~ Second Term Project: TREC Collection

“The U.S. National Institute of Standards and Technology (NIST) has run a large IR test bed
evaluation series since 1992. [...] TRECs 6—8 provide 150 information needs over about 528,000
newswire and Foreign Broadcast Information Service articles. [...] Because the test document
collections are so large, there are no exhaustive relevance judgments.” [1, Section 8.2]

Your tasks, reviewed by your colleagues and the course instructors, are the following:

1. Implement a supervised ranked retrieval system, [1, Chapter 15] which will produce a list of
documents from the TREC collection in a descending order of relevance to a query from the
TREC collection. You SHOULD use training and validation relevance judgements from the
TREC collection in your information retrieval system. Test judgements MUST only be used for
the evaluation of your information retrieval system.

2. Document your code in accordance with PEP 257, ideally using the NumPy style guide as seen
in the code from exercises.
Stick to a consistent coding style in accordance with PEP 8.

3. Reach at least 10% mean average precision [1, Section 8.4] with your system on the Trec
collection. You are encouraged to use techniques for tokenization, [1, Section 2.2] document
representation [1, Section 6.4], tolerant retrieval [1, Chapter 3], relevance feedback, query
expansion, [1, Chapter 9], learning to rank [1, Chapter 15], and others discussed in the course.

4. Upload a link to your Google Colaboratory document to the homework vault in IS MU. You MAY
also include a brief description of your information retrieval system.

[1] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schiitze. Introduction to information

retrieval. Cambridge university press, 2008.

v Loading the TREC collection

First, we will install our library and load the TREC collection. If you are interested, you can take a
peek at how we preprocessed the raw TREC collection to the final dataset that we will be using.

The TREC collection is ca 1000x larger than the Cranfield collection that we used for the first term
project! If the amount of RAM at Google Colab is insufficient for your information retrieval system,
you can either:

1. download this notebook, install Jupyter on the aura.fi.muni.cz server, and use local port

forwarding over SSH to access the running Jupyter notebook from your web browser, or

https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://www.python.org/dev/peps/pep-0008/
https://is.muni.cz/help/komunikace/spravcesouboru#k_ss_1
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://gitlab.fi.muni.cz/xstefan3/pv211-utils
https://colab.research.google.com/drive/1vT4UwsFCsi1xEZckqFVRzLgQS1kVzTuO
https://datascience.stackexchange.com/q/64880/65983
https://jupyter.readthedocs.io/en/latest/install/notebook-classic.html#alternative-for-experienced-python-users-installing-jupyter-with-pip
https://www.fi.muni.cz/tech/unix/aura.html
https://phoenixnap.com/kb/ssh-port-forwarding

2. install Jupyter on the aura.fi.muni.cz server, use local port forwarding over SSH, and set up
a local runtime for Google Colab.

Please, follow the rules of the aura.fi.muni.cz server and always run Jupyter with the lowest

priority (nice -n 19 ...), so that you don't disrupt the interactive sessions of other students.

%kcapture
! pip install git+https://gitlab.fi.muni.cz/xstefan3/pv211-utils.git
I pip install git+https://github.com/witiko/gensim.git@feature/bm25

Loading the documents

Next, we will define a class named Document that will represent a preprocessed document from the
TREC collection. Tokenization and preprocessing of the body attribute of the individual documents

is left to your imagination and craftsmanship.

from pv211 utils.trec.entities import TrecDocumentBase

class Document(TrecDocumentBase):

A preprocessed TREC collection document.

Parameters

document_id : str

A unique identifier of the document.
body : str

The abstract of the document.

def __init_ (self, document_id: str, body: str):
super().__init__ (document_id, body)

We will load documents into the documents ordered dictionary. Each document is an instance of

the Document class that we have just defined.

from pv211 utils.trec.loader import load documents
documents = load_documents(Document, cache_download='/var/tmp/pv211l/trec_documents.json.gz")

Computing MD5: /home/xnovot32/.cache/gdown/https-COLON--SLASH--SLASH-drive.google.com-S
MD5 matches: /home/xnovot32/.cache/gdown/https-COLON--SLASH--SLASH-drive.google.com-SLA!

»

https://jupyter.readthedocs.io/en/latest/install/notebook-classic.html#alternative-for-experienced-python-users-installing-jupyter-with-pip
https://www.fi.muni.cz/tech/unix/aura.html
https://phoenixnap.com/kb/ssh-port-forwarding
https://research.google.com/colaboratory/local-runtimes.html
https://www.fi.muni.cz/tech/unix/aura.html
https://docs.python.org/3.8/library/collections.html#collections.OrderedDict

print('\n'.join(repr(document) for document in list(documents.values())[:3]))

print('...")

print('\n'.join(repr(document) for document in list(documents.values())[-3:]))
<Document FR940110-1-00001 “Federal Register _/Vol. 59, No. 6./ Monday, Janua ...”>
<Document FR940110-1-00002 “DEPARTMENT OF AGRICULTURE Agricultural Stabilizati ...”>
<Document FR940110-1-00003 “The ECP is authorized by the Agricultural Credit A ...”>

<Document LA123190-0132 “Actor Martin Sheen knows how to get his name in a ...”>

<Document LA123190-0133 “IN THE SUMMER of 1989, this column wrote that the ...”>
<Document LA123190-0134 “Tammy Wynette says a new generation of performers ...”>

document = documents['FT911-3"]
document

<Document FT911-3 “CONTIGAS, the German gas group 81 per cent owned b ...”>

print(document.body)

CONTIGAS, the German gas group 81 per cent owned by the utility Bayernwerk,
said yesterday that it intends to invest DM9@@m (Dollars 522m) in the next
four years to build a new gas distribution system in the east German state
of Thuringia.

Reporting on its results for 1989-1990 the company said that the dividend
would remain unchanged at DM8.

Sales rose 9.4 per cent to DM3.37bn, but post-tax profit fell slightly from
DM31.3m to DM30@.7m.

In the first half of the current year sales rose 23 per cent.

Mr Jurgen Weber, currently vice-chairman of Lufthansa, the German airline,
is today expected to be named as the successor to the chairman Mr Heinz
Ruhnau who retires at the end of 1992.

Mr Weber is currently the technical director on the Lufthansa board.

v Loading the queries

Next, we will define a class named Query that will represent a preprocessed query from the TREC
collection. Tokenization and preprocessing of the body attribute of the individual queries as well as
the creative use of the title and narrative attributes is left to your imagination and
craftsmanship.

from pv211_utils.trec.entities import TrecQueryBase
class Query(TrecQueryBase):

A preprocessed TREC collection query.

Parameters

query_id : int
Up to three words that best describe the query.
title : str
Up to three words that best describe the query.
body : str
A one-sentence description of the topic area.
narrative : str
A concise description of what makes a document relevant.

def __init_ (self, query_id: int, title: str, body: str, narrative: str):
super().__init_(query_id, title, body, narrative)

We will load queries into the train_queries and validation_queries ordered dictionaries. Each

query is an instance of the Query class that we have just defined. You should use train_queries,
validation_queries, and relevance judgements (see the next section) for training your supervised
information retrieval system.

If you are training just a single machine learning model without any early stopping or
hyperparameter optimization, you can use bigger_train_queries as the input.

If you are training a single machine learning model with early stopping or hyperparameter
optimization, you can use train_queries for training your model and validation_queries to stop
early or to select the optimal hyperparameters for your model. You can then use
bigger_train_queries to train the model with the best number of epochs or the best
hyperparameters.

If you are training many machine learning models with early stopping or hyperparameter
optimization, then you can split your train judgements to smaller training and validation sets. Then,
you can use smaller_train_queries for training your models, smaller_validation_queries to
stop early or to select the optimal hyperparameters for your models, and validation_queries to
select the best model. You can then use bigger train_queries to train the best model with the
best number of epochs or the best hyperparameters.

https://docs.python.org/3.8/library/collections.html#collections.OrderedDict

train validation

bigger_train

A\ do not use these

from collections import OrderedDict
from itertools import chain

from pv211 utils.trec.loader import load queries

train_queries = load_queries(Query, 'train')
validation_queries = load_queries(Query, ‘'validation')

bigger train_queries = OrderedDict(chain(train_queries.items(), validation_queries.items()))

pivot = int(len(train_queries) * 0.8)
smaller_train_queries = OrderedDict(sorted(train_queries.items())[:pivot])
smaller_validation_queries = OrderedDict(sorted(train_queries.items())[pivot:])

print('\n'.join(repr(query) for query in list(train_queries.values())[:3]))

print('...")

print('\n'.join(repr(query) for query in list(train_queries.values())[-3:]))
<Query 301 “Identify organizations that participate in interna ...”>
<Query 302 “Is the disease of Poliomyelitis (polio) under cont ...”>

<Query 303 “Identify positive accomplishments of the Hubble te ...”>

<Query 378 “Identify documents that discuss opposition to the ...”>

<Query 379 “Identify documents that discuss mainstreaming chil ...”>
<Query 380 “Identify documents that discuss medical treatment ...”>

query = train_queries[301]
query

<Query 301 “Identify organizations that participate in interna ...”>

print(query.title)

International Organized Crime

print(query.body)

Identify organizations that participate in international criminal
activity, the activity, and, if possible, collaborating organizations
and the countries involved.

print(query.narrative)

A relevant document must as a minimum identify the organization and the
type of illegal activity (e.g., Columbian cartel exporting cocaine).
Vague references to international drug trade without identification of
the organization(s) involved would not be relevant.

Loading the relevance judgements

Next, we will load train and validation relevance judgements into the train_judgements and
validation_judgement sets. Relevance judgements specify, which documents are relevant to which
queries. You should use relevance judgements for training your supervised information retrieval
system.

If you are training just a single machine learning model without any early stopping or
hyperparameter optimization, you can use bigger_train_judgements as the input.

If you are training a single machine learning model with early stopping or hyperparameter
optimization, you can use train_judgements for training your model and validation_judgements
to stop early or to select the optimal hyperparameters for your model. You can then use
bigger_train_judgements to train the model with the best number of epochs or the best
hyperparameters.

If you are training many machine learning models with early stopping or hyperparameter
optimization, then you can split your train judgements to smaller training and validation sets. Then,
you can use smaller_train_judgements for training your models, smaller_validation_judgements
to stop early or to select the optimal hyperparameters for your models, and validation_judgements
to select the best model. You can then use bigger train_judgements to train the best model with
the best number of epochs or the best hyperparameters.

train validation

bigger_train

from pv211 utils.trec.loader import load_judgements

train_judgements = load_judgements(train_queries, documents, 'train')

A\ do not use these

validation_ judgements = load_judgements(validation queries, documents, 'validation')

bigger train_judgements = train_judgements | validation_judgements
pivot = int(len(train_judgements) * 0.8)

smaller_train_judgements = set(sorted(train_judgements)[:pivot])
smaller_validation_judgements = set(sorted(train_judgements)[pivot:])

query = train_queries[301]
relevant_document = documents['FBIS3-10937"']
irrelevant_document = documents['FBIS3-10634']

query

<Query 301 “Identify organizations that participate in interna ...”>

relevant_document

<Document FBIS3-10937 “Language: Spanish Article Type:CSO [Text] Amid the ..

irrelevant_document

<Document FBIS3-10634 “Language: Spanish Article Type:BFN [Report by Miri ..

(query, relevant_document) in train_judgements

True

>

>

(query, irrelevant_document) in train_judgements

False

Implementation of your information retrieval system

Next, we will define a class named 1RSystem that will represent your information retrieval system.
Your class must define a method name search that takes a query and returns documents in the
descending order of relevance to the query. The example implementation returns documents in
random order. Replace it with your own implementation.

from typing import Union, List
from gensim.utils import simple_preprocess
from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

def preprocess(document: Union[Query, Document]) -> List[str]:
tokens = simple_preprocess(document.body)
tokens = list(map(stemmer.stem, tokens))
return tokens

from multiprocessing import Pool

from tqgdm.notebook import tqdm

with Pool(None) as pool:
document_bodies = [
document_body
for document_body
in pool.imap(preprocess, tqdm(documents.values()))

index_to_document = dict(enumerate(documents.values()))

from gensim.corpora import Dictionary

dictionary = Dictionary(tqdm(document_bodies))

from gensim.models import TfidfModel, OkapiBM25Model

tfidf_model = TfidfModel(dictionary=dictionary, smartirs='bnn')
bm25 model = OkapiBM25Model(dictionary=dictionary)

from typing import Tuple

def _doc2bow_worker(document_body: List[str]) -> List[Tuple[int, int]]:
return dictionary.doc2bow(document_body)

def _tfidf worker(document_body: List[str]) -> List[Tuple[int, float]]:
vector = _doc2bow_worker(document_body)
return tfidf_model[vector]

def _bm25_worker(document_body: List[str]) -> List[Tuple[int, float]]:
vector = _doc2bow_worker(document_body)
return bm25_model[vector]

from gensim.matutils import corpus2csc
from gensim.similarities import SparseMatrixSimilarity

with Pool(None) as pool:
document_vectors = [
document_vector
for document_vector
in pool.imap(_bm25 worker, tqdm(document_bodies))

index = SparseMatrixSimilarity(None)

index.index = corpus2csc(
document_vectors,
num_docs=1en(documents),
num_terms=len(dictionary),
dtype=float,

). T

index.normalize = False

def document_to_vector(document: Union[Query, Document]) -> List[Tuple[int, float]]:

tokens = preprocess(document)
if isinstance(document, Document):

vector = _bm25 worker(tokens)
else:

vector = _tfidf_worker(tokens)

vector = _doc2bow_worker(tokens)

return vector

from typing import Iterable
from pv211_utils.trec.irsystem import TrecIRSystemBase

from gensim.matutils import cossim, sparse2full, dense2vec
import numpy as np

class IRSystem(TrecIRSystemBase):

A system that returns documents in TF-IDF order.

ROCCHIO = False
ROCCHIO ALPHA = 1.0
ROCCHIO_BETA = 0.75
ROCCHIO K = 50

def search(self, query: Query) -> Iterable[Document]:
"""The ranked retrieval results for a query.

Parameters
query : Query
A query.

Returns
iterable of Document
The ranked retrieval results for a query.

results = []
query_vector = document_to_vector(query)
if self.ROCCHIO:
relevant_vectors = [
index.index[document_number].todense()
for document_number, _
in zip(self. search(query vector), range(self.ROCCHIO K))
]
updated_query_vector = dense2vec(
self.ROCCHIO_ALPHA * sparse2full(query_vector, len(dictionary)) +

self.ROCCHIO BETA * np.mean(relevant vectors)

)

else:
updated_query_vector = query_vector

for document_number in self._search(updated_query_vector):
document = index_to_document[document_number]
yield document

def _search(self, query_vector: List[Tuple[int, float]]) -> Iterable[int]:
similarities = enumerate(index[query_vector])

for document_id, _ in sorted(similarities, key=lambda item: (-item[1], item[@])):
yield document_id

+~ Evaluation

Finally, we will evaluate your information retrieval system using the Mean Average Precision (MAP)

evaluation measure.

from pv211_utils.trec.leaderboard import TreclLeaderboard
from pv211_utils.trec.eval import TrecEvaluation

submit_result = False
author_name = "Novotny, Vit"

system = IRSystem()

test_queries = load_queries(Query, 'test')

test_judgements = load_judgements(test_queries, documents, 'test')

evaluation = TrecEvaluation(system, test_judgements, TrecLeaderboard(), author_name)
evaluation.evaluate(tqdm(test_queries.values(), desc="Querying the system"), submit result)

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision

v 0s completed at 7:26 PM

