
“The U.S. National Institute of Standards and Technology (NIST) has run a large IR test bed
evaluation series since 1992. [...] TRECs 6–8 provide 150 information needs over about 528,000
newswire and Foreign Broadcast Information Service articles. [...] Because the test document
collections are so large, there are no exhaustive relevance judgments.” [1, Section 8.2]

Your tasks, reviewed by your colleagues and the course instructors, are the following:

1. Implement a supervised ranked retrieval system, [1, Chapter 15] which will produce a list of
documents from the TREC collection in a descending order of relevance to a query from the
TREC collection. You SHOULD use training and validation relevance judgements from the
TREC collection in your information retrieval system. Test judgements MUST only be used for
the evaluation of your information retrieval system.

2. Document your code in accordance with PEP 257, ideally using the NumPy style guide as seen
in the code from exercises. 
Stick to a consistent coding style in accordance with PEP 8.

3. Reach at least 10% mean average precision [1, Section 8.4] with your system on the Trec
collection. You are encouraged to use techniques for tokenization, [1, Section 2.2] document
representation [1, Section 6.4], tolerant retrieval [1, Chapter 3], relevance feedback, query
expansion, [1, Chapter 9], learning to rank [1, Chapter 15], and others discussed in the course.

4. Upload a link to your Google Colaboratory document to the homework vault in IS MU. You MAY
also include a brief description of your information retrieval system.

[1] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to information
retrieval. Cambridge university press, 2008.

Second Term Project: TREC Collection

First, we will install our library and load the TREC collection. If you are interested, you can take a
peek at how we preprocessed the raw TREC collection to the �nal dataset that we will be using.

The TREC collection is ca 1000× larger than the Cran�eld collection that we used for the �rst term
project! If the amount of RAM at Google Colab is insu�cient for your information retrieval system,
you can either:

1. download this notebook, install Jupyter on the aura.fi.muni.cz  server, and use local port
forwarding over SSH to access the running Jupyter notebook from your web browser, or

Loading the TREC collection

https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://www.python.org/dev/peps/pep-0008/
https://is.muni.cz/help/komunikace/spravcesouboru#k_ss_1
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://gitlab.fi.muni.cz/xstefan3/pv211-utils
https://colab.research.google.com/drive/1vT4UwsFCsi1xEZckqFVRzLgQS1kVzTuO
https://datascience.stackexchange.com/q/64880/65983
https://jupyter.readthedocs.io/en/latest/install/notebook-classic.html#alternative-for-experienced-python-users-installing-jupyter-with-pip
https://www.fi.muni.cz/tech/unix/aura.html
https://phoenixnap.com/kb/ssh-port-forwarding


2. install Jupyter on the aura.fi.muni.cz  server, use local port forwarding over SSH, and set up
a local runtime for Google Colab.

Please, follow the rules of the aura.fi.muni.cz  server and always run Jupyter with the lowest
priority ( nice -n 19 ... ), so that you don't disrupt the interactive sessions of other students.

%%capture 
! pip install git+https://gitlab.fi.muni.cz/xstefan3/pv211-utils.git 
! pip install git+https://github.com/Witiko/rank_bm25.git@feature/support-iterable-corpus

Next, we will de�ne a class named Document  that will represent a preprocessed document from the
TREC collection. Tokenization and preprocessing of the body  attribute of the individual documents
is left to your imagination and craftsmanship.

Loading the documents

from pv211_utils.trec.entities import TrecDocumentBase 

class Document(TrecDocumentBase): 
    """ 
    A preprocessed TREC collection document. 

    Parameters 
    ---------- 
    document_id : str 
        A unique identifier of the document. 
    body : str 
        The abstract of the document. 

    """ 
    def __init__(self, document_id: str, body: str): 
        super().__init__(document_id, body) 

We will load documents into the documents  ordered dictionary. Each document is an instance of
the Document  class that we have just de�ned.

from pv211_utils.trec.loader import load_documents 

documents = load_documents(Document, cache_download='/var/tmp/pv211/trec_documents.json.gz') 

Computing MD5: /home/xnovot32/.cache/gdown/https-COLON--SLASH--SLASH-drive.google.com-SL
MD5 matches: /home/xnovot32/.cache/gdown/https-COLON--SLASH--SLASH-drive.google.com-SLAS

https://jupyter.readthedocs.io/en/latest/install/notebook-classic.html#alternative-for-experienced-python-users-installing-jupyter-with-pip
https://www.fi.muni.cz/tech/unix/aura.html
https://phoenixnap.com/kb/ssh-port-forwarding
https://research.google.com/colaboratory/local-runtimes.html
https://www.fi.muni.cz/tech/unix/aura.html
https://docs.python.org/3.8/library/collections.html#collections.OrderedDict


print('\n'.join(repr(document) for document in list(documents.values())[:3])) 
print('...') 
print('\n'.join(repr(document) for document in list(documents.values())[-3:])) 

<Document FR940110-1-00001 “Federal Register ␣/␣Vol. 59, No. 6␣/␣Monday, Janua ...”> 
<Document FR940110-1-00002 “DEPARTMENT OF AGRICULTURE Agricultural Stabilizati ...”> 
<Document FR940110-1-00003 “The ECP is authorized by the Agricultural Credit A ...”> 
... 
<Document LA123190-0132 “Actor Martin Sheen knows how to get his name in a  ...”> 
<Document LA123190-0133 “IN THE SUMMER of 1989, this column wrote that the  ...”> 
<Document LA123190-0134 “Tammy Wynette says a new generation of performers  ...”> 

document = documents['FT911-3'] 
document 

<Document FT911-3 “CONTIGAS, the German gas group 81 per cent owned b ...”>

print(document.body) 

CONTIGAS, the German gas group 81 per cent owned by the utility Bayernwerk, 
said yesterday that it intends to invest DM900m (Dollars 522m) in the next 
four years to build a new gas distribution system in the east German state 
of Thuringia. 
Reporting on its results for 1989-1990 the company said that the dividend 
would remain unchanged at DM8. 
Sales rose 9.4 per cent to DM3.37bn, but post-tax profit fell slightly from 
DM31.3m to DM30.7m. 
In the first half of the current year sales rose 23 per cent. 
Mr Jurgen Weber, currently vice-chairman of Lufthansa, the German airline, 
is today expected to be named as the successor to the chairman Mr Heinz 
Ruhnau who retires at the end of 1992. 
Mr Weber is currently the technical director on the Lufthansa board. 

Next, we will de�ne a class named Query  that will represent a preprocessed query from the TREC
collection. Tokenization and preprocessing of the body  attribute of the individual queries as well as
the creative use of the title  and narrative  attributes is left to your imagination and
craftsmanship.

Loading the queries

from pv211_utils.trec.entities import TrecQueryBase 

class Query(TrecQueryBase): 
    """ 
    A preprocessed TREC collection query. 

    Parameters 



    ---------- 
    query_id : int 
        Up to three words that best describe the query. 
    title : str 
        Up to three words that best describe the query. 
    body : str 
        A one-sentence description of the topic area. 
    narrative : str 
        A concise description of what makes a document relevant. 

    """ 
    def __init__(self, query_id: int, title: str, body: str, narrative: str): 
        super().__init__(query_id, title, body, narrative) 

We will load queries into the train_queries  and validation_queries  ordered dictionaries. Each
query is an instance of the Query  class that we have just de�ned. You should use train_queries ,
validation_queries , and relevance judgements (see the next section) for training your supervised
information retrieval system.

If you are training just a single machine learning model without any early stopping or
hyperparameter optimization, you can use bigger_train_queries  as the input.

If you are training a single machine learning model with early stopping or hyperparameter
optimization, you can use train_queries  for training your model and validation_queries  to stop
early or to select the optimal hyperparameters for your model. You can then use
bigger_train_queries  to train the model with the best number of epochs or the best
hyperparameters.

If you are training many machine learning models with early stopping or hyperparameter
optimization, then you can split your train judgements to smaller training and validation sets. Then,
you can use smaller_train_queries  for training your models, smaller_validation_queries  to
stop early or to select the optimal hyperparameters for your models, and validation_queries  to
select the best model. You can then use bigger_train_queries  to train the best model with the
best number of epochs or the best hyperparameters.

https://docs.python.org/3.8/library/collections.html#collections.OrderedDict


from collections import OrderedDict 
from itertools import chain 

from pv211_utils.trec.loader import load_queries 

train_queries = load_queries(Query, 'train') 
validation_queries = load_queries(Query, 'validation') 

bigger_train_queries = OrderedDict(chain(train_queries.items(), validation_queries.items())) 

pivot = int(len(train_queries) * 0.8) 
smaller_train_queries = OrderedDict(sorted(train_queries.items())[:pivot]) 
smaller_validation_queries = OrderedDict(sorted(train_queries.items())[pivot:]) 

print('\n'.join(repr(query) for query in list(train_queries.values())[:3])) 
print('...') 
print('\n'.join(repr(query) for query in list(train_queries.values())[-3:])) 

<Query 301 “Identify organizations that participate in interna ...”> 
<Query 302 “Is the disease of Poliomyelitis (polio) under cont ...”> 
<Query 303 “Identify positive accomplishments of the Hubble te ...”> 
... 
<Query 378 “Identify documents that discuss opposition to the  ...”> 
<Query 379 “Identify documents that discuss mainstreaming chil ...”> 
<Query 380 “Identify documents that discuss medical treatment  ...”> 

query = train_queries[301] 
query 

<Query 301 “Identify organizations that participate in interna ...”>

print(query.title) 



International Organized Crime 

print(query.body) 

Identify organizations that participate in international criminal 
activity, the activity, and, if possible, collaborating organizations 
and the countries involved. 

print(query.narrative) 

A relevant document must as a minimum identify the organization and the 
type of illegal activity (e.g., Columbian cartel exporting cocaine). 
Vague references to international drug trade without identification of 
the organization(s) involved would not be relevant. 

Next, we will load train and validation relevance judgements into the train_judgements  and
validation_judgement  sets. Relevance judgements specify, which documents are relevant to which
queries. You should use relevance judgements for training your supervised information retrieval
system.

Loading the relevance judgements

If you are training just a single machine learning model without any early stopping or
hyperparameter optimization, you can use bigger_train_judgements  as the input.

If you are training a single machine learning model with early stopping or hyperparameter
optimization, you can use train_judgements  for training your model and validation_judgements
to stop early or to select the optimal hyperparameters for your model. You can then use
bigger_train_judgements  to train the model with the best number of epochs or the best
hyperparameters.

If you are training many machine learning models with early stopping or hyperparameter
optimization, then you can split your train judgements to smaller training and validation sets. Then,
you can use smaller_train_judgements  for training your models, smaller_validation_judgements
to stop early or to select the optimal hyperparameters for your models, and validation_judgements
to select the best model. You can then use bigger_train_judgements  to train the best model with
the best number of epochs or the best hyperparameters.



from pv211_utils.trec.loader import load_judgements 

train_judgements = load_judgements(train_queries, documents, 'train') 
validation_judgements = load_judgements(validation_queries, documents, 'validation') 

bigger_train_judgements = train_judgements | validation_judgements 

pivot = int(len(train_judgements) * 0.8) 
smaller_train_judgements = set(sorted(train_judgements)[:pivot]) 
smaller_validation_judgements = set(sorted(train_judgements)[pivot:]) 

query = train_queries[301] 
relevant_document = documents['FBIS3-10937'] 
irrelevant_document = documents['FBIS3-10634'] 

query 

<Query 301 “Identify organizations that participate in interna ...”>

relevant_document 

<Document FBIS3-10937 “Language: Spanish Article Type:CSO [Text] Amid the ...”>

irrelevant_document 

<Document FBIS3-10634 “Language: Spanish Article Type:BFN [Report by Miri ...”>

(query, relevant_document) in train_judgements 

True



(query, irrelevant_document) in train_judgements 

False

Next, we will de�ne a class named IRSystem  that will represent your information retrieval system.
Your class must de�ne a method name search  that takes a query and returns documents in the
descending order of relevance to the query. The example implementation returns documents in
random order. Replace it with your own implementation.

Implementation of your information retrieval system

from typing import Union, List 

from gensim.utils import simple_preprocess 
from nltk.stem import PorterStemmer 

stemmer = PorterStemmer() 

def preprocess(document: Union[Query, Document]) -> List[str]: 
    tokens = simple_preprocess(document.body) 
    tokens = list(map(stemmer.stem, tokens)) 
    if isinstance(document, Query): 
        tokens = set(tokens) 
    return tokens 

from multiprocessing import Pool 

from tqdm.notebook import tqdm 
from rank_bm25 import BM25Okapi 

with Pool(None) as pool: 
    document_bodies = [ 
        document_body 
        for document_body 
        in pool.imap(preprocess, tqdm(documents.values())) 
    ] 
    index = BM25Okapi(document_bodies) 

from gensim.corpora import Dictionary 



dictionary = Dictionary(tqdm(document_bodies)) 

index_to_document = dict(enumerate(documents.values())) 

from typing import Iterable, Tuple

from pv211_utils.trec.irsystem import TrecIRSystemBase

from gensim.matutils import cossim, sparse2full, dense2vec
import numpy as np

class IRSystem(TrecIRSystemBase):
    """
    A system that returns documents in TF-IDF order.

    """
    def search(self, query: Query) -> Iterable[Document]:
        """The ranked retrieval results for a query.

        Parameters
        ----------
        query : Query
            A query.
        
        Returns
        -------
        iterable of Document
            The ranked retrieval results for a query.

        """
        for document_number in self._search(sorted(
                set(preprocess(query)),
                key=lambda word: (dictionary.token2id[word] if word in dictionary.token2id el
              )):
            document = index_to_document[document_number]
            yield document

    def _search(self, query: str) -> Iterable[int]:
        similarities = enumerate(index.get_scores(query))
        for document_id, _ in sorted(similarities, key=lambda item: (-item[1], item[0])):
            yield document_id

Evaluation



 11m 44s completed at 7:22 PM

Finally, we will evaluate your information retrieval system using the Mean Average Precision (MAP)
evaluation measure.

Your system achieved 19.54% MAP score.
Congratulations, you passed the 10% minimum! 🥳

Set submit_result = True and write your name to the author_name variable to submit your result to the le
The best submissions on the leaderboard will receive small awards during the semester, and some seriously
end of the competition (2021-05-16). Please be polite, do not spoil the game for the others, and have fun! 😉

Querying the system: 100% 50/50 [09:43<00:00, 13.15s/it]

from pv211_utils.trec.leaderboard import TrecLeaderboard
from pv211_utils.trec.eval import TrecEvaluation

submit_result = False
author_name = "Novotný, Vít"

system = IRSystem()
test_queries = load_queries(Query, 'test')
test_judgements = load_judgements(test_queries, documents, 'test')
evaluation = TrecEvaluation(system, test_judgements, TrecLeaderboard(), author_name)
evaluation.evaluate(tqdm(test_queries.values(), desc="Querying the system"), submit_result)

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://docs.google.com/spreadsheets/d/e/2PACX-1vQ33YdFZtGH6g2bDbkD9aLozLdVVGNuP09sRh-F9d_EY9nWntOrLHSyNATFsXw4v9lw3UA3vOzl5l0s/pubhtml

