-
Notifications
You must be signed in to change notification settings - Fork 12
/
novelty_detector.py
353 lines (273 loc) · 10.8 KB
/
novelty_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Copyright 2018 Ranya Almohsen
# Copyright 2018 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import print_function
import torch.utils.data
from torch import optim
from torchvision.utils import save_image
from net import *
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import json
import pickle
from utils.torch_cuda_helper import *
from utils import batch_provider
import random
from torch.autograd.gradcheck import zero_gradients
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import scipy.stats
import os
import math
from sklearn.metrics import roc_auc_score
# Importing svm
from sklearn import svm
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.externals import joblib
folding_id = -1
class_fold = -1
z_size = 32
batch_size = 64
title_size = 16
axis_title_size = 14
ticks_size = 18
power = 2.0
clf = svm.SVC(C=100.0)
def process_batch(batch):
label = [x[0] for x in batch]
data = [x[1] for x in batch]
y = numpy2torch(np.asarray(label)).type(LongTensor)
x = numpy2torch(np.asarray(data, dtype=np.float32)) / 255.0
return x, y
def compute_jacobian(inputs, output):
"""
:param inputs: Batch X Size (e.g. Depth X Width X Height)
:param output: Batch X Classes
:return: jacobian: Batch X Classes X Size
"""
assert inputs.requires_grad
num_classes = output.size()[1]
jacobian = torch.zeros(num_classes, *inputs.size())
grad_output = torch.zeros(*output.size())
if inputs.is_cuda:
grad_output = grad_output.cuda()
jacobian = jacobian.cuda()
for i in range(num_classes):
zero_gradients(inputs)
grad_output.zero_()
grad_output[:, i] = 1
output.backward(grad_output, retain_graph=True)
jacobian[i] = inputs.grad.data
return torch.transpose(jacobian, dim0=0, dim1=1)
def r_pdf(x, bins, count):
if x < bins[0]:
return max(count[0], 1e-308)
if x >= bins[-1]:
return max(count[-1], 1e-308)
id = np.digitize(x, bins) - 1
return max(count[id], 1e-308)
def get_f1(precision, recall):
if precision == 0.0 or recall == 0.0:
return 0
return 2.0 * precision * recall / (precision + recall)
def gpnd(data, run_gpnd=False, gennorm_param=None, bin_edges=0, counts=0):
G = Generator(z_size, d=64).to(device)
E = Encoder(z_size, d=64).to(device)
setup(E)
setup(G)
G.eval()
E.eval()
G.load_state_dict(torch.load("Gmodel_%d_%d.pkl" % (folding_id, class_fold)))
E.load_state_dict(torch.load("Emodel_%d_%d.pkl" % (folding_id, class_fold)))
sample = torch.randn(64, z_size).to(device)
sample = G(sample.view(-1, z_size, 1, 1)).cpu()
save_image(sample.view(64, 1, 32, 32), 'sample.png')
zlist = []
labellist = []
rlist = []
result = []
batches = batch_provider.batch_provider(data, batch_size, process_batch, report_progress=True)
for x, y in batches:
x = Variable(x.data, requires_grad=True)
z = E(x.view(-1, 1, 32, 32))
recon_batch = G(z)
z = z.squeeze()
recon_batch = recon_batch.squeeze().cpu().detach().numpy()
xn = x.squeeze().cpu().detach().numpy()
distances = []
for i in range(x.shape[0]):
distance = np.sum(np.power(recon_batch[i].flatten() - xn[i].flatten(), power))
rlist.append(distance)
distances.append(distance)
zlist.append(z.cpu().detach().numpy())
labellist.append(y)
if run_gpnd:
#J = compute_jacobian(x, z)
#J = J.cpu().numpy()
z = z.cpu().detach().numpy()
for i in range(x.shape[0]):
#u, s, vh = np.linalg.svd(J[i, :, :], full_matrices=False)
#logD = np.sum(np.log(np.abs(s)))
p = scipy.stats.gennorm.pdf(z[i], gennorm_param[0, :], gennorm_param[1, :], gennorm_param[2, :])
logPz = np.sum(np.log(p))
# Sometimes, due to rounding some element in p may be zero resulting in Inf in logPz
# In this case, just assign some large negative value to make sure that the sample
# is classified as unknown.
if not np.isfinite(logPz):
logPz = -1000
distance = distances[i]
logPe = np.log(r_pdf(distance, bin_edges, counts))
logPe -= np.log(distance) * (32 * 32 - z_size)
P = logPz + logPe
result.append(P)
zlist = np.concatenate(zlist)
labellist = np.concatenate(labellist)
return rlist, zlist, labellist, result
def compute_result(dataset, train_classes, inliner_classes, gennorm_param, bin_edges, counts, threshhold=None):
rlist, zlist, labellist, result = gpnd(dataset, run_gpnd=True, gennorm_param=gennorm_param, bin_edges=bin_edges,
counts=counts)
predictions = clf.predict(zlist)
predictions = np.asarray(predictions)
knownlist = np.asarray([label in inliner_classes for label in labellist])
labellist = np.asarray(labellist)
result = np.asarray(result)
correct_class = labellist == predictions
novel = np.logical_not(knownlist)
try:
auc = roc_auc_score(knownlist, result)
except ValueError:
auc = 0
def compute_f1(t):
# Uncomment line below. Makes everything known. For ablation study
#t = -1e16
y = np.greater(result, t)
not_y = np.logical_not(y)
correct = np.logical_or(np.logical_and(y, correct_class), np.logical_and(not_y, novel))
not_correct = np.logical_not(correct)
true_positive = np.sum(correct)
false_positive = np.sum(np.logical_and(not_correct, novel))
false_negative = np.sum(np.logical_and(not_correct, knownlist))
recall = true_positive / (true_positive + false_negative)
if true_positive + false_positive > 0:
precision = true_positive / (true_positive + false_positive)
F1 = get_f1(precision, recall)
return F1
else:
return 0
if not threshhold is None:
return compute_f1(threshhold), threshhold, auc
#return compute_f1(threshhold), threshhold
else:
minP = min(result) - 1
maxP = max(result) + 1
best_e = 0
best_f = 0
best_e_ = 0
best_f_ = 0
print(minP, maxP)
for e in np.arange(minP, maxP, 0.1):
f = compute_f1(e)
if f > best_f:
best_f = f
best_e = e
if f >= best_f_:
best_f_ = f
best_e_ = e
best_e = (best_e + best_e_) / 2.0
print("Best e: ", best_e)
return best_f_, best_e, auc
#return best_f_, best_e
def main(_folding_id, opennessid, _class_fold, folds=5):
mnist_train = []
mnist_valid = []
#define svm classifier
global folding_id
global class_fold
folding_id = _folding_id
class_fold = _class_fold
class_data = json.load(open('class_table_fold_%d.txt' % class_fold))
train_classes = class_data[0]["train"]
test_classes = class_data[opennessid]["test_target"]
inliner_classes = train_classes
outlier_classes = [x for x in test_classes if x not in inliner_classes]
openness = 1.0 - math.sqrt(2 * len(train_classes) / (len(train_classes) + len(test_classes)))
print("\tOpenness: %f" % openness)
for i in range(folds):
if i != folding_id:
with open('data_fold_%d.pkl' % i, 'rb') as pkl:
fold = pickle.load(pkl)
if len(mnist_valid) == 0:
mnist_valid = fold
else:
mnist_train += fold
with open('data_fold_%d.pkl' % folding_id, 'rb') as pkl:
mnist_test = pickle.load(pkl)
random.shuffle(mnist_train)
random.shuffle(mnist_valid)
#keep only train classes
mnist_train = [x for x in mnist_train if x[0] in train_classes]
#keep only test classes
mnist_valid = [x for x in mnist_valid if x[0] in test_classes]
mnist_test = [x for x in mnist_test if x[0] in test_classes]
print("Train set size:", len(mnist_train))
rlist, zlist, labellist, _ = gpnd(mnist_train, run_gpnd=False)
counts, bin_edges = np.histogram(rlist, bins=30, normed=True)
plt.plot(bin_edges[1:], counts, linewidth=2)
plt.xlabel(r"Distance, $\left \|\| I - \hat{I} \right \|\|$", fontsize=axis_title_size)
plt.ylabel('Probability density', fontsize=axis_title_size)
plt.title(r"PDF of distance for reconstruction error, $p\left(\left \|\| I - \hat{I} \right \|\| \right)$", fontsize=title_size)
plt.grid(True)
plt.xticks(fontsize=ticks_size)
plt.yticks(fontsize=ticks_size)
plt.tight_layout(rect=(0.0, 0.0, 1, 0.95))
plt.savefig('mnist_randomsearch.pdf')
plt.clf()
plt.cla()
plt.close()
for i in range(z_size):
plt.hist(zlist[:, i], bins='auto', histtype='step')
plt.xlabel(r"$z$", fontsize=axis_title_size)
plt.ylabel('Probability density', fontsize=axis_title_size)
plt.title(r"PDF of embeding $p\left(z \right)$", fontsize=title_size)
plt.grid(True)
plt.xticks(fontsize=ticks_size)
plt.yticks(fontsize=ticks_size)
plt.tight_layout(rect=(0.0, 0.0, 1, 0.95))
plt.savefig('mnist_embeding.pdf')
plt.clf()
plt.cla()
plt.close()
gennorm_param = np.zeros([3, z_size])
for i in range(z_size):
betta, loc, scale = scipy.stats.gennorm.fit(zlist[:, i])
gennorm_param[0, i] = betta
gennorm_param[1, i] = loc
gennorm_param[2, i] = scale
# train SVM on extracted z
print("SVM!")
clf.fit(zlist, labellist)
print("SVM Done!")
_, best_th, _ = compute_result(mnist_valid, train_classes, inliner_classes, gennorm_param, bin_edges, counts, threshhold=None)
#_, best_th = compute_result(mnist_valid, train_classes, inliner_classes, gennorm_param, bin_edges, counts, threshhold=None)
F1, _, auc = compute_result(mnist_test, train_classes, inliner_classes, gennorm_param, bin_edges, counts, best_th)
#F1, _= compute_result(mnist_test, train_classes, inliner_classes, gennorm_param, bin_edges, counts, best_th)
print("F1: %f" % (F1))
return F1, best_th, auc
#return F1, best_th
if __name__ == '__main__':
main(0, 4, 0, 5)