without at-home maintenance 55.5
with at-home maintenance 44.5



The Portland Day Activity Schedule Model System 99

Table 5.11 Sample pattern distribution by primary activity and number & purpose of secondary tours

Pattern description Percent in sample
Subsistence at home

0 secondary tours 0.6
1 secondary maintenance tour 0.7
1 secondary leisure tour 0.4
2+ secondary maintenance tours 0.3
2+ secondary leisure tours 0.1
1+ secondary maintenance and 1+ secondary leisure tours 0.6

Maintenance at home
0 secondary tours 6.2
1 secondary maintenance tour 0.9
1 secondary leisure tour 0.4
2+ secondary maintenance tours 0.1
2+ secondary leisure tours 0.0
1+ secondary maintenance and 1+ secondary leisure tours 0.0

Leisure at home
0 secondary tours 4.8
1 secondary maintenance tour 0.4
1 secondary leisure tour 0.1
2+ secondary maintenance tours 0.0
2+ secondary leisure tours 0.0
1+ secondary maintenance and 1+ secondary leisure tours 0.0

Subsistence on tour
0 secondary tours 37.3
1 secondary maintenance tour 7.8
1 secondary leisure tour 0.8
2+ secondary maintenance tours 6.8
2+ secondary leisure tours 0.2
1+ secondary maintenance and 1+ secondary leisure tours 0.7

Maintenance on tour
0 secondary tours 10.4
1 secondary maintenance tour 3.4
1 secondary leisure tour 1.2
2+ secondary maintenance tours 3.7
2+ secondary leisure tours 0.7
1+ secondary maintenance and 1+ secondary leisure tours 1.8

Leisure on tour
0 secondary tours 6.5
1 secondary maintenance tour 1.0
1 secondary leisure tour 0.2
2+ secondary maintenance tours 1.4
2+ secondary leisure tours 0.2
1+ secondary maintenance and 1+ secondary leisure tours 0.3

All primary activity types
0 secondary tours 65.7
1 secondary maintenance tour 14.2
1 secondary leisure tour 3.0
2+ secondary maintenance tours 12.3
2+ secondary leisure tours 1.2
1+ secondary maintenance and 1+ secondary leisure tours 3.5
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identification of activity priorities, which were inferred because Portland survey respondents

did not identify priorities explicitly.

5.6.1.3  Detail

Activity participation.  To satisfy the detail requirement, each pattern in the choice set

should account for all activity participation in the day.  If the model doesn’t account for all

activity participation, then it will be unable to capture changes induced by conditions that

affect unmodeled activity utility, and unable to distinguish changes in overall activity

participation from shifts between modeled and unmodeled activity participation.  For

instance, suppose the activity pattern model does not explicitly identify participation in at-

home activities.  Suppose also that technology and policy changes make it easier to work at

home, and therefore at-home work participation replaces some on-tour work activities, and

the overall participation in work increases.  If the cause comes only from the ease of at-home

work participation, then the model will completely miss the effect.  If, on the other hand, it

becomes more difficult to work on-tour, the model will confound shifts to at-home

participation with (a) drops in work participation and (b) shifts toward on-tour work patterns

that gain advantage as a result of the change.

In the Portland survey, although data was collected on at-home activity participation, it

excluded at-home activities requiring less than a half-hour.  The resulting data set had a great

amount of variation in the total amount of reported activity time, and no information on how

the unreported time was spent.  The variation was so great that we suspect serious under-

reporting of at-home activity.  Although our aim in specifying an activity pattern is to include

all activities in the day, this lack of full data requires a compromise and some assumptions in

interpreting the data.  We have assumed that if an at-home leisure activity was indeed

primary, then it was explicitly reported.  We have also assumed that if an at-home

maintenance activity exceeding 30 minutes was conducted, then it was accurately reported.

The model explicitly represents primary subsistence, maintenance and leisure activity on-tour

and at-home; secondary maintenance (including subsistence) and leisure activities occurring

on tour; and the presence or absence of at least one at-home maintenance activity of 30 or

more minutes in duration.  The utility of all primary activities is measured against the base
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case of the explicitly modeled at-home leisure primary activity.  The utility of all explicitly

modeled secondary activities is measured against the implicit alternative of spending more

time at home in leisure and short duration maintenance or subsistence activities.  In the

sample this implicit at-home alternative includes all unreported time in the day.

In summary, the model explicitly represents all on-tour and at-home activity participation in

each of the three purpose categories, except for at-home leisure activity, which is accounted

for implicitly as the base case in utility comparisons.

Tour sequences.  To satisfy the detail requirement, the pattern should locate each on-tour

activity in sequence on a particular tour.  This is needed to capture inter-tour trade-offs

people make in their schedules; that is, whether to combine activities in chains on one tour,

or conduct separate tours.  On this count, the Portland pattern definition has three

weaknesses.  First, it accommodates trip chaining explicitly only on the primary tour.

Second, on the primary tour it identifies three principal positions for secondary stops on the

tour relative to the primary activity—before, after, or on a subtour—but does not explicitly

account for multiple secondary stops at any one of the positions, which occurs on nearly 14

per cent of the patterns.  Third, the pattern model only explicitly models up to 2 secondary

tours, but over 1 per cent of the patterns have 3 or more secondary tours.  The model

preserves its complete scope by aggregating alternatives, but this prevents it from capturing

trade-offs between pattern types within an aggregate category.  Despite these weaknesses, the

model is still able to represent explicitly most inter-tour trade-offs.  In all cases unmodeled

pattern detail can be accounted for in application—without policy sensitivity—through the

use of proportions observed in the estimation sample among patterns that have been

aggregated into a single pattern alternative.

Activity purpose.  Purpose is important because accessibility and its importance to the

person both depend on purpose.  If purpose is defined coarsely, then important purpose-

specific accessibility information is lost;  the model will be insensitive to policy or external

changes that affect accessibility differently for different purposes.  The distinction between

work and other purposes is extremely important.  The distinction between leisure and

maintenance is also important because of differences in accessibility and its importance.
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Within these two categories, more detail would also be valuable.  Purposes with distinctly

different accessibility profiles—that is, a different temporal-spatial distribution of activity

opportunities—include shopping, acquiring services, serving the household at home, eating,

social or recreational activity at a residence, and social or recreational activity at a non-

residential location.  Thus, the pattern choice set definition includes essentials of purpose

detail, but lacks additional detail that might substantially improve the information in the

model.

Other tour conditioning.  An additional requirement for detail depends on the structure

assumed for the conditional tour models.  If, as in this case, the equation (2) form of the

schedule model is used, with primary and secondary tours assumed to be conditionally

independent, then some correlated attributes of the tours should be considered as part of the

pattern.  An important example is tour timing, which is interdependent among tours since it is

impossible to conduct two tours at the same time.  The timing of secondary tours relative to

the primary tour may be of most importance.  Therefore, either primary tour timing should be

included as a pattern attribute or else the equation (1) form of the schedule model should be

adopted, with secondary tours conditioned by primary tour outcomes, including timing.

Additional correlations may occur in mode and destination choice between primary and

secondary tours, making the equation (1) model form preferable unless primary tour mode

and destination are modeled as attributes of the pattern.  In summary, given the conditional

independence assumption of the Portland model, the pattern definition lacks important

primary tour attributes.  However, it is probably preferable to revise the structure, modeling

secondary tours conditional on primary tour outcomes, as in (1).

5.6.2 Pattern model utility functions—components and variables

We turn attention to the pattern utility function, which must be specified for each alternative

in the pattern choice set.  We specified its form in (5), identifying a component Va for each

activity a, a component 
~

Vp  for the overall pattern p, representing the effect of time and

energy limitations and activity synergy, and a component Vt  for the expected utility of each
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tour t, given pattern p.  Since Vt  depends entirely on the tour utility function definitions, we

deal here only with the activity and pattern components.

The Va components have estimated parameters distinguished by activity priority, purpose and

whether the activity occurs at home or on tour.  Thus, for example, a set of distinct

parameters exists for primary work activities occurring on tour, included in the utility

function of each pattern alternative for which work on tour is the primary activity.  As

another example, a set of parameters for secondary maintenance activities on tour is included

once per on-tour secondary maintenance activity present in each pattern alternative.

The utility functions include parameters for three main types of pattern components 
~

Vp .  One

type identifies utility associated with the placement of secondary activities in the pattern,

differentiating utility of secondary activities that share a common purpose but occur at

different places in the pattern or in different pattern types.  The second type identifies utility

of particular combinations of two or more secondary activities on primary tours.  The third

type identifies utility (or more accurately, disutility) associated with particular pattern-wide

combinations of activities, taking into consideration multiple primary tour activities, multiple

tours and at-home maintenance participation.

Va and 
~

Vp depend on attributes of p that vary with the person.  They also depend on lifestyle

and mobility characteristics, including vectors for household structure; role in household;

financial and personal capabilities; activity commitments, priorities and habits; and a

mobility vector for characteristics such as residential location, workplace, and auto

ownership.  The lifestyle vectors match the lifestyle categories and variables defined and

defended in Chapter 2 as being important in the scheduling decision.

For each lifestyle category, we examined the data available in the Portland data set and

identified available variables that might capture important lifestyle effects.  Using these

variables we conducted exploratory analysis with the Portland pattern choice data set, using

simple logit models for single dimensions of the pattern choice, to identify which variables

might have the most important effects, and in which dimensions.  Based on this analysis we
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selected a set of lifestyle variables, shown in Table 5.12, for the pattern utility function

specification.

Table 5.12 Lifestyle and mobility variables in the Portland day activity pattern utility functions

Lifestyle Category Variable Category Variable Definition
Household structure family vs nonfamily family:  At least one member of the household is related

to the household’s responding representative by blood or
marriage

2+ adults the household has 2 or more members 18 or older
nonfamily with 2+ adults

Disabled members the number or presence of persons in the household with
a disability that makes it difficult to travel outside the
home without assistance.

Role in household adult child a person 18 years or older who is the child of the
household’s responding representative

gender female  (or male)
gender (with household
interactions)

female (or male) with children 0-4

female (or male) with children 0-12
female (or male) in family with children 0-12 or disabled
household members
number of children 0-17 plus # disabled, for female (or
male)
male or female in family with 2+ adults

relative workload person’s usual work hours minus (household’s total usual
weekly work hours)/(number of household members 18
through 64 )

Capabilities per capita income household annual income divided by household size
per capita income, for full-time worker (or other)

disabled person has a disability that makes it difficult to travel
outside the home without assistance.

occupation professional  (or nonprofessional)
age

Activity
commitments and
priorities

household workforce
participation rate

proportion of household’s adults 18-64 who are employed
or students

employment status full-time worker
student status full-time student
usual weekly work hours the number of hours per week the person reports or is

exogenously predicted to usually work
housing tenure principal residence is owned (or rented)

Mobility 1+ vehicles in household household has 1 or more vehicles
1+ vehicles per adult household has 1 or more vehicles per person 18 or older

Table 5.13 provides summary statistics identifying the distribution of these variable values

among the activity patterns in the estimation data set.
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Table 5.13 Distribution of the sample patterns, classified by variables in the model

Category Variable name and description
Percent of
patterns

household structure family with 1 adult 3.0
family with 2+ adults 73.4
nonfamily with 1 adult 19.4
nonfamily with 2 adults 4.2
household with disabled members 8.1

role in household male 47.6
adult child 6.2
male with children 0-4 4.7
female with children 0-4 5.6
male with children 0-12 10.2
female with children 0-12 11.5
male with children 0-17 14.9
female with children 0-17 16.7
male in family with 2+ adults 36.0
female in family with 2+ adults 37.4
relative workload (usual weekly
work hours minus household avg.)

less than –40 2.5
between –40 and –20 8.8
between –20 and 0 14.5
0 53.5
between 0 and 10 8.0
between 10 an 20 6.1
over 20 6.6

capabilities per capita income
under $10,000 21.6
10,000 to 20,000 34.8
20,000 to 30,000 25.4
over 30,000 18.3

disabled 4.6
professional 31.5

activity commitments and priorities workforce participation (# workers
divided by # working age adults)

0 24.4
over 0 and under 1 14.4
1 61.2

full-time worker 52.1
full-time student 6.7
usual weekly work hours

0 37.4
1 to 19 3.1
20 to 34 8.9
35 to 44 34.1
45 to 54 11.1
55 and over 5.4

homeowner 75.2

Mobility household has 1+ vehicles 94.3
1+ vehicles per adult 76.9
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5.6.3 Summary of pattern model estimation results

This section provides a summary of the results of parameter estimation, before the detailed

estimation results appearing in subsequent sections.

Table 5.14 shows the basic summary statistics of model estimation.  The estimation sample

includes 6475 pattern observations, prepared as described in Section 5.3 .  The total number

of cases, equal to the sum of the available alternatives minus the number of observations, is

2,983,715, reflecting availability of all 570 patterns to workers and students, and 234

nonwork patterns to other people.  The model includes 276 parameters, estimated by

maximum likelihood for the multinomial logit specification, yielding a rho squared fit

statistic of .3876.

Table 5.14 Summary statistics from day activity pattern model estimation

Number of observations 6475
Number of cases 2,983,715
Number of parameters 276
LL(0) -39241
LL(final) -24033
rho squared .3876

Table 5.15 identifies the number of parameters estimated, categorized by activity pattern

utility function component and variable type.  A substantial number of constants, usually

gender-specific, are estimated for all component types except the tour expected utility

component.  Lifestyle and mobility variables, on the other hand, appear most frequently in

the activity components, less frequently in the placement of secondary activities in the

pattern, and seldom for primary tour and inter-tour combination effects.  The number of

lifestyle variables in each category gives a rough measure of the model’s lifestyle sensitivity

in the category.
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Table 5.15 Day activity pattern model—number of parameters by utility component and variable type

Variable
type

Utility
component

Constants
and gender

Household
structure

Role in
household

Financial
and
personal
capabilities

Activity
commit-
ments

Mobility
decisions

Tour
expected
utility

Primary
activity

8 3 18 10 13 4

Secondary
activity

18 9 42 21 11 12

Secondary
activity
placement

20 2 4 3 5 10

Primary tour
combinations

7 2 1 1

Inter-tour
combinations

34 4 3 1

Tour
expected
utility

10

Total 87 14 70 38 30 27 10

Since the magnitudes of model coefficient utility effects are relative, identifying the effects

of a few benchmark model variables can aid in interpreting the magnitude of other estimated

coefficients presented in the next section.  Table 5.16 identifies the utility effect of four

variables on certain patterns for certain people.  Full-time student status increases the utility

of all subsistence on tour patterns by 1.86 units.  Each additional 10 usual work hours

increases the utility of work on tour patterns by .44 units.  Each child in the household

increases the utility of on-tour secondary maintenance activities (once per activity) by .26 for

females on work patterns.  Each $10,000 of per capita income increases the utility of leisure

on tour patterns by .17 for people who are not full-time workers.

Table 5.16 Benchmark variable values for evaluating scale of utility function

Variable and its value Magnitude of
utility effect

Persons affected Activity or Pattern(s) affected

full-time student status 1.86 students subsistence on tour patterns

each 10 usual work
hours (under 40)

.44 workers work on tour patterns

each child 0-18 in HH .26 females on-tour secondary maintenance activity on  work
patterns

each $10,000 per capita
income

.17 not full-time
workers

leisure on tour patterns
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Detailed parameter estimates appear in the next several sections.  We identified in advance

those variables expected to be important.  Many are retained in the presented specification,

even if they are not statistically significant at typical 95% confidence levels, and occasionally

when they are not significant at all or even take the unexpected sign.  In cases where the

standard error is approximately as large as the estimate and the sign matches our reasoning

we would retain the parameter permanently.  In cases where the parameters are insignificant

and perhaps also take the wrong sign, we would remove the parameters in a production

version of the model.  They are retained here to provide awareness of the model specification

process and results.  In cases where the estimate takes the wrong sign and is significant, we

have sometimes also retained the parameter, admitting an imperfect specification or faulty

reasoning, or both.

5.6.4 Primary activity components

The analysis of pattern utility begins by considering its components directly associated with

participation in a particular activity, differentiating activities by priority in the pattern

(primary vs secondary), purpose and whether it is conducted on-tour or at home.

For workers and students there are three possible choices of the primary activity’s purpose—

subsistence, maintenance and leisure—and it may be conducted either at home or on tour.

For other people, subsistence activity is considered unavailable.  Leisure at home is the base

case, so the utility of the remaining five components is relative to leisure at home.

5.6.4.1  Primary subsistence activity

Work participation follows a long-term commitment made by some household members to

satisfy household income needs.  In the absence of activity commitment data (observed and

modeled) household structure and role variables might serve as proxies.  However, activity

commitment data is available in the form of part or full-time worker (and student) status, and

usual weekly work hours.  These serve as the principal explanatory variables for subsistence

at home and subsistence on tour.  We specify them separately for at-home and on-tour
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components, anticipating that usual workload can affect the choice between working at home

vs on tour.

Table 5.17 shows that people who work few hours are more inclined than others to work at

home.  As the usual weekly work hours increase, the likelihood of working on tour increases

more rapidly than working at home, but as work hours increase beyond 40, people again shift

toward working at home.

Table 5.17 Primary subsistence activity lifestyle variables

Subsistence on tour Subsistence at home
Coeff. Std. Err. Coeff. Std. Err.

constant(Leisure at home is primary activity base) -.2297E+1 .68E+0 -.1965E+1 .44E+0
female w children 0-4 -.6920E+0 .18E+0 -.3113E-1 .39E+0
professional .3062E+0 .10E+0 .4049E+0 .19E+0
usual weekly work hours up to 40 (40 if work hours
exceed 40)

.4407E-1 .66E-2 .1363E-1 .11E-1

usual work hours 41 to 50 (10 if work hours exceed 50) .1283E-1 .14E-1 .7377E-1 .25E-1
full time student .1855E+1 .25E+0 .1038E+1 .40E+0

The choice between working at home and on-tour is influenced by coupling constraints

operating at either or both places.  The coupling constraints for some workers may be

atypical, so we include variables for them in both work components.  These include

professionals, expected to have more flexibility to work at home, and working mothers with

young children, expected to have strong home-based coupling constraints.

5.6.4.2  Primary maintenance activity

Every person in a household requires a certain amount of maintenance activity.  This may

vary across individuals based on lifestyle, and we anticipate a gender difference based on

activity priorities, with females more inclined to conduct maintenance activity.  Household

structure causes variation in maintenance need, interacting with gender-based role

specialization.  In particular, maintenance needs may increase with the number of children

and disabled in the household, with females picking up more of the load.  The presence of

additional adults in the household may decrease the maintenance work due to scale

economies of role specialization, with greater effects in families, and females in families
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taking more of the maintenance load.  There may be additional role specialization effects,

with adult children and those with larger relative workloads picking up less of the

maintenance load.  The commitment of homeowners to maintain their residence should

increase the load.  Persons with disabilities may have less ability to meet maintenance needs.

Persons in higher income households have more material possessions to buy and maintain,

but a greater ability to pay for maintenance services.  We expect to see most of these effects,

with some important variation, in the demand for primary and secondary maintenance

activity, on-tour and at-home.

Considering maintenance as the primary activity, females may be more likely to take

maintenance activity at home as their primary task of the day, especially in the presence of

children or other adults in the household.  When the household has two or more adults,

specialization may increase the likelihood of men and women to choose maintenance as the

primary activity.  On their days off work, persons with higher relative workloads in the

household may be more inclined to conduct maintenance activity on-tour and less inclined to

conduct it at home.  Homeowners, on the other hand, may be more inclined than others to

devote their primary activity to at-home maintenance rather than maintenance on tour.  As

per capita income—and the relative value of time—increases, people may be less likely to

choose maintenance as a primary activity, choosing instead to purchase services that reduce

the need to spend large amounts of maintenance time.  Finally, the availability of vehicles,

especially one or more vehicles per adult, should increase the likelihood of choosing primary

maintenance on tour.

Table 5.18 lists the parameter estimates for on tour and at home maintenance patterns.  For

the most part the parameter estimates are consistent with the stated expectations.  In many

cases the standard errors are approximately as large as the parameter estimates.

5.6.4.3  Primary leisure activity

Since leisure naturally ranks behind subsistence and maintenance in activity priority,

variation in leisure participation may depend as much on lifestyle outcomes for subsistence

and maintenance activity as it does for direct leisure outcomes.  In this sense, leisure demand
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Table 5.18 Primary maintenance activity lifestyle variables

Maint on tour Maint at home
Coeff. Std. Err. Coeff. Std. Err.

constant, male -.8030E+0 .56E+0 -.9697E-2 .29E+0
constant, female -.1094E+1 .56E+0 .7154E+0 .22E+0
female w children 0-4 -.2004E+0 .22E+0
# children 0-17 plus # disabled, male -.1151E+0 .14E+0 -.2060E-1 .12E+0
# children 0-17 plus # disabled, female -.1809E+0 .12E+0 .3721E+0 .88E-1
nonfamily with 2+ adults .3059E+0 .34E+0 .4254E+0 .36E+0
family with 2+ adults, male -.2834E+0 .25E+0 .4744E+0 .28E+0
family with 2+ adults, female .2460E+0 .23E+0 .1561E+0 .20E+0
adult child .1722E+0 .32E+0 -.1025E+1 .36E+0
relative workload .1707E-2 .65E-2 -.1051E-1 .54E-2
disabled -.4731E+0 .25E+0 -.1533E+1 .23E+0
per capita income .5757E-1 .61E-1 -.6401E-1 .60E-1
workforce participation rate -.2860E+0 .16E+0
full-time worker or student .6863E-1 .17E+0 -.2878E+0 .18E+0
homeowner -.1723E-1 .16E+0 .2292E+0 .15E+0
1+ cars in HH -.4983E-2 .22E+0
1+ cars per adult .1596E+0 .14E+0

is a derived demand, taking up the time that subsistence and maintenance activity do not

require.  However, leisure demand also depends on lifestyle outcomes directly related to

leisure, such as ownership of recreational real estate and personal property, club

memberships or avocational commitments.  Unfortunately, this information is not generally

collected in activity and travel surveys, and is not available for including in demand models,

making it necessary to seek proxies.

We consider primary leisure activity at home as the base case for specifying primary activity

utility, and identify factors that affect the likelihood of choosing primary leisure activity on

tour.  The presence of children may decrease the probability of choosing leisure activity on

tour.  Members of non-family households and adult children may have greater demand for

leisure on-tour, to satisfy social needs that family members satisfy at home.  Persons with

disabilities may be more constrained to home than other people.  Income for non-full-time

workers and availability of at least one car per adult should both increase the probability of

choosing leisure activity on tour.  The greater schedule flexibility of professionals may

enable them to more frequently choose leisure on tour as the primary activity of the day.

Full-time workers may be accustomed to leaving home for the day, and on their days off be

more inclined to travel for leisure activities than to remain at home.
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Table 5.19 lists the parameter estimates for on-tour primary leisure activities.  The results for

nonfamily members, adult children and professionals are not as expected, and these along

with several other parameters have large standard errors relative to the magnitude of the

estimates.  This component of the utility function is specified with greater lifestyle variation

than the data and the coarse resolution of the activity schedule categories can support.  It is

also possible that important factors have been missed and correlation with included variables

is confounding the reported results.

Table 5.19 Primary leisure activity lifestyle variables

Leisure  on tour
Coeff. Std. Err.

constant, male -.1392E+1 .76E+0
constant, female -.1548E+0 .15E+0
children 0-12 are in HH, male -.2214E+0 .32E+0
children 0-12 are in HH, female -.1711E+0 .23E+0
nonfamily -.2152E+0 .18E+0
adult child -.3055E+0 .37E+0
disabled -.9632E+0 .25E+0
per capita income ($10K), full time worker -.8319E-1 .10E+0
per capita income ($10K), not full time worker .1743E+0 .65E-1
professional -.3056E+0 .20E+0
workforce participation rate -.2552E+0 .18E+0
full-time worker or student .4679E+0 .25E+0
1+ cars are in HH -.5252E-1 .27E+0
1+ cars per adult .3786E+0 .16E+0

5.6.5 Secondary activity components

We define only two possible choices of secondary activity purpose—maintenance and

leisure—including any secondary work and work related activity as maintenance.  As with

the primary activities, these may be conducted on tour or at home.  On-tour activity utility is

associated with a particular episode of activity.  In contrast, at-home maintenance utility is

associated with all at-home maintenance of the day, and secondary at-home maintenance is

not distinguished from the primary activity if it is maintenance at home.  We separately

specify secondary activity utility components for subsistence, maintenance and leisure

patterns.  In each case the utility is measured against a base of  “no participation”, which

implicitly allows more time for at-home leisure activity.
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5.6.5.1  Secondary maintenance activity

The general maintenance activity demand effects described in Section 5.6.4.2 probably apply

to secondary activities, but with some differences because here maintenance is a secondary

activity.  Households with greater workforce participation may have more adults out and

about, thereby spreading the on-tour maintenance load.  Households with at least one auto

may generate more on-tour maintenance demand because car availability reduces the

marginal cost of additional trips.  Availability of one auto per adult may increase this effect.

Secondary on-tour maintenance activity coefficients are listed in Table 5.20.  As expected,

children induce additional secondary on-tour maintenance activities, except for males with

subsistence patterns.  The presence of more than one adult in the household has the most

effect on females and males in families, where we see a reduction in secondary on-tour

maintenance on leisure days.  Adult children, those with higher relative workloads and

disabled persons are all less likely to conduct secondary on-tour maintenance.  Homeowners

are more likely to attach maintenance stops to subsistence patterns, and less likely to attach

them to maintenance patterns.  Overall, the parameter estimates for secondary on-tour

maintenance activity match expectations very closely and are statistically significant.

Table 5.20 Secondary on-tour maintenance activity lifestyle variables

Subsistence patterns Maint. patterns Leisure patterns
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

constant, male -.3156E+1 .35E+0 -.1611E+1 .61E+0 -.2220E+1 .14E+1
constant, female -.3012E+1 .34E+0 -.1737E+1 .61E+0 -.1333E+0 .21E+0
# children 0-17 plus # disabled, male .5584E-1 .34E-1 .1094E+0 .76E-1 .1969E+0 .10E+0
# children 0-17 plus # disabled, female .2566E+0 .37E-1 .1927E+0 .37E-1 .3146E+0 .63E-1
nonfamily with 2+ adults .4443E-2 .13E+0 -.2539E-1 .19E+0 .1291E+0 .32E+0
family with 2+ adults, male .8699E-1 .10E+0 -.7628E-1 .13E+0 -.3077E+0 .21E+0
family with 2+ adults, female -.1133E+0 .84E-1 .1319E+0 .98E-1 -.2619E+0 .18E+0
adult child -.5246E+0 .11E+0 -.3006E+0 .20E+0 -.2817E+0 .39E+0
relative workload -.4719E-2 .30E-2 -.5125E-2 .25E-2 -.4349E-2 .48E-2
disabled -.7440E+0 .28E+0 -.3855E+0 .14E+0 -.8603E+0 .31E+0
per capita income ($10K) .7212E-1 .25E-1 .1334E-1 .30E-1 -.2649E-1 .54E-1
homeowner .1734E+0 .64E-1 -.1236E+0 .79E-1 -.4031E-1 .15E+0
workforce participation rate -.1688E+0 .14E+0
1+ cars are in HH .6411E+0 .29E+0 .4143E+0 .17E+0 .8059E+0 .42E+0
1+ cars per adult .1666E+0 .97E-1 -.3509E-1 .88E-1 .2272E+0 .17E+0
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Table 5.21 shows the parameter estimates for secondary at-home maintenance.  A very

strong tendency is present among females to attach at-home activities to an on-tour

maintenance pattern, and an even greater tendency among men on leisure patterns to avoid

at-home maintenance activity.  Children increase at-home maintenance activity of working

parents, but only for mothers if the pattern is maintenance or leisure.  Additional household

adults have a small but clear effect to reduce at-home maintenance on subsistence patterns,

but the effects are less consistent and significant on other patterns.  Persons with high relative

workloads are relieved of at-home maintenance tasks in all pattern types.  High per capita

income reduces at-home maintenance on subsistence patterns, and home ownership increases

at-home maintenance on all pattern types.  In summary, most of the estimates for secondary

at-home maintenance activity are as expected and statistically significant.

Table 5.21 Secondary at-home maintenance activity lifestyle variables

Subsistence patterns Maint. patterns Leisure patterns
Coeff. Std Err. Coeff. Std. Err. Coeff. Std. Err.

constant, male -.3439E-1 .41E+0 -.1101E+0 .25E+0 -.1251E+1 .28E+0
constant, female .1302E+0 .40E+0 .8582E+0 .22E+0 .3135E+0 .24E+0
# children 0-17 plus # disabled, male .1738E+0 .54E-1 -.5966E-1 .13E+0 -.2397E+0 .15E+0
# children 0-17 plus # disabled, female .3857E+0 .61E-1 .4185E+0 .10E+0 .1718E+0 .98E-1
nonfamily with 2+ adults -.2944E+0 .12E+0 -.5180E-1 .34E+0 .3641E+0 .34E+0
family with 2+ adults, male -.2436E+0 .84E-1 .3065E+0 .23E+0 -.7424E-1 .24E+0
family with 2+ adults, female -.1423E+0 .76E-1 -.4783E+0 .19E+0 .3450E-1 .20E+0
adult child -.7575E+0 .17E+0 -.1037E+1 .36E+0 -.7022E+0 .43E+0
relative workload -.6702E-2 .36E-2 -.8577E-2 .55E-2 -.9475E-2 .55E-2
disabled -.1202E+1 .44E+0 -.1003E+1 .23E+0 -.4730E+0 .24E+0
per capita income -.1011E+0 .37E-1 -.3026E-1 .51E-1 -.3407E-1 .58E-1
homeowner .2111E+0 .99E-1 .4054E+0 .16E+0 .2389E+0 .16E+0

5.6.5.2  Secondary leisure activity

The secondary leisure constant represents a baseline level of demand for on-tour leisure

activity relative to remaining at home.  We expect to see gender differences in this baseline,

perhaps with males being more leisure oriented, even after controlling for level of work

participation, which probably dampens leisure participation, especially when work hours

exceed 40 hours per week.  Members of non-family households may conduct more leisure

activities on-tour, satisfying social needs that family members satisfy at home.  People with

young children and/or disabled family members probably have lower demand for on-tour



The Portland Day Activity Schedule Model System 115

leisure, due to greater costs and less opportunities for on-tour participation.  Higher income

may induce greater demand for on-tour leisure, especially among those who have available

time because they are not full-time workers.  Persons with travel related disabilities may have

lower demand for on-tour leisure.  Finally, the availability of a car for every adult in the

household may increase demand for on-tour secondary leisure activity.

The estimation results for secondary on-tour leisure activity, listed in Table 5.22, differ

somewhat from our expectations, but are plausible.  Working over 40 hours per week does

not significantly alter demand for secondary on-tour leisure activity.  The effect of children is

in most cases small and insignificant, and the most important effects are the tendency to

reduce on-tour leisure for working females and increase it for females already on leisure

patterns, with the latter effect potentially representing mothers at play with their children.

The effect of income is to increase secondary on-tour leisure activity, and not surprisingly it

occurs on subsistence patterns for full-time workers and on maintenance patterns for others.

Disability increases the likelihood of secondary on-tour leisure activity attached to

subsistence patterns, probably because disabled people on subsistence patterns have made

their transportation arrangements and the marginal cost of an extra stop for leisure is much

lower than on at-home patterns; associating a disability parameter for secondary on-tour

activities on on-tour patterns may be more appropriate.  Finally, the effect of the first car in

the household is more important than the effect of additional cars, enabling persons to attach

leisure stops to maintenance and leisure patterns.

Table 5.22 Secondary on-tour leisure activity lifestyle variables

Subsistence patterns Maint. patterns Leisure patterns
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

constant, male -.3070E+1 .33E+0 -.2566E+1 .62E+0 -.1852E+1 .14E+1
constant, female -.3104E+1 .34E+0 -.2571E+1 .62E+0 -.2094E+1 .13E+0
children 0-12 are in HH, male -.3373E-1 .12E+0 .1316E+0 .24E+0 -.2103E+0 .43E+0
children 0-12 are in HH, female -.2476E+0 .15E+0 .1107E+0 .13E+0 .2927E+0 .23E+0
nonfamily .1588E+0 .78E-1 .2198E+0 .90E-1 .3965E+0 .14E+0
disabled .8747E+0 .23E+0 -.2960E+0 .17E+0 -.3844E+0 .30E+0
per capita income, full time worker .8586E-1 .53E-1 -.6387E-1 .61E-1 -.1196E-1 .11E+0
per capita income, not full-time worker .1478E-1 .24E+0 .5138E-1 .35E-1 -.1532E-1 .53E-1
usual weekly work hours -.1131E-1 .40E-2 -.2326E-2 .37E-2 -.5950E-2 .66E-2
# work hours over 40 .8876E-2 .61E-2
1+ cars are in HH -.2569E+0 .18E+0 .3156E+0 .19E+0 .6609E+0 .37E+0
1+ cars per adult .6443E-1 .33E-1 .4051E-1 .11E+0 .6516E-1 .18E+0
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5.6.6 Pattern components

Now turn attention to the pattern utility components associated with the pattern in which the

activities are conducted.  The utility in these components is not inherent in the activity itself,

but rather comes from scheduling cost, synergy, fatigue or opportunity cost of the pattern—in

particular, lost opportunity for at-home leisure activity.  These components implicitly capture

the effect of the 24-hour time constraint restricting the number of activities in the schedule.

The model includes three categories of pattern component—placement, primary tour activity

combinations and inter-tour combinations—all of which are directly observed in the pattern

and together comprise the component 
~

Vp  in (5).

5.6.6.1  Secondary activity placement components

Secondary activity placement components differentiate utility of secondary activities that

share a common purpose but occur at different places in the pattern or in different pattern

types. The utility comes from the activity’s placement relative to the primary activity.  On-

tour secondary maintenance activities differ in utility, depending on whether they occur on an

at-home subsistence pattern, on the primary subsistence tour—either before, as a subtour or

after the primary stop—or on a separate secondary tour.  The same is true for on-tour

secondary maintenance activities on maintenance and leisure patterns, as well as for on-tour

secondary leisure activities.  In the model, one placement must serve as a base for each

purpose, with utility of other placements measured relative to the base.  We arbitrarily

identify a secondary stop after the primary stop as the base case.

Secondary maintenance on on-tour subsistence patterns.  For secondary maintenance

activities on on-tour subsistence patterns, usual workload probably affects placement utility;

as the workday gets longer separate maintenance tours should decrease relative to stops after,

while subtours and stops before might increase.  For family members, especially those with

children, family ties may make work-based subtours less appealing because they preclude

coupling with other family members.  Higher income may alter the utility of chained primary

tours relative to separate secondary tours, inducing convenience shopping activity attached to

the subsistence tour, and also to allowing unplanned secondary tours with less concern for
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travel costs.  The availability of cars will tend to increase freedom to attach maintenance

stops to primary tours, reducing the relative attractiveness of separate maintenance tours.

Apart from the lifestyle and mobility effects on placement, stops after work may be the most

attractive of the placement options because of the convenience of chaining stops with the

primary stop, and the greater schedule flexibility of stops after work.  This is in contrast to

stops before work and on subtours where a timely arrival at work may be important.  Since

stop after work is the base case for placement utility, we expect negative constants on all

other alternatives.

The parameter estimates for secondary stop placement on subsistence tours, in Table 5.23,

show a few differences from our expectations.  Although having children does tend to

eliminate the work-based subtour for women, other family connections do not.  Also, when

usual work hours are very small, the model indicates a preference for separate maintenance

tours, with maintenance stops after subsistence surpassing a separate tour only when usual

work hours exceed about 30 hours.

When the primary subsistence activity is conducted at home, higher work hours probably

reduces utility of secondary maintenance tours, relative to the utility of maintenance stops

after work on on-tour patterns, because of the inconvenience of leaving home.  Presence of

children and disabled may keep home-based workers from making maintenance tours, and

the availability of cars may not hurt the attractiveness of secondary tours for at-home workers

as much as for on-tour workers.  Overall, however, we expect the schedule flexibility of

working at home, and the associated unavailability of chaining opportunities, to make the

utility of secondary tours higher for subsistence at home patterns than for subsistence on tour

patterns.  We see all these effects in the Table 5.23 estimation results.

Secondary leisure on on-tour subsistence patterns.  For secondary leisure on-tour

activities, placement lifestyle effects related to usual workload and presence of children are

probably different than for maintenance activities.  People with heavy workloads may find

increased utility in a leisure subtour, providing a recuperative break in a long workday.

People with children or disabled in the household may be inclined to avoid a second tour for

leisure, instead chaining leisure activities with their subsistence tour.  Car availability and
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income may have effects similar to those with maintenance patterns.  On subsistence-at-

home patterns, nonfamily persons may take secondary leisure tours more often than family

members, satisfying social needs.

Estimation results for secondary leisure activity placement in subsistence patterns are also

shown in Table 5.23.  Unexpected results include a rather strong effect of car availability to

decrease work-based leisure subtours relative to stops after work, and of nonfamily status to

decrease secondary leisure tours on at-home subsistence patterns.  Otherwise, the results are

as expected.

Table 5.23 Placement of secondary maintenance and leisure activities in subsistence patterns

Component Variable Coeff. Std. Err.
Secondary maintenance stop after Base case for secondary on-tour

maintenance activity
Secondary maintenance stop before constant -.6762E+0 .20E+0

usual weekly work hours .5109E-2 .47E-2
Secondary maintenance subtour constant -.9690E+0 .30E+0

Family -.2999E-1 .16E+0
children 0-12 are in HH, female -.8172E+0 .30E+0
usual weekly work hours .1248E-1 .62E-2

Secondary maintenance tour on on-tour
subsistence patterns

Constant .1885E+1 .54E+0

usual weekly work hours -.6237E-2 .37E-2
per capita income -.8682E-1 .39E-1
1+ cars in HH -.4123E+0 .37E+0
1+ cars per adult -.4115E+0 .14E+0

Secondary maintenance tour on at-home Constant .3001E+1 .71E+0
subsistence patterns # children 0-17 plus # disabled, female -.3019E+0 .12E+0

usual weekly work hours -.5627E-2 .57E-2
1+ cars in HH -.4422E+0 .52E+0
1+ cars per adult -.7181E-1 .22E+0

Secondary leisure stop after Base case for secondary on-tour leisure
activity

Secondary leisure stop before Constant -.4185E+0 .36E+0
1+ cars per adult -.6591E+0 .38E+0

Secondary leisure subtour Constant .4321E+0 .34E+0
usual weekly work hours .1944E-1 .49E-2
1+ cars per adult -.6085E+0 .28E+0

Secondary leisure tour on on-tour Constant .2981E+0 .78E+0
subsistence patterns family w children 0-12 or disabled -.1074E+0 .17E+0

female in family w children 0-12 or
disabled

.1029E+0 .20E+0

per capita income -.1596E+0 .50E-1
1+ cars per adult -.3819E+0 .26E+0

Secondary leisure tour on at-home Constant .1815E+1 .80E+0
subsistence patterns Nonfamily -.6694E+0 .29E+0

per capita income .2116E+0 .77E-1
1+ cars per adult -.1467E+1 .32E+0
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Maintenance and leisure patterns.  On maintenance and leisure patterns, the distinction

between primary and secondary activities is not as clear as on subsistence patterns, and these

patterns lack lifestyle information to indicate the usual duration of the primary activity.  Thus

it is more difficult to establish a rich set of expectations and estimated parameters explaining

secondary stop placement.  We expect to see a preference for combining secondary

maintenance stops with primary maintenance tours, but otherwise to conduct secondary

activities on separate tours.  In contrast to subsistence patterns, if the primary activity is at

home there is probably less tendency to conduct secondary activities on-tour, for the same

reasons that keep the primary activity at home, with the effect softened by the presence of

one or more cars per adult.

Estimation results for secondary activity placement in maintenance patterns are in Table

5.24, and for leisure patterns are in Table 5.25.  In maintenance patterns with secondary on-

tour leisure activity there is an unexpected but plausible strong tendency to attach the leisure

activity to the maintenance tour.  There is also an extremely strong tendency to avoid

secondary on-tour activities when the primary activity is at home, especially for secondary

leisure activities.  People on leisure patterns have a strong tendency to avoid a second leisure

tour, preferring to attach the second leisure stop to the primary.  There is an even stronger

tendency to avoid a leisure tour altogether when the primary leisure activity is at home.

Table 5.24 Placement of secondary maintenance and leisure activities in maintenance patterns

Component Variable Coeff. Std. Err.
Secondary maintenance stop after Base case for secondary on-tour

maintenance activity
Secondary maintenance stop before constant -.2992E+0 .14E+0
Secondary maintenance tour on
maintenance tour patterns

constant -.2145E+0 .67E+0

Secondary maintenance tour on
maintenance at home patterns

constant -.1718E+1 .71E+0

1+ cars per adult .6167E+0 .23E+0
Secondary leisure stop after Base case for secondary on-tour leisure

activity
Secondary leisure stop before constant .4151E-3 .17E+0
Secondary leisure tour on maintenance
tour patterns

constant -.2180E+1 .90E+0

Secondary leisure tour on maintenance
at home patterns

constant -.5505E+1 .11E+1

1+ cars per adult .5187E+0 .76E+0
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Table 5.25 Placement of secondary maintenance and leisure activities in leisure patterns

Component Variable Coeff. Std. Err.
Secondary maintenance stop after Base case for secondary on-tour

maintenance activity
Secondary maintenance stop before constant .1352E+0 .23E+0
Secondary maintenance tour on leisure
tour patterns

constant -.6385E+0 .14E+1

Secondary maintenance tour on leisure
at home patterns

constant -.1598E+1 .14E+1

Secondary leisure stop after Base case for secondary on-tour leisure
activity

Secondary leisure stop before constant -.2832E+0 .22E+0
Secondary leisure tour on leisure tour
patterns

constant -.3435E+1 .15E+1

Secondary leisure tour on leisure at
home patterns

constant -.6419E+1 .16E+1

5.6.6.2  Primary tour combinations

These components capture the utility effects of having multiple secondary stop placements

on primary tours.  Certain combinations may bring synergy or inconvenience, apart from the

implicit time constraint, fatigue and opportunity costs captured by the inter-tour parameters

of the next section.  For instance, it may be necessary for many people with pre-school

children to drop off and pick up their children at daycare locations, increasing the need for

maintenance stops before and after work.

5.6.6.3  Estimation results are shown in Inter-tour effects

These components capture the effects on pattern utility of activity combinations beyond the

primary tour, capturing trade-offs among secondary at-home maintenance, extra stops on the

primary tour, and secondary tour participation.  Primarily they capture disutility arising from

time constraints, fatigue and lost opportunity for at-home leisure.  This disutility would

increase with number of activities and tours, with leisure activity combinations causing

greater disutility than maintenance combinations because of synergy in combining

Table 5.26 for all subsistence, maintenance and leisure patterns.  We find the anticipated

effect of pre-school children, which is marginally stronger for mothers than fathers.  We also

see a general tendency to combine before and after stops to the subsistence pattern, but

almost none whatsoever for maintenance and leisure patterns.



The Portland Day Activity Schedule Model System 121

5.6.6.4  Inter-tour effects

These components capture the effects on pattern utility of activity combinations beyond the

primary tour, capturing trade-offs among secondary at-home maintenance, extra stops on the

primary tour, and secondary tour participation.  Primarily they capture disutility arising from

time constraints, fatigue and lost opportunity for at-home leisure.  This disutility would

increase with number of activities and tours, with leisure activity combinations causing

greater disutility than maintenance combinations because of synergy in combining

Table 5.26 Secondary activity combinations on primary tour

Component Variable Coeff. Std. Err.
Primary subsistence tours
Maintenance stops before & after constant .1144E+1 .17E+0

children 0-4 are in household .5700E+0 .31E+0
female w children 0-4 in household .3934E+0 .39E+0

other before and after stop combinations constant .3012E+0 .20E+0
stops before & after with subtour constant .3667E+0 .21E+0
Primary maintenance tours
stops before and after constant .6154E-1 .61E+0

per capita income -.8293E-2 .84E-1
1+ cars per adult .3018E+0 .26E+0

leisure stops before & after constant .6803E-1 .35E+0
maint & leisure stops, before & after constant .1731E-1 .21E+0
Primary leisure tours
stops before and after constant .2247E-1 .12E+1

maintenance activities.  As with the other pattern categories, inter-tour combination utility

must be identified relative to base cases.  We choose the simplest combinations as base cases,

resulting in the expectation of negative values for all constants.  The only lifestyle effects we

identify for work patterns are for workload and occupation.  Those who regularly work

longer hours may prefer simple patterns, that is, patterns with no on-tour secondary stops or

tours.  Nonprofessionals may have less interests and commitments that take them places

other than work on their workdays.  Lifestyle effects on maintenance patterns are included

for parents of children, who may be more likely to conduct multiple tours, and people over

65, who may be less likely to conduct multiple tours.

The estimation results for inter-tour effects are listed in Table 5.27 through Table 5.29.  We

see the anticipated effects, although the specification does not distinguish secondary activity
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purpose.  A specification that makes this distinction may significantly improve the model fit.

Disutility of multiple tours increases nonlinearly; the addition of a third tour hurts utility

much more than the addition of a second tour.  In most cases adding at-home maintenance to

a pattern also reduces its attractiveness; the effect is that people trade at-home maintenance

for extra tours.

Table 5.27 Subsistence pattern inter-tour combinations

Coeff. Std. Err.
Constants for patterns with no secondary at-home maintenance:
subsistence at home with 0 secondary tours—base for subsistence at home patterns
subsistence at home with 1 secondary tour—base for subsistence at home w secondary tour(s)
subsistence at home with 2+ secondary tours -.1365E+1 .47E+0
simple subsistence tour with 0 secondary tours—base for subsistence on tour patterns
simple subsistence tour w 1 secondary tour—base for simple subsistence tours w sec. tour(s)
simple subsistence tour with 2+ secondary tours -.1679E+1 .26E+0
complex subsistence tour with 0 secondary tours .8683E+0 .59E+0
complex subsistence tour with 1 secondary tour .2707E+0 .60E+0
complex subsistence tour with 2+ secondary tours -.1457E+1 .70E+0
Constants for patterns with secondary at-home maintenance:
subsistence at home w 0 secondary tours—base for subsistence patterns w at-home maint.
subsistence at home with 1 secondary tour -.4825E+0 .44E+0
subsistence at home with 2+ secondary tours -.1611E+1 .71E+0
simple subsistence tour  w 0 secondary tours -.7428E+0 .36E+0
simple subsistence tour with 1 secondary tour -.7386E+0 .36E+0
simple subsistence tour with 2+ secondary tours -.1147E+1 .43E+0
complex subsistence tour with 0 secondary tours .1343E+0 .69E+0
complex subsistence tour with 1 secondary tour -.4990E+0 .71E+0
complex subsistence tour with 2+ secondary tours -.1826E+1 .81E+0
Lifestyle effects
usual weekly work hours: simple subsistence tour w no secondary tours .4077E-2 .37E-2
nonprofessional:  simple subsistence tour w no secondary tours .2676E+0 .73E-1
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Table 5.28 Maintenance pattern inter-tour combinations

Coeff. Std.Err.
Constants for patterns with no secondary at-home maintenance:
maintenance at home with 0 secondary tours—base for maint at home patterns
maint at home w 1 secondary tour—base for maint at home w secondary tour(s)
maintenance at home with 2+ secondary tours .1413E+1 .35E+0
simple maint tour w 0 secondary tours—base for maintenance on tour patterns
simple maintenance tour with 1 sec. tour—base for simple maint. tours w secondary tour(s)
simple maintenance tour with 2+ secondary tours -.2057E+0 .34E+0
complex maint. tour w 0 sec. tours—base for maint-on-tour patterns w complex primary tour
complex maintenance tour with 1 secondary tour -.9401E-2 .23E+0
complex maintenance tour with 2+ secondary tours .8617E-1 .40E+0
Constants for patterns with secondary at-home maintenance:
simple maint. tour  w 0 sec. tours—base for maint-on-tour patterns w at-home sec. maint.
simple maintenance tour with 1 secondary tour -.1803E-2 .17E+0
simple maintenance tour with 2+ secondary tours .3643E+0 .35E+0
complex maintenance tour with 0 secondary tours .5771E-2 .17E+0
complex maintenance tour with 1 secondary tour .8976E-1 .27E+0
complex maintenance tour with 2+ secondary tours -.5358E-1 .44E+0
Lifestyle effects
simple maint tour with 1+ sec tours, male w kids 0-17 in hh .4846E+0 .27E+0
simple maint tour with 1+ sec tours, female with kids 0-17 in hh .1317E+0 .18E+0
simple maint tour with 1+ sec tours, age is over 65 -.4517E+0 .14E+0
complex maint tour with 1+ sec tours, male w kids 0-17 in hh -.1432E+0 .39E+0
complex maint tour with 1+ sec tours, female with kids 0-17 in hh .1038E+0 .21E+0
complex maint tour with 1+ sec tours, age is over 65 -.4539E+0 .16E+0

Table 5.29 Leisure pattern inter-tour combinations

Coeff. Std. Err.
Constants for patterns with no secondary at-home maintenance:
leisure at home with 0 secondary tours—base for leisure at home patterns
leisure at home with 1 secondary tour—base for leisure at home w secondary tour(s)
leisure at home with 2+ secondary tours .1922E+1 .71E+0
simple leisure tour with 0 secondary tours—base for leisure on tour patterns
simple leisure tour with 1 secondary tour—base for simple leisure tours with secondary tour(s)
simple leisure tour with 2+ secondary tours .1741E+0 .43E+0
complex leisure tour w 0 secondary tours—base for complex leis. tour patterns
complex leisure tour with 1 secondary tour -.3387E+0 .31E+0
complex leisure tour with 2+ secondary tours -.1055E+1 .70E+0
Constants for patterns with secondary at-home maintenance:
leisure at home with 0 secondary tours—base for leisure patterns with at-home maintenance
leisure at home with 1 secondary tour .1096E+0 .44E+0
leisure at home with 2+ secondary tours .2507E+1 .77E+0
simple leisure tour with 0 secondary tour .1514E+1 .18E+0
simple leisure tour with 1 secondary tour .9532E+0 .24E+0
simple leisure tour with 2+ secondary tours .1681E+1 .41E+0
complex leisure tour with 0 secondary tours .9243E+0 .23E+0
complex leisure tour with 1 secondary tour .1168E+1 .31E+0
complex leisure tour with 2+ secondary tours .5163E+0 .60E+0
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5.6.7 Tours accessibility

The final component in the pattern utility function is the composite measure of expected

utility arising from the tours in the pattern, comprising the terms Vt
t Tp∈
∑  in (5).

This component of the utility is a pattern attribute that can only be measured as a composite

of tour and activity attributes among the conditional tour alternatives available for the given

pattern.  In a standard nested logit model it is the expected utility among the available

conditional alternatives, as measured by the conditional logit choice model.  Its value only

has meaning relative to the alternatives and other expected utility measures derived from the

same conditional model.  Standard nested logit models have been proven generally to be

consistent with random utility theory when the parameter values are in the range zero to one.

If the parameters exceed the value 1, then consistency with random utility theory depends on

the values of the data.

In the day activity schedule model a pure nested logit form is compromised for the sake of

tractability by making conditional independence assumptions among tours.  This precludes

use of the standard single valued logsum expected utility measure of the nested logit form.

Instead, a composite measure is used, derived from the logsums of the tours in the pattern.  In

the composition, it is important to account for (a) the difference in scale of the component

logsums and (b) the different importance to the pattern choice of expected utility for different

tour priorities and purposes.  This is handled by estimating separate coefficients for each type

of logsum in the composite measure.  It is difficult to anticipate the relative size of these

parameters, because the scale and importance effects cannot be separately identified.

Negative values will certainly produce counterintuitive results, predicting an increase in

utility of a pattern if the expected utility of a component tour drops.

The tour accessibility parameter estimates are listed in Table 5.30.  Each pattern purpose has

its own set of parameters because of expected purpose-specific differences of accessibility

importance in pattern choice.  Primary and secondary tours have separate parameters for the

same reason, and also to accommodate potential scale differences between primary and

secondary tour utilities.  Primary tours with secondary stops have different parameters than
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those without, for two reasons.  First, people may place different weight on expected primary

tour utility if it includes multiple activity stops.  Second, due to the simplifying compromises

made in the Portland tour models, in which expected secondary stop utility is not used to

explain tour choices, the measure used for expected tour utility of tours with secondary stops

provides only an estimate of the desired expected tour utility measure.  As it turns out, the

parameter estimates for primary tours with and without extra stops are not significantly

different from each other and could be constrained to be equal.

In all cases the estimated parameters are less than one.  In only one case is the estimate less

than zero, and then with almost no significance.  For subsistence patterns, primary tour

accessibility carries more weight relative to the secondary tours than it does in maintenance

and leisure patterns.  Primary tour accessibility is also less significantly different from zero

for maintenance and leisure patterns, although three of the four estimates exceed zero by

approximately one standard error and should be retained in the model.  For all pattern

purposes, accessibility is more important for secondary leisure tours than it is for secondary

maintenance tours.

Table 5.30 Tour accessibility logsums

Subsistence patterns Maint. patterns Leisure patterns
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

primary tour with no extra stops .8103E+0 .18E+0 .1709E+0 .19E+0 .2260E+0 .26E+0
primary tour with extra stops .6539E+0 .19E+0 .1349E+0 .19E+0 -.6022E-1 .38E+0
secondary maintenance tour* .1223E+0 .16E+0 .2187E+0 .13E+0 .2187E+0 .13E+0
secondary leisure tour* .5173E+0 .20E+0 .9845E+0 .20E+0 .9845E+0 .20E+0
*estimated jointly for maintenance and leisure patterns

5.6.8 Pattern model specification tests

We conduct a number of statistical tests on groups of parameters to test various aspects of the

model specification.  In each test the collective significance of a group of variables is tested

by first estimating a model in which their values are restricted to zero, and then conducting a

likelihood ratio test.  Table 5.31 reports the number of restrictions, restricted loglikelihood,

likelihood ratio statistic and p-values for each test.  The p-value represents the probability

under the null hypothesis—insignificance of the parameter group—of observing data at least
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as adverse to the hypothesis as is actually observed.  Thus, a value near zero, coupled with

well-reasoned a priori belief that the group belongs, gives a strong indication of the

importance of the group in the specification.

Table 5.31 Statistical tests of pattern model restrictions

Test
number

Variables removed
(parameters restricted to 0)

number of
restrictions
(n)

restricted
loglikelihood
LL(R)

Likelihood ratio
statistic*

p-value**

Lifestyle variables
1 all lifestyle, except gender 152 -24512 958 0+
2 HH structure 14 -24049 32 0.004
3 role 70 -24227 388 0+
4 capabilities 38 -24160 254 0+
5 activity commitments 30 -24125 184 0+

6 Mobility commitments 27 -24087 108 0+

Activity components
7 subsistence pattern at-home

maintenance
12 -24129 192.8 0+

8 leisure pattern at-home maintenance 11 -24054 42.8 0+

Secondary activity placement
components

9 maintenance in subsistence patterns 16 -24094 122.8 0+
10 leisure in subsistence patterns 14 -24152 238.8 0+
11 maintenance in maintenance patterns 3 -24054 42.8 0+
12 leisure in maintenance patterns 3 -24095 124.8 0+
13 maintenance in leisure patterns 3 -24038.2 11.2 .01
14 leisure in leisure patterns 3 -24067 72.2 0+

Primary tour combinations
15   in subsistence patterns 5 -24075 84.8 0+
16   in maintenance patterns 5 -24034 2.8 .7
17   in leisure patterns 1 -24032.6 0 1-

18 Expected tour utility 10 -24060 54.8 0+

*-2(LL(R)-LL(U)), where U is full model and R is restricted model of current column, testing significance of removed
parameters.  Unrestricted loglikelihood, LL(U), equals –24032.6.
** given the true restricted model, under which the likelihood ratio statistic is asymptotically distributed chi squared with n
degrees of freedom, the probability of a statistic at least as adverse to the model as the observed statistic

Tests 1 through 5 support the importance of the four lifestyle categories collectively, and

individually, and test 6 achieves the same result for the mobility commitments category.

Tests 7 and 8 support the importance of the secondary at-home maintenance activity

parameters in subsistence and leisure patterns.  In this case, the test result lends support not

only to the parameters as a group, but also to the hypothesis that the identification of

secondary at-home maintenance is important in the pattern choice set definition.
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Tests 9 through 14 test the importance of the parameters that differentiate attractiveness of

alternative places within the pattern for secondary activity participation.  In the parameters,

and in the tests, the placement of secondary activities is distinguished by pattern purpose—

that is, purpose of the pattern’s primary activity—and secondary activity purpose.  In all

cases, the parameters are significant as a group.  Formal tests were not conducted to test

whether the placement parameters are significantly different by pattern purpose or secondary

activity purpose, but examination of the individual parameters reveals differences that

indicate the importance of these distinctions.  These results lend support for a pattern choice

set definition that distinguishes pattern placement for secondary activities, specific to pattern

and secondary activity purpose.

Tests 15 through 17 examine the importance of primary tour combinations for subsistence,

maintenance and leisure patterns.  Of the few parameters in this category, we see that they

are supported as a group only for subsistence patterns.  That is, only for subsistence patterns

have we found evidence of utility associated with particular combinations of two or more

secondary activities on the primary tour, distinct from any utility or disutility the combination

may cause in the pattern as a whole.

Test 18 supports the importance of the tour expected maximum utility parameters as a group.

This is an important result in light of the major hypothesis of this study that it is important to

represent travel demand in the context of the day activity schedule.  With these expected

maximum utility variables, changes in tour utility, caused by changes in the transport system

performance or in spatial activity opportunities, have a significant effect on the choice of

pattern.  Such effects cannot be captured by tour or trip-based travel demand models.

It would be possible to conduct more tests that might lead to refinement of the model

structure, utility function structure or model variables.  Testing of the pattern model’s

multinomial logit assumption, with the likely introduction of nesting structure to

accommodate correlation among subsets of pattern alternatives, remains as a high priority

research objective.  The need probably exists for nesting, and perhaps more complex

correlation structures, because of the multidimensional nature of the pattern choice.  For
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example, strong random utility correlation probably exists among patterns that share primary

purpose.

Nevertheless, the tests described in this section provide strong evidence, in addition to the

individual parameter tests of the previous sections, in support of the basic model structure,

utility function structure and lifestyle variable categories of the day activity schedule model.

5.7  Empirical issues

This section addresses issues of model and survey design that arose in the implementation of

the Portland model.

5.7.1 Conditional independence

The Portland empirical implementation assumes conditional independence among all tours.

The reason is that this reduces, by a factor equal to the number of primary tour alternatives,

the computations required to calculate expected maximum tour utility needed in the pattern

model utility function.  However, it does not include primary tour timing, mode or

destination in the pattern.  The consequence is the failure to capture time of day constraints

between tours and the dependence of secondary tour choices on primary tour timing, mode

and destination.

5.7.2 Resolution of choice dimensions

Detailed resolution of the choice set yields a model with much information, but this

exacerbates the combinatorial problem associated with the large choice set, as discussed in

Section 2.4 .  Therefore, choice set resolution will probably be a perpetual issue, for which

the appropriate answers change as technology evolves.  Here we discuss some of the model

dimensions for which resolution is an issue in the Portland model.
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5.7.2.1  Day activity pattern

Activity pattern resolution is discussed in detail in Section 0, where we cite data-induced

weaknesses in the distinction of at-home maintenance and leisure activities, and weakness of

having only three purpose categories when accessibility and its importance vary at a more

detailed level.  We note the desirability of including more tour sequence detail, but on the

other hand the model is currently able to distinguish most observed patterns in this

dimension.  The 570 alternative day activity pattern definition is thus quite rich, but would

benefit from additional detail, perhaps most in the area of activity purpose.

5.7.2.2  Times of day and destinations

Fine resolution is especially desirable for destination and time of day choices.  Fine spatial

resolution is desirable because zonal aggregation masks important spatial variability in

activity opportunities and point-to-point travel conditions.  Attractiveness of nonmotorized

modes for secondary activity access is particularly sensitive to this variability, and this can

affect pattern choice.  Temporal resolution is desirable because small timing differences can

make substantial differences in transport level of service and in estimates of air quality

impacts associated with auto engine starting temperatures.

Refining temporal and spatial resolution in the choice set presents many challenges because

it can substantially increase model size and the need for detailed spatial and time-specific

location and travel characteristics.  The standard method of handling large choice sets,

alternative sampling, is used in the Portland model for destination choices, and might be

employed to handle extremely fine resolution of destination and time of day dimensions.

The use of geographical information systems is enabling the development and maintenance

of detailed spatial databases.  The availability of temporally specific transport level of service

data is more problematic, although advances in network modeling may make such data

available in the future.  The prospects for improving temporal and spatial resolution in the

near future appear very good, and may lead to substantial improvements in the day activity

schedule model.
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Even if temporal resolution was substantially improved, the model would retain weakness in

this area because time of day is not explicitly modeled for subtours or intermediate stops.

With the current temporal resolution, explicit modeling of these decisions provides little

information, because they are usually of short duration, occurring within a single time period.

However, if temporal resolution was improved, the benefit of explicitly modeling timing of

secondary stops would increase.

5.7.3 Integration across the conditional hierarchy

We have already discussed at length the importance of using expected maximum utility from

conditional models to explain choices in marginal models, thereby capturing sensitivity of

the marginal choice to attributes of alternatives on the conditional level.  Unfortunately, the

computation required to compute expected maximum utility grows with the number of

alternatives, and this grows exponentially with the number of conditional levels in the model.

This is why the Portland model system does not use expected utility from conditional subtour

and intermediate stop models to explain choice in the upper levels of the model.

5.7.4 Survey data

Development of the day activity schedule for Portland depended upon the availability of data

from one of the most advanced activity and travel surveys.  This survey, described briefly in

Section 5.3 , provides information about a sample of households and its members, including

detailed two-day activity and travel diaries and stated preference exercises.  The information

collected in the survey proved adequate for implementing the day activity schedule model.

However, the experience gained in this research yields suggestions for future survey

improvements.  They address issues of nonresponse, missing items, ambiguous items and

unneeded detail.  The suggestions involve the collection of additional household and personal

information, but may actually ease the respondent’s reporting burden in the diary portion of

the survey.  Of course, these suggestions must be weighed against other needs that such a

survey must serve.
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5.7.4.1  Household, family and personal information

Suggestions are grouped by the lifestyle and mobility categories used in the specification of

the day activity pattern model.

Household structure.  Household structure is important in identifying the decision unit for

residential choice and for explaining activity schedule decisions.  Therefore, a clear

identification of this structure is important.  Unfortunately, the terms household and family

are difficult to define precisely.  Define as a household all persons who are living together,

and as a family all persons within a household who are related by blood, marriage or long

term cohabitation commitment.  In the survey, clearly define family and household

membership of each person.  For each family, identify the principal worker if there is one.

This information makes it possible to use family units and non-family individuals as the

decision units for residential choice, and to explain activity schedule decisions with well-

defined household and family attributes.

Capabilities.  Although financial information is difficult to collect, we suggest collecting

somewhat more and making concerted efforts to collect it.  First, it would be valuable to have

earned income for each person in the household.  Income differentials within the family may

associate with role specialization in pattern choice (for example, higher income individuals

may have less maintenance responsibility and/or leisure activity), and differential weighting

of schedule accessibility in residential choice.  Second, family net worth (assets minus

liabilities) can significantly affect value of time, pattern choice and residential choice.  Third,

educational level attained by each person may be used to explain schedule and residential

choice.  In particular, persons with high education levels may (a)use telecommunications

activity alternatives heavily, (b)exhibit complexity and variety in pattern choice, (c)choose

different leisure activities than others, and (d) choose residential locations with above

average school quality and cultural amenities.

Activity commitments, priorities and habits.  A person’s usual time allocation among

types of activities constitutes an activity program that significantly influences daily

scheduling decisions.  One component of this program, usual weekly work hours was

collected in the Portland survey and used to explain pattern choice.  Unfortunately,
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nonresponse to this item was high among workers, and its use in the model reduced the

sample size considerably.  Collect from each household member a usual weekly time

allocation among 7 activity types, including work at home, work away, maintenance at home,

maintenance away, leisure at home, leisure away and transportation.  These would be used to

explain pattern choice, and it would therefore be necessary to model time allocation as a

lifestyle decision.

People in work arrangements that require many work related stops probably have distinctive

activity patterns, complex work tours and reliance upon auto-drive-alone mode.  Collection

from each worker of usual number of work-related stops per week at locations other than the

usual workplace would enable use of this item to explain activity schedule.

Mobility choices.  Non-travel activity alternatives.  Two characteristics may significantly

affect participation in at-home activities that have traditionally been done away from home.

First, collect for each person in the household the possession of a credit card, which is almost

a pre-requisite for telephone purchases.  Second, for the household collect the number of

computers at home with electronic mail and world wide web access capabilities.  In

households with one or more such computers, ask each person if they are the principal user

of one of the machines, and if they have convenient access to use one of the machines.

Automobile and bicycle holdings.  Ask the same three questions for motorized private

vehicles (autos, vans, trucks, motorcycles, etc.):  (a) how many are available in the

household, and for each person, (b) are you the principal driver of one of them, and (c) do

you have convenient access to drive one of them.  Ask the same three questions about

bicycles, and additionally ask of each person, (d) have you ridden a bicycle for transportation

(as opposed to recreation) in the last 6 months.  These questions enable the modeling of

mobility outcomes that may prove to be important in explaining activity schedule choice.

Work location and transportation arrangements.  For each worker or student, information

about location and work transport arrangements can enable modeling of mobility outcomes

that condition activity schedule choices.  Specifically, ask (a) usual work location, (b) when

did you start there, (c) usual mode to and from work (giving the same list of alternatives as is

used in the diary survey), (d) what was your previous usual work location, (e) cost to you and
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payment method of parking, (f) walk time from vehicle to work space for each mode, (g)

amount of employer subsidy for not driving and the qualifying alternate modes, and (h) type

of bicycle parking facility (indoors, locker, sheltered rack, open rack, none).

Residence.  Except for location and housing type, ask residence questions of each family unit

and each non-family member of a household, so they can be used as the decision unit in the

residential choice model.  These questions include ownership category, date moved in, and

previous location.

5.7.4.2  Diary information

Reporting period.  Substantial variety exists in when people’s day activity schedules begin.

Rather than arbitrarily starting the reporting period at 3 a.m., have each person start their

reporting with their longest episode in bed, and continue reporting for at least 24 hours, until

they are again in a long bedtime episode.  This enables collecting true day activity schedule

information.

Activity categories.  A large number of activity purposes is not necessary.  However, the

procedure for recording activities should satisfy several criteria.  (a) Every activity must fit in

a category found in a list.  (b) Each category should have a clear measure of size for

aggregate destination alternatives (including block face and traffic analysis zone).  (c) At-

home activity categories should be distinguished by the nature of the at-home vs on-tour

trade-off;  activities that can only be conducted at home should be kept separate from those

for which on-tour substitution is possible.  (d) For work related activity the actual activity

purpose should be noted from the list, and the activity can be noted as work related.

Likewise, for chauffeur (pick-up or drop-off) and tagalong activities, the activity purpose of

the principal actor rather than the chauffeur or tagalong should be marked in the list, and the

activity can be noted as chauffeur or tagalong.  In this way, these activities have useful

information to explain the destination choice.

Categories satisfying these criteria can be successfully used to refine the three-purpose

categorization of the Portland model when technological progress makes more categories

feasible.  Table 5.32 lists nine suggested activity categories, along with each category’s
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destination size measure.  Except for number 8, activity in any category can be conducted at

home.  Number 5 is the only activity that can only occur at home.

Table 5.32 Suggested activity categories for the activity diary

Activity Purpose Destination Size Measure
1 work total employment
2 school or schoolwork school enrollment
3 shopping, convenience banking retail employment
4 acquiring services medical, professional, government and other non-food

service employment
5 serve household at home (meal prep,

cleaning, property maintenance, childcare)
6 eating food service employment
7 social or recreational at a residence

(including own residence)
residential population

8 social, recreational, religious, civic,
cultural, spectator, fitness (at a non-
residence location)

public facilities annual attendance ( charities, civic centers,
schools,  libraries, social service organizations, theaters,
stadiums, amusement parks, pools, parks, playgrounds,
athletic facilities, recreational facilities

9 personal hygiene and sleep

At-home activities.  It is important to achieve a full accounting of all time in the day activity

schedule, but also to avoid unnecessary detail in the reporting of at-home activities.  To

achieve this collect information for at-home activity episodes.  Each activity episode consists

of all activity beginning when arising from bed for the day or when arriving home, and

ending when departing from home or returning to bed at the end of the day.  For each at-

home activity episode, ask the person to report the amount of time spent in each of the

relevant activity categories on the list in Table 5.32.

On-tour activities.  For on-tour activities, also employ the concept of activity episode.  An

on-tour activity episode begins with travel, continues with at least one activity from the list

(or principal’s activity, if this is a chauffeur or tagalong trip), and ends when the next travel

begins.  Ask when the travel began and when it ended.  Rather than using a branching list of

questions about travel arrangements, use a table of modes, with several blank columns

representing legs of an intermodal journey to the next activity location, as in Figure 5.5.  Ask

the person to check the mode for each leg, and mark the leg with a ‘P’ if they parked a car.

Ask no additional questions about route, money, party size or other items, none of which are

used in developing the model.  Ask them to mark on the activity category list the most
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important activity at the new location.  Reporting travel and activity this way should be

compact, easy to understand, quick, accurate and easy to interpret.

Leg of journey
Mode used 1st 2nd 3rd 4th 5th 6th
walk
car, drive alone
car, drive with passenger(s)
car, passenger
MAX
public bus
other transit service
bicycle

Figure 5.5 Suggested table format for collecting transportation information in the diary

Activity Priorities.  Since the day activity schedule model structures the day according to

activity priorities, it would be better to collect priority information directly rather than

inferring it from other attributes.  Rather than asking the respondent to give a complete set of

priorities, do the following: (a) For each at-home activity episode ask them to mark on the

activity category list the activity purpose that was most important.  (b) Upon each return

home, ask them to look back over all on-tour activity episodes since they last left home and

mark the most important.  (c) At the end of the day ask them to look back over the day’s

activity episodes—at-home and on-tour—marking the three most important episodes as first,

second and third most important.
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6 

Model Application and Evaluation

This chapter demonstrates how the day activity schedule model captures behavior that trip

and tour-based models miss, by examining how it handles various changes in activity and

travel conditions.  At the same time it also considers weaknesses of the implemented day

activity schedule model, and how they might be overcome.  Section 6.1 describes how the

day activity schedule is designed to work for prediction with traffic network models, as well

as the production system being implemented for Portland and the simplified procedures used

here for demonstration purposes.  Next we analyze, with application results, the model

system’s response to a hypothetical peak period toll (Section 6.2 ) and to improvements in

transit accessibility (Section 6.3 ).  Section 6.4 adds less detailed analysis, without

application results, of response to other exogenous changes.  In all analyses, the focus of

attention is on how the day activity schedule model captures activity pattern adjustments, and

the resulting impact on travel.  The empirical results do not constitute full model validation,

which would require a full implementation of the application procedures with network

models, and subsequent empirical validation of predicted versus actual results for observed

exogenous changes.

6.1  Model system application procedures

6.1.1 Basic procedures and variations

To make predictions, the day activity schedule model is applied to each decision maker in the

population—alternatively, a simulated population or representative sample—by calculating a

set of probabilities for alternatives in the choice set, and possibly using the probabilities to

simulate a day activity schedule.  Calculation of the probabilities requires the analyst to
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supply the model with the characteristics of each decisionmaker and attributes of his or her

activity and travel environment explicitly included in the model’s utility functions.  The

probabilities or simulated schedules are translated into a form that can be used by traffic

network models to predict route choices and aggregate network conditions.  Since the

network model relies on demand predictions of the day activity schedule, and the day activity

schedule model relies on network conditions predicted by the network model, iterative

procedures must be used to assure that assumptions and outputs are consistent between the

models.  This relation is shown simplistically in Figure 6.1.

Day Activity
Schedule

Model

Network
Models

Network traffic
conditions

Demand
predictions

Figure 6.1 Model application

Reiteration of the day activity schedule model and network models is required to achieve consistency of input assumptions
and outputs between the two models.

The day activity schedule model can be used in this way with traditional traffic equilibrium

models.  Schedule probabilities or simulated schedules are translated into a set of trip

probabilities or simulated trips, using sequence, timing, mode and destination information

from the schedule.  These are aggregated in time- and mode-specific trip matrices and

assigned to the transport network.  The process is reiterated to achieve consistency between

models, resulting in a prediction of demand and associated transport system level of service.

The process may require replications to achieve statistically reliable predictions.

Recently, attention has been devoted to the development of traffic simulation models.  Some

simulations being developed require demand predictions in the form of day activity schedules
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instead of trips, to improve estimation of environmental effects (Barrett, Berkbigler, Smith et

al., 1995).  The day activity schedule model output satisfies this requirement.  Such a

combination of the day activity schedule model and a traffic simulation must still achieve

consistency between demand and network predictions.

Since the day activity schedule model does not explicitly predict every attribute of the

schedule, such as more than one stop on the way home from the primary destination,

adjustment procedures are required to include trips not explicitly modeled.  This may involve

trip matrix adjustment, using factors for each origin-destination pair derived by comparing

modeled and actual trips in the estimation data set.  Alternatively, the adjustment for

unmodeled attributes may occur before the schedule is translated into trips.  This can be done

by sampling a detailed schedule from a set of observed schedules that match the modeled

attributes of the schedule, or using estimation sample proportions to simulate unmodeled

attributes.  Regardless of the method used, successful implementation of the model system

requires a sufficiently detailed representation of the day activity schedule so that the

important policy-sensitive travel responses are modeled explicitly rather than relying on a

policy-insensitive adjustment procedure.

6.1.2 Portland production system application procedures

The Portland production version of the model is used in conjunction with a multi-class

equilibrium assignment model.  Figure 6.2 illustrates how the activity-based model system

fits within the Portland forecasting system.  Using (a) exogenous data for both the base case

and policy cases, (b) a synthetic disaggregate population for each scenario generated from the

data, and (c) a set of assumed network performance characteristics, the activity-based

demand model generates a set of trip matrices.  The demand model consists of an auto

ownership model plus the day activity schedule model.  The demand and network models

reiterate to achieve consistency as described above.
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Activity Schedule Model

Activity Based Demand Model

Network Assignment

Traffic conditions Trip matrices

Auto ownership

Day pattern & home based tours

Subtours and intermediate stops

Half-tour matrices

Synthetic households

Figure 6.2 Portland forecasting system

The production system version of the day activity schedule model uses a simpler version of

the day activity pattern than was presented in Chapter 5.  Work subtours and intermediate

stops are not identified by purpose, and at-home maintenance activity is not identified.  These

simplifications reduce the number of pattern alternatives from 570 to 114.  In addition,

although most of the same variables are included in the specification, the model does not use

the utility function structure presented in Chapter 5.  The parameters of the production

version of the day activity pattern model are presented in Appendix B.

Within the day activity schedule model, aggregate application methods are used for the

conditional work-based subtour and intermediate stop components to reduce computer run

time. This prevents the use of logsums in the home-based tour models that would otherwise

capture the influence on tour choice of expected utility from extra stops on the tour mode and

primary destination choices.

The disaggregate component, including the day activity pattern model and the home-based

tour models, predicts activity schedule probabilities for each person in the synthetic

population.  It then aggregates them into a set of half-tour matrices that provide a count of

time-period and mode-specific half-tours between all pairs of zones.  Since these models do
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not explicitly identify tour type for secondary tours, tour type fractions for secondary tours in

the survey data are applied to each secondary tour predicted by the pattern model. In

addition, some of the secondary tour alternatives do not exactly describe the number of

secondary tours, so we make them exact during application by using average values from the

survey sample.

The aggregate component of the activity schedule model adds work subtours to the half-tour

matrices using the predictions of the work subtour model and translates each half-tour into

chained or unchained trips using the predictions of the intermediate stop model. To do this,

the work-based subtour models are applied to the predicted zonal totals of work stops for

each of several market segments.  Likewise, the intermediate stop models are applied to the

zone-to-zone totals of half-tours for each of the market segments.

6.1.3 Simplified procedure for model demonstration

To test how the day activity schedule model performs in application the disaggregate portion

of the Portland application system is adapted in the following ways.  First, the model is

applied to the estimation sample rather than a synthetic population.  Second, network

assignment and reiteration procedures are omitted, so the model predictions do not take into

account secondary demand adjustments resulting from changed traffic conditions.  Third, the

570-alternative pattern model presented in Chapter 5 predicts pattern shifts using expected

utility from the tour models.  Finally, since the Portland application system cannot yet base

travel predictions on the 570-alternative pattern model predictions, the 114-alternative

production version shown in Appendix B supplies pattern and half-tour predictions.

6.2  Peak period toll policy

6.2.1 Policy and expected behavioral response

Consider the imposition of a $.50 per mile toll on all auto travel occurring during a 2.5 hour

morning peak period and a 3 hour afternoon and early evening peak period.
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Many different responses are expected that together reduce peak period auto demand and

increase demand for other modes and times.  Some people simply change mode or timing to

avoid the toll.  Some pay the toll and continue as before.  Others, with a high value of time,

who previously made a short trip to avoid the congestion, take advantage of reduced

congestion and happily pay the toll in order to get to a more desirable distant destination.

Trip and tour-based models capture these responses.  Others make more complex pattern

changes, such as eliminating a stop on the way home from work to enable a mode or timing

change.  These would be missed or modeled separately by a trip-based model, but perhaps

captured by a tour-based model.  Others may eliminate a stop on the way home from work,

but replace it with a separate auto or walk tour in the evening to achieve their activity

objective.  This kind of change is missed by the trip and tour-based models, but captured by

the day activity schedule.  The fundamental difference in predictions between the day activity

schedule model and trip or tour-based systems is that the day activity schedule predicts travel

for an activity pattern that has adapted to the exogenous change.

6.2.2 Activity pattern effects

We apply the day activity schedule model to the estimation sample under the estimation

conditions and under the toll policy. In reality, the demand response to a toll would improve

travel times on congested facilities, inducing a secondary demand adjustment.  The initial

and secondary demand adjustments could both be analyzed;  both would involve adjustments

in activity patterns.  However, for simplicity of analysis we limit analysis to the initial peak

period toll response. Thus, the model is applied without network equilibration.  That is, the

model predictions assume a toll without corresponding changes in travel times associated

with the demand shifts.  Aggregate results are shown in Table 6.1 for the 570 alternative

demonstration model as well as the 114 alternative production model.  The results are

similar, but not the same, for the two model versions.  Subtotals by primary purpose show

that the 114 alternative production model is more elastic.  The following analysis explains

how the model captures activity pattern shifts.



Model Application and Evaluation 143

Table 6.1 Day activity pattern adjustments for  $.50 per mile peak period toll

Demonstration Model *

(570 alternatives)
Production Model*

(114 alternatives)
Pattern type Pattern’s

predicted
percent in
sample
without
toll

Pattern’s
predicted
percent in
sample
with toll

Percent
change in
predicted
number of
patterns,
with toll

Pattern’s
predicted
percent in
sample
without
toll

Pattern’s
predicted
percent in
sample
with toll

Percent
change in
predicted
number of
patterns,
with toll

Subsistence Patterns
Home, 0 sec tours 0.5 0.5 8.6 0.8 0.8 10.8
Home, 1+ sec tours 2.1 2.2 6.5 2.3 2.5 5.9
Simple Tour, 0 sec tours 21.9 21.5 -1.8 17.5 17.3 -1.2
Simple Tour, 1+ sec tours 10.9 10.6 -2.6 9.6 9.3 -3.6
Complex Tour, 0 sec tours 15.3 15.2 -0.8 19.0 18.6 -2.3
Complex Tour, 1+ sec tours 5.5 5.4 -1.7 8.3 7.9 -4.6
Maintenance Patterns
Home, 0 sec tours 6.2 6.4 2.8 5.6 5.8 4.4
Home, 1+ sec tours 1.5 1.5 1.4 1.5 1.5 0.4
Simple Tour, 0 sec tours 5.6 5.7 2.1 4.5 4.7 3.9
Simple Tour, 1+ sec tours 5.8 5.8 0.2 5.4 5.5 1.3
Complex Tour, 0 sec tours 4.7 4.8 2.3 5.4 5.6 4.2
Complex Tour, 1+ sec tours 5.1 5.1 0.1 5.4 5.5 1.2
Leisure Patterns
Home, 0 sec tours 4.8 4.9 2.8 4.4 4.7 4.7
Home, 1+ sec tours 0.5 0.6 1.7 0.7 0.7 0.7
Simple Tour, 0 sec tours 4.7 4.8 1.9 4.3 4.4 2.4
Simple Tour, 1+ sec tours 2.2 2.2 -0.5 2.3 2.3 0.5
Complex Tour, 0 sec tours 1.7 1.8 3.3 2.0 2.1 2.3
Complex Tour, 1+ sec tours 1.0 1.0 1.1 0.9 0.9 0.3
Subtotals by home maintenance
no at-home maintenance 55.5 55.2 -0.5
at-home maintenance 44.5 44.8 0.6
Subtotals by secondary tours
0 sec tours 65.4 65.6 0.3 63.5 63.9 0.7
1+ sec tours 34.6 34.4 -0.6 36.5 36.1 -1.2
Subtotals by Primary tour complexity
at home 15.6 16.1 3.3 15.3 16.0 4.5
simple 51.1 50.6 -0.9 43.6 43.4 -0.5
complex 33.3 33.3 -0.1 41.1 40.6 -1.2
Subtotals by primary purpose
subsistence 56.1 55.4 -1.3 57.5 56.4 -2.0
maintenance 28.9 29.3 1.5 27.8 28.6 2.8
leisure 15.0 15.3 1.9 14.6 15.0 2.6
Total all patterns 100.0 100.0 100.0 100.0
*Both models are applied here with the 6475 observation sample used to estimate the 570 alternative model.

Increased peak period travel costs increase the SP-based generalized time variables for peak

period auto tours in the home-based tour mode/destination choice models (Table 5.5),

reducing utility of these tours.  This reduces expected maximum mode/destination utility

(logsums) in the peak period alternatives of the times-of-day choice models (Table 5.2 and

Table 5.3.)  It also reduces expected maximum time of day utility (estimated by time-of-day

weighted mode-destination utility in the production model), which is the expected maximum
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tour utility used in the pattern choice model (Table 5.30 and Table B.1), where patterns with

tours that rely most heavily on peak period auto travel become relatively less attractive.  The

times-of-day models show that subsistence tours, especially those with stops on the way to or

from work (included in ‘Complex Tours’ in Table 6.1), rely heavily on peak period travel, as

do secondary tours on subsistence patterns.  Thus, there is a shift away from patterns with

subsistence tours in the pattern model, although only in the 114 alternative model is the shift

stronger for patterns with complex tours and secondary tours.  This is accompanied by a shift

toward all other pattern types, especially to at-home patterns and those with no secondary

tours.  While the pattern shift should definitely reduce the number of subsistence tours and

the total number of tours, the net change in maintenance and leisure tours could be positive

or negative, because the increase in number of maintenance and leisure patterns offsets the

pattern simplification effect for these purposes.  This shift in patterns is the response that trip

and tour-based models are unable to capture.

6.2.3 Travel effects

Now consider how pattern shifts combine with time and mode change effects to yield travel

predictions in the tour models.  This analysis is supported by predictions from the production

system using the 114-alternative pattern model.  Recall that patterns shift from subsistence to

maintenance and leisure, and they simplify in terms of number and possibly also complexity

of tours, yielding an uncertain net effect on number of maintenance and leisure tours.

In the times-of-day model, a major shift away from the peak periods occurs for all tours

predicted by the pattern model.  Then in the mode and destination models, a shift occurs

away from auto mode for all remaining peak period tours.  Combining this with the

conclusions from the pattern model, the expected changes in the tour models include (a)

shifts away from travel by auto during the peak period, (b) substantial increases in travel for

all other combinations of timing and mode,  (c) a decrease in the total number of tours, (d) a

decrease in subsistence tours, and (e) offsetting changes that may yield small increases or

decreases in the number of maintenance and leisure tours.
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Table 6.2 shows changes in predicted half-tours.  A half-tour constitutes the travel from

home to primary destination, or from primary destination back home, always predicted to

occur in a single time period with a particular mode.

Table 6.2 Half-tour predictions under the $.50 per mile peak period toll

Results are for the 114 alternative production model.

Tour category Predicted
percent of
half-tours in
sample
without toll

Predicted
percent of
half-tours in
sample
with toll

Percent
change in
predicted
number of
half-tours,
with toll

Subsistence tours
Auto drive alone peak 18.9 13.4 -29.4
Auto drive alone off-peak 12.2 12.2 -1.3
Auto shared peak 2.5 3.1 21.7
Auto shared off-peak 1.6 1.8 13.8
Other peak 3.6 6.9 90.0
Other off-peak 2.3 3.0 27.7
Maintenance tours
Auto drive alone peak 6.1 4.9 -20.4
Auto drive alone off-peak 13.4 13.7 1.2
Auto shared peak 3.9 3.8 -2.0
Auto shared off-peak 8.7 9.1 4.2
Other peak 1.1 1.5 45.3
Other off-peak 2.4 2.7 8.5
Leisure tours
Auto drive alone peak 3.1 2.5 -17.5
Auto drive alone off-peak 6.2 6.2 -0.6
Auto shared peak 3.8 3.8 -0.6
Auto shared off-peak 7.1 7.4 3.1
Other peak 1.0 1.4 34.6
Other off-peak 2.1 2.4 9.5
Subtotals by mode
Auto drive alone 59.9 53.0 -12.3
Auto shared 27.5 29.1 4.6
Other 12.6 17.9 40.8
Subtotals by time period
Peak 43.9 41.5 -6.4
Off-peak 56.1 58.5 3.3
Subtotals by purpose
Subsistence 41.1 40.5 -2.5
Maintenance 35.6 35.8 -0.3
Leisure 23.3 23.7 0.8
Subtotals by priority and purpose
primary subsistence 41.2 40.5 -2.5
primary maintenance 15.7 16.2 2.5
primary leisure 7.2 7.4 1.7
secondary maintenance 19.9 19.6 -2.5
secondary leisure 16.1 16.3 0.4
Total 100.0 100.0 -1.0
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As expected, the mode and time of day effects are very strong.  Among subsistence tours, the

shift is primarily from auto drive alone to other peak period modes, with smaller time of day

effects.  For nonwork tours, the mode and time of day effects are more balanced.  The total

number of tours goes down and the subtotals by tour purpose predict a reduction in number

of subsistence tours, as expected.  The purpose subtotals also show that the policy’s effect to

reduce tourmaking in maintenance patterns is nearly offset by the shift from subsistence to

maintenance patterns, netting almost no change in number of maintenance tours.  Finally, the

offsetting effect is even stronger for the leisure purpose where we see a net increase in

primary and secondary leisure tours.  This indicates that shifts to leisure patterns and

secondary leisure tours on subsistence and maintenance patterns more than offset the toll’s

curtailment of tourmaking on leisure patterns.  This is a very important capture of induced

demand made possible by the day activity schedule model.

The above explanation of model response to the peak period tolls excludes the impact on

intermediate stop location models and work-based tours.  These too are affected by the peak

period tolls, through the toll’s direct effect on stop utility, as well as pattern changes and tour

destination changes.  However, the reductions in peak period intermediate stop utility for

auto do not influence the model’s pattern predictions, because the home-based tour models

do not include expected intermediate stop utility as an explanatory variable.  Thus, the model

system fails to capture pattern changes induced by the policy’s effect on subtours and

intermediate stops.

Consider the effect in the model system if it included this omitted variable in the tour models.

Increased peak period travel costs increase the SP-based generalized time variables for

intermediate stops in peak period auto tours in the intermediate stop model, reducing utility

of these stops.  This reduces expected maximum stop location utility (logsums) in the peak

period auto tours with intermediate stops in the home-based tour mode/destination choice

models (Table 5.5), reinforcing the reduced utility already caused by the increased

generalized time.  Thus, including the missing variable would strengthen the effects seen in

the current implementation.  In other words, by omitting the expected utility connection of

intermediate stops to home-based tours, the model system underestimates the toll’s tendency

to reduce trip chaining during the peak period.
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6.2.4 Heterogeneity of activity patterns and pattern effects

The previous analysis ignored the lifestyle effects in schedule choice and the associated

potential heterogeneity of response to the toll policy.  Consider these effects now, by

observing predicted shifts in each of four dimensions of the activity pattern for 22 population

segments, defined by household structure and role, capabilities, activity commitments and

mobility decisions.  Predictions come from the 570 alternative demonstration model, applied

to the 6475 observation estimation sample.  In this discussion, results attributed to population

segments are the model’s predictions for the sample.

Table 6.3 shows for each population segment (a) its percentage in the sample; (b) the

distribution of primary activity purpose among subsistence, maintenance and leisure; and (c)

the percentage change induced by the toll for each purpose.  Role specialization occurs by

gender in families, with a greater tendency of parents to work, and a stronger policy

effectcurtailing work among women.  Income, usual work hours and auto ownership

correlate strongly with probability of working.  The policy’s work curtailment effect is

relatively weak for disabled persons, people with long work hours and people who do not

have cars.

For the same 22 population segments, Table 6.4 examines whether the primary activity

occurs at home or on tour, and whether that tour is simple or includes extra stops.  Again the

effect of children is very strong, with fathers much less likely to stay home, mothers more

likely to make extra stops on the primary tour, and parents’ travel is curtailed.  Primary tour

complexity and income have strong positive correlation that is not curtailed by the toll

policy;  this is consistent with the expectation of high willingness to pay for convenient auto-

based schedule complexity among people with high value of time.  Disabled people choose

simpler patterns and are less affected by the policy than nondisabled counterparts.  Work

hours and primary tour complexity are positively correlated.  The policy curtails primary

activity travel less among nonworkers and students than it does among others, probably

reflecting lower need to travel during the peak period.  People with one vehicle per adult are

far less likely to stay home for the primary activity, and the policy curtails this tendency,

probably because of auto dependency.
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Table 6.3 Predicted toll response of 22 population segments—primary activity purpose

Subsistence Patterns Maintenance Patterns Leisure Patterns
Population segment Segment’s

percent of
sample

Pattern’s
predicted
percent in
segment
without
toll

Percent
change
with toll

Pattern’s
predicted
percent in
segment
without
toll

Percent
change
with toll

Pattern’s
predicted
percent in
segment
without
toll

Percent
change
with toll

Household structure and role
Nonfamilies 23.5 53.4 -1.1 29.6 1.1 17.0 1.4
Families with no children, males 22.0 53.1 -1.0 27.4 1.1 19.6 1.3
Families with no children females 23.1 44.0 -1.7 38.4 1.2 17.6 1.7
Families with children, males 14.8 85.1 -1.0 9.4 5.2 5.5 6.4
Families with children, females 16.5 55.1 -1.9 34.2 2.1 10.7 3.1
Household annual income ($1000s)
under 15 10.5 31.8 -1.2 43.9 0.4 24.4 0.8
15 to 29 22.3 43.0 -1.3 37.3 0.8 19.7 1.3
30 to 44 25.4 58.2 -1.4 27.5 1.7 14.3 2.2
45 to 59 18.2 64.9 -1.4 23.5 2.4 11.6 3.0
over 60 23.6 70.4 -1.2 20.0 2.7 9.6 2.9
Disability limits travel
no 95.4 58.1 -1.4 28.1 1.7 13.8 2.1
yes 4.6 16.6 -0.8 45.5 -0.1 37.9 0.4
Usual weekly work hours
nonworker 32.2 65.1 -0.2 34.9 0.3
1 to 19 3.1 62.2 -2.2 27.2 3.7 10.6 3.7
20 to 34 8.9 71.8 -1.7 19.9 4.2 8.2 5.1
35 to 44 34.1 86.2 -1.3 9.4 8.0 4.5 8.9
45 to 54 11.1 89.0 -1.0 7.4 7.6 3.6 8.6
55 or more 5.4 90.3 -0.9 6.5 7.6 3.3 8.8
students without other employment 5.2 70.9 -1.0 18.4 2.3 10.7 3.1
Vehicles per adult
0 5.7 37.1 -0.1 39.4 0.1 23.5 0.1
under 1 17.4 47.6 -0.9 35.2 0.6 17.3 1.2
1 or more 76.9 59.5 -1.5 26.7 2.0 13.8 2.4
Total 100.0 56.1 -1.3 28.9 1.6 15.0 1.9

Table 6.5 examines two dimensions of the activity pattern, secondary tour participation and

participation in at-home maintenance activity.  Mothers are much more likely to conduct

extra tours, and the toll appears to curtail extra tours less among fathers than among others.

Income has little effect on secondary tour participation, but here again the toll policy has

greater tendency to simplify the patterns of lower income persons.  Persons with disabilities

make less secondary tours, whereas students, part-time workers and those with more car

availability are more likely to conduct extra tours, and the toll reduces secondary tours more

among nonworkers and people with cars.
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Table 6.4 Predicted toll response of 22 population segments—primary tour type

Primary activity at home Simple primary tour Complex primary tour
Population segment Pattern’s

predicted
percent in
segment
without toll

Percent
change with
toll

Pattern’s
predicted
percent in
segment
without toll

Percent
change with
toll

Pattern’s
predicted
percent in
segment
without toll

Percent
change with
toll

Household structure and role
Nonfamilies 14.5 2.5 51.6 -0.6 33.8 -0.1
families with no children, males 16.8 2.8 51.9 -0.8 31.4 -0.1
families with no children females 19.6 2.8 49.4 -0.9 31.0 -0.3
families with children, males 8.3 7.6 57.0 -1.1 34.8 0.1
families with children, females 16.5 3.8 46.2 -1.1 37.3 -0.3
Household annual income ($1000s)
under 15 25.0 1.4 48.7 -0.6 26.3 -0.1
15 to 29 19.1 2.3 50.3 -0.8 30.6 -0.2
30 to 44 14.4 3.8 51.8 -0.9 33.7 -0.2
45 to 59 13.0 4.7 52.0 -1.1 35.1 -0.2
over 60 11.4 4.8 51.4 -1.0 37.3 -0.1
Disability limits independent travel
No 14.5 3.8 51.5 -0.8 34.0 -0.4
Yes 39.0 0.7 41.6 -0.5 19.3 -0.2
Usual weekly work hours
Nonworkers 30.0 0.9 41.6 -0.5 28.3 -0.2
1 to 19 17.4 4.0 48.6 -1.1 34.1 -0.6
20 to 34 13.2 5.3 52.7 -1.1 34.2 -0.4
35 to 44 6.7 9.2 57.5 -1.0 35.8 -0.1
45 to 54 7.6 8.7 55.1 -1.1 37.3 -0.1
55 or more 7.3 9.0 53.9 -1.2 38.8 -0.1
students without other employment 13.6 3.3 54.5 -0.6 31.9 -0.3
Vehicles per adult
0 27.3 0.2 52.9 -0.2 19.8 0.0
under 1 21.1 2.0 51.9 -0.7 27.0 -0.3
1 or more 13.5 4.3 50.8 -0.9 35.8 -0.3
Total 15.6 3.4 51.1 -0.8 33.3 -0.3

Turning finally to participation in at-home maintenance activity, we see a strong gender-

based role specialization that is heightened in the presence of children.  Income and usual

work hours are negatively correlated with at-home maintenance.  The toll policy has very

little effect on at-home maintenance.

In summary, the model captures much heterogeneity in both pattern choice and response to

the toll policy captured by the model.  The results, none of which is surprising, clearly

demonstrate the importance of explicitly modeling heterogeneity in the pattern choice.
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Table 6.5 Predicted toll response of 22 population segments—secondary tours and at-home maintenance

with secondary tours with at-home maintenance
Population segment Pattern’s

predicted
percent in
segment
without toll

Percent
change with
toll

Pattern’s
predicted
percent in
segment
without toll

Percent
change with
toll

Household structure and role
nonfamilies 34.1 -0.5 36.0 0.3
families with no children, males 31.7 -0.7 31.6 0.2
families with no children females 33.3 -0.7 41.8 0.2
families with children, males 32.8 -0.2 29.0 0.4
families with children, females 42.6 -0.7 53.8 0.1
Household annual income ($1000s)
under 15 32.0 -1.0 42.0 -0.1
15 to 29 34.3 -0.9 41.1 0.1
30 to 44 35.1 -0.7 38.7 0.2
45 to 59 35.2 -0.5 37.1 0.4
over 60 35.0 -0.2 34.5 0.5
Disability limits independent travel
no 35.2 -0.8 38.6 0.2
yes 22.7 -0.7 31.1 -0.1
Usual weekly work hours
nonworkers 35.3 -1.5 52.2 -0.3
1 to 19 41.5 -0.4 43.1 0.3
20 to 34 37.3 -0.6 37.3 0.5
35 to 44 33.0 -0.1 30.5 0.8
45 to 54 32.2 0.2 27.9 0.7
55 or more 30.1 0.2 27.1 0.7
students without other employment 41.5 -0.6 35.8 0.2
Vehicles per adult
0 24.7 -0.1 35.5 -0.1
under 1 32.3 -0.7 36.5 0.0
1 or more 35.8 -0.8 38.9 0.3
Total 34.6 -0.7 38.3 0.2

6.3  Improved transit access

This section examines two related scenarios.  In the first scenario, transit is improved so that

there is a transit stop within a quarter mile of all households and all job locations.  All transit

walk and wait times are reduced by 50%.  In the second scenario, transit is improved in the

same way, but now we also exogenously restrict auto ownership to no more than one vehicle

per household.  We examine the scenarios in order, and draw comparisons.  The predicted

pattern effects under both policies are shown in Table 6.6 for the 570-alternative

demonstration model and the 114-alternative production model.  Tour effects predicted by

the production model are shown in Table 6.7 for both policies.
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Table 6.6 Pattern adjustments for transit access improvement and auto ownership restriction

Demonstration Model*

(570 alternatives)
Production Model*

(114 alternatives)
Percent change with
improved transit
access

Percent change with
improved transit
access

Pattern type Percent
without
policy
changes

without
restricted
auto
ownership

with
restricted
auto
ownership

Percent
without
policy
changes

without
restricted
auto
ownership

with
restricted
auto
ownership

Subsistence Patterns
Home, 0 sec tours 0.5 -1.2 16.6 0.8 -1.6 22.6
Home, 1+ sec tours 2.1 -1.0 35.5 2.3 -0.8 13.6
Simple Tour, 0 sec tours 21.9 0.4 7.2 17.5 0.5 11.4
Simple Tour, 1+ sec tours 10.9 0.6 4.0 9.6 0.8 2.7
Complex Tour, 0 sec tours 15.3 -0.2 -12.6 19.0 0.0 -7.4
Complex Tour, 1+ sec tours 5.5 -0.1 -15.0 8.3 0.2 -14.4
Maintenance Patterns
Home, 0 sec tours 6.2 -0.6 14.6 5.6 -1.0 16.6
Home, 1+ sec tours 1.5 -0.2 -29.2 1.5 -0.1 15.9
Simple Tour, 0 sec tours 5.6 -0.3 3.9 4.5 -0.6 8.8
Simple Tour, 1+ sec tours 5.8 0.2 0.1 5.4 0.0 1.2
Complex Tour, 0 sec tours 4.7 -0.3 1.9 5.4 -0.4 -5.8
Complex Tour, 1+ sec tours 5.1 0.2 -2.4 5.4 -0.1 -13.6
Leisure Patterns
Home, 0 sec tours 4.8 -0.7 11.7 4.4 -1.2 14.3
Home, 1+ sec tours 0.5 -0.3 -3.7 0.7 -0.2 13.2
Simple Tour, 0 sec tours 4.7 -0.1 -7.7 4.3 0.1 -8.7
Simple Tour, 1+ sec tours 2.2 0.3 -19.4 2.3 0.4 -17.7
Complex Tour, 0 sec tours 1.7 -0.6 -14.3 2.0 0.1 -20.0
Complex Tour, 1+ sec tours 1.0 -0.2 -23.1 0.9 0.3 -27.9
Subtotals by home maintenance
no at-home maintenance 55.5 0.1 0.1
at-home maintenance 44.5 -0.1 -0.1
Subtotals by secondary tours
0 sec tours 65.4 -0.1 1.3 63.5 -0.1 2.6
1+ sec tours 34.6 0.2 -2.5 36.5 0.2 -4.4
Subtotals by Primary tour complexity
at home 15.6 -0.7 11.7 15.3 -0.9 15.5
simple 51.1 0.3 2.8 43.6 0.4 4.4
complex 33.3 -0.1 -9.8 41.1 0.0 -10.5
Subtotals by primary purpose
subsistence 56.1 0.2 0.1 57.5 0.2 0.3
maintenance 28.9 -0.2 2.3 27.8 -0.4 2.1
leisure 15.0 -0.3 -4.9 14.6 -0.3 -4.9
Total all patterns 100.0 100.0
*Both models are applied here with the 6475 observation sample used to estimate the 570 alternative model.

6.3.1 Transit access improvement without restricted auto ownership

As expected, patterns with travel increase, as does the number of tours on patterns, induced

by increased transit accessibility.  This is accompanied by some shift from auto to transit

usage, especially for primary tours.  An expected simplification of the subsistence tour and
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Table 6.7 Half-tour predictions for transit access improvement and auto ownership restriction

without auto restrictions with auto restrictions
Pattern type Percent of all

patterns
without policy

Percent of all
patterns

with policy

Percent
change

Percent of all
patterns

with policy

Percent
change

Subsistence tours
Simple auto 16.9 15.5 -8.3 14.6 -16.5
Simple nonauto 3.6 5.1 42.6 8.4 125.8
Complex auto 18.3 17.2 -5.8 14.0 -26.0
Complex nonauto 2.4 3.4 45.5 5.3 118.6
Maintenance tours
Primary simple auto 6.4 6.1 -5.6 6.3 -6.0
Primary simple nonauto 1.1 1.4 31.6 1.9 68.8
Primary complex auto 7.6 7.2 -5.4 6.4 -18.8
Primary complex nonauto 0.6 0.9 70.3 1.2 116.1
Secondary simple auto 12.9 12.6 -1.8 12.6 -5.3
Secondary simple nonauto 1.6 1.9 18.2 2.6 57.8
Secondary complex auto 5.1 5.0 -2.1 5.1 -4.3
Secondary complex nonauto 0.3 0.4 42.1 0.6 96.2
Leisure tours
Primary simple auto 4.2 3.9 -6.1 3.1 -28.4
Primary simple nonauto 0.8 1.1 31.5 1.5 71.0
Primary complex auto 2.1 1.9 -5.6 1.4 -34.6
Primary complex nonauto 0.2 0.3 60.8 0.4 110.1
Secondary simple auto 11.7 11.5 -1.6 9.5 -21.6
Secondary simple nonauto 2.0 2.2 9.6 2.9 41.7
Secondary complex auto 2.2 2.1 -1.8 1.8 -18.6
Secondary complex nonauto 0.2 0.2 29.6 0.3 71.8
Subtotals by mode
auto 87.4 83.1 -4.8 74.9 -17.3
nonauto 12.6 16.9 34.5 25.1 92.2
Subtotals by complexity
simple 61.1 61.2 0.3 63.3 0.0
complex 38.9 38.8 0.0 36.7 -9.0
Subtotals by priority
primary 64.1 64.0 0.2 64.5 -2.8
secondary 35.9 36.0 0.3 35.5 -4.7
Subtotals by mode and priority
auto primary 55.5 51.8 -6.5 45.8 -20.3
auto secondary 31.9 31.3 -1.8 29.1 -12.1
nonauto primary 8.6 12.3 43.1 18.7 110.5
nonauto secondary 4.0 4.7 16.3 6.4 53.4
Subtotals by purpose and priority
primary subsistence 41.2 41.2 0.3 42.4 -0.6
primary maintenance 15.7 15.6 -0.3 15.8 -2.8
primary leisure 7.2 7.2 0.1 6.3 -15.2
secondary maintenance 19.9 19.9 0.4 20.9 1.5
secondary leisure 16.1 16.1 0.1 14.6 -12.4
Total 100.0 100.0 0.2 100.0 -3.5

accompanying increase in secondary tours, to accommodate the transit mode, are barely

perceptible in the predictions.  Thus, although the anticipated mode shift occurs, the pattern

shifts and their impact on travel outputs are minimal because the mode shift is mild and the
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original transit mode share is so low.  Nevertheless, consider how the integrated model

captures the small effect.

In the tour models, household transit proximity increases utility of transit with walk access

for all tour purposes; employment transit proximity increases utility of transit with walk

access for subsistence and leisure purposes.  These effects increase expected tour utility of all

pattern types, but especially patterns that favor transit, namely those with no chained tours.

In the pattern model, an increase in expected tour utility increases the number of tours on

patterns, and decreases the relative proportion of chained tours.  Back down in the tour

models, we expect to see a mode shift toward transit because of the increased transit utility,

but auto will be used for some of the induced tours, softening the effect of the mode shift.

The net effect in the model is an increase in patterns with one or more tours, a decrease in the

proportion of chained tours, an increase in transit tours, and a small increase or decrease in

auto tours, depending on whether the mode change or the uncoupling of secondary stops

from primary tours has a stronger effect.  All these effects occur differently than they would

in a trip or tour-based model, taking place in the context of the activity schedule.  However,

the effect the day activity schedule captures that the other models would miss is the offsetting

increase in auto tours caused by the pattern shift.

6.3.2 Transit access improvement with auto ownership restriction

Recall that in this scenario transit improvements match those of the previous scenario, but

now we also exogenously restrict auto ownership to no more than one vehicle per household.

In light of the small effects of the transit policy, its tendency to increase mobility should be

overpowered by the loss of mobility caused by auto ownership restriction.  The pattern model

outputs show strong shifts toward simpler tours, less tours in patterns, and curtailment of

lower priority on-tour leisure activity in the presence of intra-household competition for the

only car.  The tour model outputs reflect these shifts, and show the expected reinforcement of

the mode shift from auto to transit.  Again, consider how the models capture these effects.

In the tour models, transit proximity still increases utility of transit with walk access for all

tour purposes, slightly increasing expected tour utility.  However, competition for a car
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within the household decreases the utility of auto modes, thereby reducing expected tour

utility, and this overpowers the transit effect.  In the pattern model, a reduction in expected

tour utility decreases the number of tours on patterns.  Competition for a car also has direct

effects in the pattern choice, eliminating and simplifying primary and secondary tours,

especially for leisure tours and leisure patterns.

Unlike the previous examples, auto ownership does not have a significant effect on subtour

and intermediate stop choices, given the primary tour mode choice.  Therefore, the lack of

expected secondary stop utility explaining tour choice does not distort predictions.

6.4  Other policy applications

This section provides a qualitative discussion of model system performance for additional

exogenous changes in four categories, including demand management policies, spatial

accessibility improvements, highway service level changes, and changes in

telecommunications.

6.4.1 Demand management

Fuel tax, or other uniform increase in auto variable costs.  This type of policy is like the

peak period toll, but affects all time periods.  Expect to see a tendency toward pattern

simplification, which the day activity schedule could capture in the same way as described

above, without the time-of-day shifting.  The lack of expected utility from subtour and

intermediate stop alternatives would have a similar effect.

Auto registration fees.   The expected principal effect of auto registration fees would be a

reduction of auto ownership levels.  Individuals in households with reduced vehicle holdings

would then adjust their activity schedules, along the lines of the auto ownership restriction

example, to achieve a revised set of activity objectives.



Model Application and Evaluation 155

Parking regulation.   The effects of parking regulation depend on the policy.  A ban on

overnight on-street parking would reduce auto ownership, inducing the effects described for

the auto ownership restriction example.  Policies restricting parking at activity destinations

would induce mode and destination changes, and probably related pattern changes.  A

regulation that varied throughout the day would also affect time-of-day choices, again with

related pattern changes.

There are no variables in the model system that capture the effect of parking availability on

schedule choice.  To achieve sensitivity to this kind of regulation would require variables

characterizing the regulation in the mode-destination choice models.  If these were included,

then the model would capture pattern effects as it does for policies affecting travel costs.

6.4.2 Spatial accessibility improvements

Walkable residential locations, with many shops and restaurants located near

residences.  Urban development that increases walkable access to commercial activity might

cause substantial shifts in activity patterns.  An overall increase in tours would be likely, with

secondary walk tours replacing secondary auto tours and intermediate stops on primary auto

tours.  The day activity schedule model’s structure makes it very well suited for this kind of

policy analysis, because it places all activity decisions together, including secondary

activities for which walkable neighborhoods are well suited.

The model’s ability to capture these effects depends on the inclusion of appropriate variables

in the tour mode and destination choice models, characterizing activity attraction and

walkability, accompanied by sufficient spatial resolution to enable accurate measurement of

the variables.  In such a case, under the policy, the mode and destination choice models

would predict greater probability of walking for each predicted tour.  However, the

improvement in walk tour utility would increase the expected maximum tour utility,

increasing the predicted share of patterns with more tours.  Many of these tours would be by

non-walk modes.  Thus, the model would appropriately catch pattern shifts that might

dampen the desirable effects of the policy.
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The current model includes origin and destination mixed use variables and travel time

variables in the walk and bicycle modes, providing some of the needed sensitivity.  However,

it is hindered by limited spatial resolution and would also benefit greatly from improved

measures of walkability.

Walkable mixed use areas, with close proximity of employment and population.  This

kind of development might bring a decrease in auto subsistence tours, both simple and

chained.  This would be accompanied by an increase in subsistence and nonwork walk tours

to walkable locations, as well as an increase in nonwork auto tours to nonwalkable locations

for activities formerly attached to the subsistence tour, plus those to which a nonworking

family member now has access because of an available car.  These changes correspond with

an increase in multi-tour patterns and a decrease in non-travel patterns.  Since the car is being

replaced for commute trips, auto ownership might decline among households with two or

more cars.

All of these changes depend on residential and workplace choices that put the workplace and

home close together.  The day activity schedule model does not include residential and

workplace choice, although it does model the work destination choice, essentially a proxy for

workplace choice.  Destination attraction and travel cost variables in the tour mode and

destination choice model would increase the relative utility of walk mode on subsistence

patterns to the nearby work destinations.  Expected subsistence tour utility would increase,

especially for patterns without chained subsistence tours because of intermediate stop

variables in the mode choice model, resulting in a predicted increase in subsistence patterns

of  all types.  The increase might be overpredicted because of the uniform cross-elasticities of

the MNL pattern choice model.  Shifts toward simpler patterns would be induced by

reductions in auto availability.  The mode and destination choice models would predict a

shift toward nearby walk commutes.  In summary, the model would capture the anticipated

kinds of pattern shifting.

Walkable workplace locations, with many shops located near employers.  Work-based

secondary activity might increase because of good accessibility from the workplace, some of

which would be new, while some would be replacing other less convenient activity
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participation.  The additional work-based activity would probably include a substantial

amount of walk subtours, but if parking is convenient we might also see an increase in

intermediate auto stops on the way to or from work.

The work-based subtour mode-destination model and intermediate stop location model

include destination attraction variables, and the subtour model includes walk-specific

variables that would increase the utility of the affected secondary stops.  As with the other

walkability policies, the model’s spatial aggregation and lack of good walkability measures

would hinder its performance in capturing mode and pattern shifts.  In addition, in this case

the expected utility improvements occur in secondary stops for which the tour and pattern

models omit the expected utility variable.  Thus, the model as implemented might roughly

approximate the mode shifts because of its limited walkability measures, and fail to capture

offsetting pattern shifts.  The model’s design, however, is quite suitable for this kind of

policy analysis.

6.4.3 Highway service level changes

Increased capacity of congested urban highways from ITS deployment.  The capacity

increase of congested urban highways would be used most during the peak periods.  The

effect would be almost the opposite of a peak period toll, already discussed in detail, with

two differences.  First, increased capacity affects travel time, rather than cost, inducing

pattern shifts among people with higher values of time.  Second, as described and applied,

the peak period toll affected all auto travel rather than only major highways.  Limiting the

change to major highways would complicate the response and analysis.

6.4.4 Telecommunications

Advance in telecommunications technology increases the availability of virtual

workplaces and commercial centers, or employer incentive program increases the

attractiveness of telecommuting.  These changes constitute an increase in available activity

opportunities that require no travel.  Activity patterns may shift, with increases in at-home
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subsistence patterns and with at-home secondary maintenance replacing some on-tour

activities.  This may be accompanied by the addition of new related on-tour activities.

The day activity schedule model includes at-home subsistence and maintenance alternatives.

It can capture changes in at-home activity participation induced by changes in travel

conditions and on-tour activity opportunities, and differences in relative attractiveness of at-

home alternatives based on lifestyle characteristics.  However, the model does not depend on

characteristics of the at-home alternatives themselves, or upon activity commitments or

mobility decisions that directly affect the availability and attractiveness of

telecommunications alternatives.  For example, the utility of at-home work is not explained

by the availability at home of a computer with electronic mail and Internet access, or the

participation in an employer’s telecommute incentive program.

In summary, the model structure and choice set accommodate at-home activities, and can

capture changes in at-home participation.  Variables are present to capture sensitivity to on-

tour activity and travel conditions, but not to capture sensitivity to exogenous changes in

telecommunications technology or practice that change the availability or attractiveness of at-

home activities.

6.5  Conclusions

This chapter’s discussion of model application procedures and the analysis of the day activity

schedule model’s treatment of various situations yield three important summary conclusions.

First, the model is practcal.  It can be integrated with traditional network equilibrium models

to generate aggregate travel predictions based on disaggregate predictions of the activity

schedule model.  It also has potential to be used with full-day traffic simulators that rely on

disaggregate predictions of activity schedules.  Second, the model captures much

heterogeneity in both pattern choice and policy response, clearly demonstrating the

importance of explicitly modeling heterogeneity in the day activity schedule model.  The

heterogeneity effects are governed by a comprehensive model specification that is

independent of specific policies, but yields heterogeneity effects that depend on the nature of

specific policies.  Third, and perhaps most importantly, the day activity schedule model can
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capture pattern adjustments and associated travel changes, arising from a variety of

exogenous changes in activity and travel conditions, that trip and tour-based models would

miss.  A notable example is the predicted response to a peak period toll, in which pattern

shifts cause a net increase in leisure tours despite a $.50 per mile peak period toll.

The analysis of model operation also identifies weaknesses of the Portland model, indicating

the need for further improvements.  First, omission of expected maximum utility from

conditional subtour and intermediate stop alternatives hinders the model from capturing

effects of their attractiveness on pattern choice.  Second, some variables, not in the current

model, might enable it to capture additional policy effects, especially for walk and electronic

access to activity opportunities.  Third, assumption of MNL for the pattern choice, and

resulting uniform cross elasticities, probably distorts predicted response to policies.  These

weaknesses are not inherent in the design, and can be alleviated in subsequent

implementations, especially in light of continually advancing technology that makes

collection of disaggregate data and use of computationally intensive specifications

increasingly feasible.

As indicated at the beginning of this chapter, the above analysis has been primarily

qualitative.  The reliability of model predictions depends on accuracy of specification that

can ultimately only be evaluated through empirical validation of aggregate outcomes

predicted by the model.
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7 

Conclusions and Recommendations

7.1  Conclusions

This study, motivated by the notion that travel decisions are components of a larger activity

scheduling decision, developed a model of a person’s day activity schedule that can be

incorporated into urban forecasting model systems.  Discrete choice methods were chosen

because of their potential to capture practically the interactions among the many dimensions

of the scheduling decision, because they rely on random utility theory, for which validated

models with large choice sets abound, and because well-established statistical methods can

be used for model estimation and validation.  Other modeling approaches, including Markov

chains, rule-based simulations and joint discrete-continuous econometric methods, were

rejected either because of a fundamental mismatch between the method and the hypothesized

activity scheduling behavior, or because they have not yet overcome major roadblocks

preventing implementation of a behaviorally sound and practical system.

7.1.1 Theoretical model

The day activity schedule model, specified in Chapter 4, satisfies a rich set of requirements

derived from the literature on activity-based travel demand, providing the foundation for the

development of behaviorally improved travel demand forecasting models.  The schedule

outcome is an integrated composition of the important scheduling dimensions spanning a 24

hour day, including the travel dimensions needed for forecasting travel demand.  Its

integrated hierarchical structure reflects a priority- and commitment-based scheduling

decision in which overall pattern and high priority activities condition the decisions related to

lower priority activities and travel details, but are also influenced by the expected utility of
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the conditional decisions.  Its full-day scope; detail of pattern, activity and travel dimensions;

and integrated structure give the model design three important realistic performance

capabilities.  First, it can capture the full spectrum of trade-offs people consider as they face

time and space constraints in scheduling their day’s activities.  These trade-offs include

variations in activity participation, on-tour versus at-home activity location, number of tours,

trip chaining, timing, destination and travel mode.  Second, it can realistically capture the

significant influence of lifestyle-based heterogeneity on schedule choice by identifying

lifestyle and mobility factors in each of the model’s many scheduling dimensions.  Thus, for

example, one set of lifestyle factors can explain activity selection, and another set can help

explain mode and destination choices.  Third, it can capture the impact of exogenous factors

upon all dimensions of schedule choice, even if the factors only act directly in one

dimension.  Importantly, this includes the influence of activity accessibility—including travel

conditions—on the choice of activity pattern.  For example, the model’s design would allow

it to capture the impact on activity and pattern choice of a policy that only impacts travel

costs between one origin and destination, at one time of day, by one travel mode.  If these

coincide with a worker’s commute corridor, the impact can be substantial.

The choice of day activity schedule is complex, with so many potential outcomes that it is

necessary to make many simplifying assumptions to achieve a tractable model.  However, the

design of the model is complete and flexible enough to allow well-reasoned simplifications

without undermining its basic satisfaction of the important behavior-theoretical requirements.

The principal techniques for simplification are the aggregation of outcomes and the

elimination of marginal choice dependence on expected conditional choice utility in

dimensions.  Satisfaction of behavior theory is retained by preserving the model’s scope and

structure, and by choosing simplifications that substantially improve computational

performance without removing the most important behavioral realism.

The model design is also robust enough to allow ongoing refinement of empirical

implementations as improvements come in data, knowledge of details of the decision

process, and computational capabilities.  In particular, the basic structure can accommodate

improved resolution of the schedule choice set and associated data, notably in the dimensions

of time, space and activity purpose; enhancements in representation of inter-dimensional
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utility correlations, such as the relaxation of conditional independence assumptions among

tours and correlations among activity pattern dimensions; and addition of important new

explanatory factors, such as the availability of electronic telecommunications capabilities.

7.1.2 Empirical model

We successfully specified and estimated the parameters of an empirical implementation of

the day activity schedule model.  The estimation results match reasoned expectations, derived

from activity-based travel demand theory, of the factors explaining pattern choice, providing

a degree of confidence in the model specification.  The pattern representation includes all on-

tour activities, as well as all primary at-home activities and secondary at-home maintenance

activity, enabling the model to capture at-home versus on-tour activity participation trade-

offs.  The model also includes enough detail about on-tour activity purpose, priority,

sequence, location and access modes to capture inter-tour and trip chaining behavior.

Statistical tests confirm the importance of at-home activities and activity sequence in pattern

choice.

The model captures the influence of lifestyle and mobility characteristics on activity schedule

choice primarily through the selection of activities (purpose and priorities) and through travel

preferences (timing, mode and destination).  It includes lifestyle parameters in four major

categories, including household structure, role in household, personal and financial

capabilities, and activity commitments.  Parameters in all categories were found to be

important in both the pattern and travel dimensions.  Important household structure and role

variables, included separately and with various interactions, are family versus nonfamily,

number of adults, children, gender and relative workload.  Of these, the most noticeable

effect is gender specialization in families, especially in the presence of children, where we

see males taking traditional work responsibilities and females taking maintenance and child-

care responsibilities.  Important capability variables include income, travel-impairing

disabilities and occupation.  The influence of activity commitments on schedule choice is

captured primarily through individual and household work commitment variables.  Mobility

effects are captured through the residential location and auto ownership levels.
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The model includes accessibility parameters measuring the impact of expected tour utility—

for primary and secondary tours of all purposes—on pattern choice.  Accessibility is

relatively more important for the primary tour on subsistence patterns and for secondary

tours on maintenance and leisure patterns.  Statistical tests support the importance of these

parameters.  This is an important result because it confirms the value of a model that

represents travel demand in the context of the day activity schedule.  Changes in tour

utility—caused by changes in the transport system performance or in spatial activity

opportunities—have a significant effect on the choice of pattern because of these expected

maximum utility variables,.  Such effects cannot be captured by tour- or trip-based travel

demand models.

Tractability of the empirical model was achieved through two major simplifications.  First,

all tours are modeled as conditionally independent, given the pattern outcome.  This prevents

the explicit modeling of destination, mode and timing correlation among tours.  Second,

expected utility of secondary stops on tours and work-based subtours is not used to explain

other dimensions of schedule choice.  This prevents the model from accurately capturing the

effect of changes in secondary stop utility on pattern choice.  While both of these

simplifications reduce the model’s behavioral realism, it nevertheless retains most of its

ability to capture interactions among activity schedule dimensions.  In both cases, the data is

available to remove the simplifications, when available computational power substantially

exceeds that of the 300mhz Pentium processor used for the initial model application.

7.1.3 Model application results

The day activity schedule model system can and is being applied in a number of ways for

travel prediction.  A production version of this study’s empirical model has been

implemented in conjunction with traffic network models to predict aggregate travel response

to exogenous changes.  Taking the place of trip generation, distribution and mode split

models used in traditional trip-based systems, it generates trip matrices by aggregating

schedule probabilities calculated for each member of a representative population.

Alternatively, simulated schedules can be used to generate aggregate trip matrices, or the

model can provide simulated 24-hour schedules directly to traffic microsimulators.
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The model system demonstrates the benefits of its design in various policy applications,

simplified to exclude network equilibration.  In response to a toll levied on all travel paths

during the morning and evening peak travel periods, the model predicts not only shifts in

travel mode and timing, but also shifts in pattern purpose and structure.  The toll reduces the

travel utility of peak-period auto tours.  Through the expected tour utility measure, this

reduces the utility of all patterns, with greatest effects on patterns that rely most heavily on

peak period auto travel, namely, work patterns and multi-tour patterns with secondary

maintenance tours.  The result is a shift from work patterns and patterns with secondary

maintenance tours, causing a net increase in the predicted number of tours for leisure

purposes.  This induced leisure travel demand is an important manifestation of activity

scheduling behavior that trip- and tour-based models cannot capture.

In the same application, the model exhibits lifestyle and mobility heterogeneity in pattern

choice and in policy response, demonstrating the importance of lifestyle in the specification.

Persons in households with more cars experience a greater percentage decrease in subsistence

patterns, increase in at-home primary activity participation, and decrease in secondary tour

participation than their counterparts with less cars, reflecting a greater dependence on auto

travel.  Working females in families, especially females with children, are more likely than

others to shift to a nonwork primary activity.  The percentage increase in at-home primary

activity participation is greater for full-time workers than others, reflecting the group’s

dependence on peak-period travel.  Cost sensitivity makes the percentage decrease in

secondary tour participation greater for low income persons than for those with high income.

Participation in at-home maintenance activity decreases for nonworkers and increases for

workers, as more workers are predicted to choose nonwork primary activities, making them

more available for at-home maintenance.

The model’s ability to capture policy responsive pattern shifting and heterogeneity is not

limited to the toll policy.  Application of the model with transit improvements and auto

ownership restrictions demonstrate the same adjustment mechanisms, yielding different net

results.  Analysis, without model application, indicates that the model would capture

expected pattern changes in response to other demand management, land use and highway

service level changes.  In some cases, the implemented model would fail to capture an
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expected effect because of missing model variables or limited resolution of a choice

dimension.  As an example of a missing variable, the model lacks information about at-home

telecommunications capabilities.  Therefore, it cannot capture any tendency of at-home

Internet access to increase at-home work activity or induce any other pattern changes, some

of which probably affect travel.  The model’s limited spatial resolution probably renders it

insensitive to changes in neighborhood characteristics that can substantially influence

reliance on secondary walking tours for maintenance and leisure activities.

7.2  Recommendations

This study has not yet proven that the day activity schedule approach is ready for immediate

widespread adoption as a principal tool for travel forecasting.  Such a conclusion should be

made only after the model has demonstrated quantitatively its cost effectiveness in providing

travel predictions superior to existing forecasting models.

On the other hand, the conclusions of this study give very strong evidence of the behavioral

advantages of the model design, its current practicality, its potential for providing cost

effective predictions superior to those of the best existing systems, and its potential for

supporting continued improvements in implementation as advancing computing technology

enables it to tap the benefits of disaggregate data and model integration.

We recommend continued efforts to implement the day activity schedule approach in a small

but growing number of pilots, where the model can be validated and its cost effectiveness can

be demonstrated.  At the same time, ongoing research can be conducted to enhance the model

and to integrate it with related models of household choice, urban development and transport

systems.  It can also be evaluated for theoretical weaknesses, serving as grist for the further

development of theory and models of activity and travel behavior.  We conclude with a list of

specific research and development opportunities.
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7.2.1 Model validation

The complexity of the scheduling process and of the resulting models makes validation via

model application very important.  An established production environment provides the best

opportunity to conduct research projects specifically aimed at model testing and validation,

in parallel with model application for policy analysis, and the implementation of the policies

themselves.  Data sets of policy conditions and corresponding travel outcomes could be

established and repeatedly used for validation testing of enhanced models, as part of a

research and development laboratory.

7.2.2 Application procedures

The day activity schedule works in conjunction with network traffic models to generate

predictions, as described in Section 6.1 .  Procedures have been developed that integrate the

model with Portland’s traffic equilibrium model, and are currently under development to

integrate it with a traffic simulation model that requires simulated day activity schedules.

Several issues are important in the implementation of application procedures that may require

research.  These include computational efficiency, consistency between demand and network

models, and prediction confidence levels.

Optimizing the reiteration procedures for demand and network model equilibration might

make improved, computationally intensive model enhancements feasible.  Possibilities may

exist for reiteration techniques that allow streamlined demand model procedures at each

iteration.

The issue of consistency between demand and network models may be more important than

the efficiency issue, because inconsistency can bias predictions.  Each model relies on

assumptions about its inputs to achieve its theoretical support.  Achieving consistency with

simple equilibrium assignment models may be straightforward.  Achieving consistency with

multiclass assignment models and simulation models may require careful study.

In model application the model system relies on estimated parameters, sampling of

alternatives, and in some cases Monte Carlo simulation of outcomes, all of which introduce
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statistical variance in the predictions.  Research that empirically evaluates the variance of

important aggregate prediction outputs could improve the value of model forecasts, and

establish application procedural requirements, such averaging of repeated applications, for

achieving desired forecast confidence levels.

7.2.3 Day activity schedule model improvements

The existing Portland model provides a natural setting to address weaknesses identified in the

model system evaluation, where costs and benefits of the enhanced system could be

evaluated in side by side comparisons with the existing system, ideally in the validation test

environment described above.  Some of the most clearly defined and potentially beneficial

efforts follow.

1. Incorporate the 570 alternative pattern choice set, to improve the model’s ability to
capture purpose-specific inter-tour trade-offs and at-home vs on-tour activity trade-
offs.

2. Incorporate expected maximum utility from secondary stops and subtours, to improve
the model’s ability to capture the influence of secondary stop accessibility on pattern
choice.

3. Test more general utility correlation structures of the activity pattern model, to reduce
bias caused by unrealistic independence assumptions.  Conduct specification tests
with the existing structure, specify alternate nested logit structures, compare one or
more alternate structures with the existing model, and consider more general
correlation structures.

4. Develop and test methods for improving the temporal and spatial resolution of the
model system, to refine the model’s ability to capture the impact of temporal and
spatial variations in activity and travel conditions.  Methods include  (a)
disaggregating the choice set in the day activity schedule model and explicitly
modeling the time dimension for secondary stops, and (b) adding detail of predicted
schedule outcomes by subsampling observed detailed schedules from samples that
match modeled attributes of predicted day activity schedules.

5. Develop a model with the choice set resolution equivalent to the Portland model, but
using the model structure of (1), conditioning secondary tours on the outcome of the
primary tour decision.  This would incorporate more inter-tour temporal constraints
and utility interactions related to destination, mode and timing, potentially improving
prediction accuracy.
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6. Adjust the model to condition it on usual workplace and work commute mode, to
improve the accuracy of pattern sensitivity to work accessibility.

7.2.4 Model enhancement using merged data from evolving surveys.

Some of the weaknesses and potential improvements of the Portland implementation of the

day activity schedule model require data that is not available in the estimation data set.  This

is not uncommon; invariably the model development process points to unmet data needs.  On

the other hand, activity surveys are expensive;  the data assembled and the models built from

them represent a major investment.  It may be feasible to implement methods of combining

data sets so that one or more subsequent activity surveys, aimed at incrementally improving

the original survey, and targeted to satisfy specific unmet information needs, could be used to

augment existing data sets.  This would leverage survey data investment, accelerating

research, development and implementation.

In the Portland case, this approach might successfully enable (a) enhanced schedule

definition via improved reporting of activity purposes and at-home participation; (b)

improved model sensitivity to telecommunications and non-auto modes via the collection of

new variables for these alternatives; (c) estimation of important parameters for unusual

activity and travel conditions, or market segments, through the use of sample enrichment

techniques; and (d) improved sensitivity to lifestyle via improved reporting of household

characteristics.

7.2.5 Survey design and data collection methods.

The previous research topic involves survey design, and provides a context for evolutionary

improvement of survey methods.  Section 5.7.4 identifies specific survey improvement

suggestions emerging from this study’s empirical work.  Here we focus on the need to invest

in research targeted at improving survey method, to provide data that enables improved

activity-based model development.  The objectives include streamlining to eliminate

unnecessary complexity, enhancing techniques for reducing nonresponse on key items, and

capturing important information missing on existing surveys.
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7.2.6 Computational efficiency, application methods and alternative decision
protocols

Computational costs associated with the large universal set are a barrier to the improvement

of the day activity schedule model.  It may be possible to devise methods that improve

computational efficiency substantially via techniques that only minimally reduce model

realism, or perhaps even improve it, thereby enabling the implementation of model features

that substantially improve model performance.  For example, alternative sampling techniques

might be employed to reduce the number of alternatives used for prediction, while still

providing a good approximation of the scheduler’s behavior.  It may even be possible to

discover methods that achieve the objective of improving computational efficiency while

simultaneously improving behavioral realism by matching the simplifying behavior of real

decisionmakers.  Techniques to simulate boundedly rational behavior, in which the consumer

chooses rationally from a heuristically chosen subset of feasible alternatives, may be

possible.  Such a development would constitute the merger of discrete choice methods and

rule-based simulations contrasted in Chapter 3.

7.2.7 Integrated activity and mobility models

Research with the day activity schedule model has already indicated the potential value of

integrating it with models of household mobility choices (Ben-Akiva and Bowman, 1998).

Expected maximum utility of the day activity schedule provides a more complete measure of

accessibility than is currently used in mobility choice models, and may improve the

explanation of such choices.  By improving the measurement of accessibility’s influence in

residential and work related choices, it may be possible to substantially improve the analysis

of transportation policies and other policies that affect or depend on accessibility, including

their welfare impacts.  Further integration of the mobility choice models in land use

forecasting model systems may substantially improve the ability to forecast the impacts of

policies that affect land use through changes to transportation and activity conditions.
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7.2.8 Theoretical research

The day activity schedule model represents behavior that is addressed by formal theories of

transport economics and home production, but the complexity of the day activity schedule

has not been formally incorporated in these theories.  An evaluation of the model in light of

these theories might lead to important improvements in the model, advances in transport

economics and home production theory, and formalization of the theory of activity-based

travel behavior.
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Appendix A 

Translation of survey data into day activity patterns

This appendix presents Sections 3 through 5 of an August, 1996, design specification

developed by the author, which was used in the development of the Portland production

system.

3 Interpreting the Survey Data Provides rules for translating observed daily
schedules into the model hierarchy, providing
additional definition of the dimensions of the
daily schedule.

4 Definitions of Activity Purposes Translates the survey activity codes into the
three activity purpose categories of work,
maintenance and discretionary.

5 Assigning Mode Provides logic for assigning the principal mode
of any tour in the daily activity schedule.
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Section 3:  Interpreting the Survey Data

These rules explain how to interpret the survey data set in terms of the model system design, assigning all the
attributes which together define the daily schedule.
1. Assign each reported activity to one daily schedule.
2. Assign a purpose of W13, M or D to every activity, using the attached definition of activity purposes.
3. Determine if the daily activity pattern is work on tour, work at home or non-work.

a) Calculate the total reported duration of work activities conducted away from home, and call this
total the work on tour duration.

b) Add the total reported duration of work activities conducted at home to the work on tour duration.  Call
this the work duration.

c) Using the results of a) and b) for the entire sample, generate histograms of work duration and work on
tour duration.  For the work (alternatively, work on tour) histogram choose a threshold which is as
large as possible without interpreting as nonwork (alternatively, work at home) very many patterns
which include work activity (alternatively, work on tour).  A threshold of 60 minutes was chosen for
work on tour (MAB, actproc3.doc).

d) If the work duration exceeds the work threshold, assign the pattern as work; else assign it as non-work.
For work patterns, if the work on tour exceeds the work on tour threshold, assign it as work on tour;
else assign it as work at home and assign as the primary activity the at home W activity with the
greatest duration.

4. For work on tour patterns, define the primary tour, and the work-based subtour if applicable.
a) Assign as the primary work destination the work destination within the daily pattern which is visited

the largest number of times.  If this number of visits is shared by 2 or more destinations, assign as
primary the one with the largest total work duration.

b) If the primary work destination is visited more than once in the daily activity pattern, assign a pattern
which includes WOW.

c) For patterns with WOW, include in the primary tour workday the 2 work stops with longest duration at
the primary work location, and, for patterns with 3 or more stops at the primary location, any
additional stops which occur at the primary work location without an intervening trip home.  Also
include in the workday any stops which occur between these workday work activities.

d) Assign as the departure time from home the last departure time from home prior to the arrival at the
first of the workday’s stops at the primary work location.  Use as the departure time from work the
departure time from the last of the workday’s stops at the primary workplace.  Assign the tour mode
using the attached rule for assigning modes, using the half-tour which begins at the assigned departure
time from home, and the half-tour which begins at the assigned departure time from work.

e) For WOW patterns use, as the explicitly modeled subtour, the subtour which includes the destination
which is farthest from the work location.  Use the departure time from work on the subtour and the
departure time from the destination as the departure times of the subtour.  Assign the mode using the
attached rule for assigning modes, using the tour defined by the assigned departure times.

f) If destinations are visited after the workday, before the return home, then assign a pattern which
includes WOH.  If more than 1 destination is visited on the way home, assign as the destination the
location which has the longest distance on the WOH path.  Assign as the departure time from the after
work stop, the departure time from this location.

g) If destinations are visited before the workday, after the departure from home on the work tour, then
assign a pattern which includes HOW.  If more than 1 destination is visited on the way to work, assign
as the destination the location which has the longest distance on the HOW path.  Assign as the
departure time from the before work stop, the departure time from this location.

                                                       
13 The code ‘W’ corresponds to the subsistence purpose defined in the body of the thesis.  It is left as

‘W’ here to retain the original text of the memo.
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5. Determine the purpose of all tours other than primary work tours.  Sum together the activity duration of W
and M activities, and sum separately the duration of D activities.  Use the following priority table to assign
each of the sums to a priority category.  (Analysis of the sample data may lead to the adjustment of the
thresholds in the table.)  Assign the purpose of the tour as M if the W/M sum is higher priority than the D
sum; else assign a purpose of D.

Priority                Purpose              Duration

1 W/M over 2
2 D over 4
3 W/M 1-2
4 D 2-4
5 W/M under 1
6                                   D                        under 2

6. For non-work patterns, determine whether the pattern is maintenance on tour (MT), discretionary on tour
(DT), maintenance at home (MH) or discretionary at home (DH).
a) Examine nonwork patterns to establish thresholds for MT, DT and MH patterns.

i) Generate a histogram of the M tour of longest duration in each nonwork pattern, and select an
M on tour threshold which excludes tours of the shorter durations.  Use as duration the elapsed
time between departure from home and arrival at home.

ii) Generate a histogram of the D tour of longest duration among nonwork patterns lacking an M
tour which exceeds the M threshold.  Select a D on tour threshold which excludes tours of the
shorter durations.

iii) Generate a histogram of the total at-home W/M duration among nonwork patterns lacking an
M or D tour which exceeds the M, or D respectively, threshold.  Select an M at home threshold
which excludes patterns with shorter W/M durations.

b) Using the thresholds, assign each nonwork pattern a pattern of MT, DT MH or DH, as follows:
If there is an M tour that exceeds the M on tour duration threshold, then call the pattern MT, and assign
the M tour with longest W+M duration as the primary tour.
Else, if there is a D tour which exceeds the D on tour duration threshold, then call the pattern DT, and
assign the D tour with longest D duration as the primary tour.
Else, if the total W+M time at home exceeds the M at home threshold, then call the pattern MH, and
assign as the primary activity the W or M activity with the greatest duration.
Else, call the pattern DH, and assign as the primary activity the D activity with the greatest duration.

7. For primary non-work tours, define the tour.
a) Assign the primary tour type using the number of stops which occur on the tour.
b) Assign as the primary destination the highest duration activity of the tour’s purpose.  Assign as

departure times the departure time from home and the departure time from the primary destination.
Assign the tour mode using the attached rule for assigning modes, using the tour defined by the
assigned departure times.

c) Assign as the secondary destination the destination with the longest distance along the path from home
to the secondary destination and on to the primary destination.  Assign the secondary sequence as
before or after the primary stop, and assign the departure time from the secondary stop.

d) Assign as the tertiary destination the destination with the longest distance along the path from the
preceding higher priority stop (or home) to the tertiary destination and on to the following higher
priority stop (or home).  Assign the tertiary sequence as before, between or after, and assign the
departure time from the tertiary stop.

8. For primary at home patterns, define the begin and end times corresponding to the reported begin and end
times of the activity of longest duration with purpose (W/M or D) which matches the pattern purpose.

9. For every daily schedule assign the number and purpose of secondary tours by counting the non-primary
tours of each purpose.

10. Define each secondary tour.  Assign the primary destination as the stop with the longest duration of
activities which match the tour purpose (W/M or D).  Assign the departure time from home and the
departure time from the primary destination.  Assign the tour mode using the attached rule for assigning
mode.
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Section 4:  Definition of Activity Purposes

W Work, work related and school
M Maintenance (business of HH or individual.  could be called business)
D Discretionary (activities engaged in for pleasure, recreation, or refreshment.  
Could be called recreation)

Where the survey responses are interpreted as follows:

Survey Description
Survey
Code

Model
Purpose

Model
Code

Meals 11 D 3

Work 12 W 1

Work-related 13 W 1

Shopping (general) 14 M 2

Shopping (major) 15 M 2

Personal services 16 M 2

Medical care 17 M 2

Professional services 18 M 2

Household or personal business 19 M 2

Household maintenance 20 M 2

Household obligations 21 M 2

Pick-Up/Drop-Off passengers 22 M 2

Visiting 31 D 3

Casual entertaining 32 D 3

Formal entertaining 33 D 3

School 41 W 1

Culture 42 D 3

Religion/Civil Services 43 D 3

Civic 44 D 3

Volunteer work 45 D 3

Amusements (at-home) 51 D 3

Amusements (out-of-home) 52 D 3

Hobbies 53 D 3

Exercise/Athletics 54 D 3

Rest and relaxation 55 D 3

Spectator athletic events 56 D 3

Incidental trip 90 D 3

Tag along trip 91 D 3
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Section 5:  Assigning Mode

Introduction
In the model system we are explicitly modeling the mode for tours.  The tour mode is based on the mode used
for each of the two half-tours (journey to destination and journey from destination), excluding from
consideration modes used for subtours (of the tour or subtour being considered), but including modes used for
detours on the journey to or from the destination.

We are modeling tour mode for primary work tours, work-based subtours, primary non-work tours and
secondary tours.

Terminology
Trip Mode (M) The mode used for the travel from one activity location to the next activity

location
Half-tour mode (HTM) The principal mode used among all trips on the journey from the tour origin

to its primary destination, or on the return journey from the primary
destination to the tour origin.

Half-tour mode set (HTMS) The list of trip modes used on a half-tour
Tour mode set (TMS) The two half-tour modes associated with a tour
Tour mode (TM) The principal mode of the tour

Mode alternatives
DA Auto drive alone
DP Auto drive with passenger
PA Auto passenger
MA MAX with auto access
MW MAX with walk access
BA Bus with auto access
BW Bus with walk access
WA Walk
BI Bicycle
OT Other
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Assignment Rules
Trip mode (M)
CASE (Got to activity by...)
         Private vehicle (7)
                  IF driver
                  THEN       IF 1 person in vehicle                                                     M =  DA
                           ELSE                                                                                                  DP
                  ELSE                                                                                                           PA
         MAX (6)
                  IF trip ends at home
                  THEN        IF got from stop to destination by walk                                 MW
                           ELSE                                                                                                  MA
                  ELSE        IF got to stop by walk                                                              MW
                           ELSE                                                                                                  MA
         Public bus (5)
                  IF trip ends at home
                  THEN        IF got from stop to destination by walk                                 BW
                           ELSE                                                                                                  BA
                  ELSE        IF got to stop by walk                                                              BW
                           ELSE                                                                                                  BA
         Bicycle (3)                                                                                                           BI
         Walk (2)                                                                                                               WA
         Anything else                                                                                                       OT

Half-tour mode (HTM)
IF HTMS includes MA                                                                              HTM =     MA
ELSE        IF HTMS includes BA                                                                               BA
         ELSE        IF HTMS includes MW
                  THEN       IF HTMS includes DA, DP or PA                                          MA
                                    ELSE                                                                                         MW
                  ELSE        IF HTMS includes BW
                           THEN       IF HTMS includes DA, DP or PA                                 BA
                                             ELSE                                                                                BW
                           ELSE        IF more than 60% of half-tour distance is DP and PA
                                    THEN       IF HTMS includes DP                                           DP
                                                      ELSE                                                                       PA
                                    ELSE        IF HTMS includes DA                                          DA
                                             ELSE        IF HTMS includes BI                                   BI
                                                      ELSE        IF HTMS includes only WA               WA
                                                               ELSE                                                              OT

Tour mode
IF TMS includes DA                                                                                  TM =        DA
ELSE        IF TMS includes DP                                                                                   DP
         ELSE        IF TMS includes BI                                                                           BI
                  ELSE        IF TMS includes WA                                                              WA
                           ELSE        IF TMS includes MA                                                      MA
                                    ELSE        IF TMS includes BA                                              BA
                                             ELSE        IF     TMS includes MW                               MW
                                                      ELSE        IF TMS includes BW                           BW
                                                               ELSE        IF TMS includes PA                    PA
                                                                        ELSE                                                     OT



Appendix B 

The Portland 114 alternative day activity pattern model

Table B.1 lists the parameters of the production version of the Portland day activity pattern

model.

Table B.1 Production system 114 alternative day activity pattern model

Observations 14774 Alternative / variable Coeff. T-stat
Final log(L) -47622 DT-Discretionary on tour vars
Rho-squared (0) 0.319 Constant -0.6862 -2.2
Rho-squared (c) 0.089 Full time worker -0.3153 -3.5
Alternative / variable Coeff. T-stat No cars in hh -0.5246 -3.1
Mode / destination logsums Fewer cars then adults in hh -0.4174 -4.2
Work/school primary tour 0.1815 6.5 DH-Discretionary at home vars
Maintenance primary tour 0.04447 1.9 Income under $30,000 0.3247 3.6
Discretionary primary tour 0.1039 3.3 Income over $60,000 -0.2256 -1.5
Maintenance secondary tours 0.1472 8.8 WT-Work on tour constants
Discretionary secondary tours 0.0468 4.3 Stop on way to -1.194 -23.0
WT-Work on tour variables Stop on way back -2.001 -37.6
Constant -1.958 -6.5 Stop both ways -2.502 -30.7
Full time worker 3.125 39.6 No stops plus subtour -1.99 -23.3
Part time worker 2.674 27.9 Stop on way to plus subtour -3.03 -29.3
Age under 20 2.109 15.2 Stop on way back plus subtour -3.904 -32.8
Age 20-24 0.8328 7.5 Stop both ways plus subtour -4.452 -31.8
Age 25-34 0.2458 4.0 WI- Work intermed. stop vars
Age 55-64 -0.398 -5.5 Income over $60,000 0.2646 7.0
Age over 65 -1.676 -16.0 Age under 20 -0.3113 -3.9
Female, 2+ adults in hh -0.2473 -4.3 Age over 45 -0.0868 -2.3
Kids under 5 in hh -0.4059 -5.7 Female, kids under 12 in hh 0.6242 12.3
WH-Work at home variables Male, 2+ adlts in hh, 1+ non-wrkr -0.2247 -4.2
Constant -2.799 -16.1 Female, single, worker 0.2457 4.3
Full time worker 2.302 14.8 No cars in hh -0.2681 -2.4
Part time worker 2.282 12.6 Fewer cars then adults in hh -0.2233 -4.4
Age over 65 -0.73 -3.6 WS-Work-based subtour vars
Male, only adult in hh, worker 0.7659 4.5 Income over $60,000 0.2721 4.3
Male, 2+ adults in hh 0.2364 2.2 Full time worker 0.5434 6.7
MT-Maintenance on tour vars Female, kids under 12 in hh -0.3532 -3.5
Constant -0.1193 -0.5 Male, single, worker 0.2833 2.9
Part time worker 0.229 2.3 No cars in hh -0.2913 -1.6
Age under 20 -0.7626 -4.4 Fewer cars then adults in hh -0.1551 -1.9
Male, 2+ adults in hh -0.371 -6.1 MT-Maint. tour constants
Female, kids under 12 in hh 0.3196 4.1 Stop on way to -0.5774 -8.2
No cars in hh -0.0082 -0.1 Stop on way back -0.5494 -8.5
Fewer cars then adults in hh -0.1113 -1.4 Stop both ways -1.047 -10.8
MH-Maintenance at home vars MI-Maint. intermed. stop vars
Constant 0.2151 2.6 Full time worker -0.2123 -3.2
Full time worker -0.5532 -5.1 Age over 65 -0.2521 -4.4
Age under 20 -1.379 -4.1 No cars in hh -0.6641 -4.6
Female, kids under 12 in hh 0.3932 3.6 Fewer cars then adults in hh -0.2376 -3.2
Female, 2+ adults in hh 0.4894 6.0
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Table B.1 Production system 114 alternative day activity pattern model (continued)

Alternative / variable Coeff. T-stat Alternative / variable Coeff. T-stat
DT-Discret. on tour constants SD-1 second. discret. tour constants
Stop on way to -1.408 -14.1 Primary = work/school on tour -1.632 -13.6
Stop on way back -1.456 -14.4 Primary = work/school at home -0.7052 -3.8
Stop both ways -1.823 -14.0 Primary = maintenance on tour -1.038 -8.6
DI-Discret. intermed. stop vars Primary = maintenance at home -4.01 -14.7
Age over 65 -0.3606 -3.7 Primary = discretionary on tour -1.47 -11.2
Male, 2+ adlts in hh, 1+ non-wrkr -0.3894 -3.6 Primary = discretionary at home -4.697 -11.1
No cars in hh -0.7553 -2.5 Prim. tour has 1 intermed. stop -0.2343 -4.2
Fewer cars then adults in hh -0.1963 -1.5 Prim. tour has 2 intermed. stops -0.4573 -4.5
All purposes, additional vars Prim. tour has work-based subtour -0.0708 -0.9
Stop on way to- No kids in hh 0.1941 4.3 SMM-2+ sec. maint. tours constants
Stop both ways- Kids under 5 in hh 0.5752 6.7 Primary = work/school on tour -6.226 -18.6
SM-secondary maint. tour vars Primary = work/school at home -3.218 -9.2
Full time worker -0.168 -2.5 Primary = maintenance on tour -4.522 -13.8
Part time worker 0.2507 3.1 Primary = maintenance at home -5.08 -14.9
Female, no kids in hh -0.1809 -3.2 Primary = discretionary on tour -6.073 -16.1
Age over 65 -0.3541 -4.8 Primary = discretionary at home -6.163 -15.0
Female, kids in hh 0.4878 7.3 Prim. tour has 1 intermed. stop -0.154 -1.3
Female, 2+ adults in hh, all workers -0.02182 -0.3 Prim. tour has 2 intermed. stops -0.3307 -1.6
No cars in hh -0.604 -4.6 Prim. tour has work-based subtour -0.6844 -2.5
Fewer cars then adults in hh 0.0781 1.4 SDD-2+ sec. discret. tours constants
SD-second. discret. tour variables Primary = work/school on tour -5.416 -19.7
Age under 35 0.1246 2.4 Primary = work/school at home -2.697 -7.9
Full time worker -0.2837 -5.1 Primary = maintenance on tour -3.107 -12.8
Age under 20 0.1819 1.8 Primary = maintenance at home -5 *
Age over 65 -0.2838 -4.0 Primary = discretionary on tour -3.597 -13.6
No cars in hh -0.4526 -3.7 Primary = discretionary at home -5 *
Fewer cars then adults in hh -0.232 -3.9 Prim. tour has 1 intermed. stop -0.2219 -1.3
SM-1 second. maint. tour constants Prim. tour has 2 intermed. stops -0.7337 -2.3
Primary = work/school on tour -2.738 -16.0 Prim. tour has work-based subtour -0.1867 -0.5
Primary = work/school at home -1.153 -5.6 SMD-1+ maint & 1+ discr tours
Primary = maintenance on tour -2.201 -12.9 Primary = work/school on tour -5.048 -22.4
Primary = maintenance at home -3.014 -16.0 Primary = work/school at home -1.829 -7.5
Primary = discretionary on tour -3.193 -16.8 Primary = maintenance on tour -2.943 -13.9
Primary = discretionary at home -3.464 -16.2 Primary = maintenance at home -6.704 -12.5
Prim. tour has 1 intermed. stop -0.2244 -3.9 Primary = discretionary on tour -4.468 -17.5
Prima. tour has 2 intermed. stops -0.1938 -2.0 Primary = discretionary at home -6.329 -11.8
Prim. tour has work-based subtour -0.1447 -1.7 Prim. tour has 1 intermed. stop -0.3399 -3.1

Prim. tour has 2 intermed. stops -0.3125 -1.9
Prim. tour has work-based subtour -0.5777 -2.2
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