-
Notifications
You must be signed in to change notification settings - Fork 4.7k
/
default_recipe_validator.py
509 lines (448 loc) · 22.1 KB
/
default_recipe_validator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
from __future__ import annotations
from collections import defaultdict
from typing import Iterable, List, Dict, Text, Any, Set, Type, cast
from rasa.core.featurizers.precomputation import CoreFeaturizationInputConverter
from rasa.engine.graph import ExecutionContext, GraphComponent, GraphSchema, SchemaNode
from rasa.engine.storage.storage import ModelStorage
from rasa.engine.storage.resource import Resource
from rasa.nlu.featurizers.featurizer import Featurizer
from rasa.nlu.extractors.mitie_entity_extractor import MitieEntityExtractor
from rasa.nlu.extractors.regex_entity_extractor import RegexEntityExtractor
from rasa.nlu.extractors.crf_entity_extractor import (
CRFEntityExtractor,
CRFEntityExtractorOptions,
)
from rasa.nlu.extractors.entity_synonyms import EntitySynonymMapper
from rasa.nlu.featurizers.sparse_featurizer.regex_featurizer import RegexFeaturizer
from rasa.nlu.classifiers.diet_classifier import DIETClassifier
from rasa.nlu.selectors.response_selector import ResponseSelector
from rasa.nlu.tokenizers.tokenizer import Tokenizer
from rasa.core.policies.rule_policy import RulePolicy
from rasa.core.policies.policy import Policy, SupportedData
from rasa.core.policies.memoization import MemoizationPolicy
from rasa.core.policies.ted_policy import TEDPolicy
from rasa.core.constants import POLICY_PRIORITY
from rasa.shared.core.training_data.structures import RuleStep, StoryGraph
from rasa.shared.constants import (
DEFAULT_CONFIG_PATH,
DOCS_URL_COMPONENTS,
DOCS_URL_DEFAULT_ACTIONS,
DOCS_URL_POLICIES,
DOCS_URL_RULES,
)
from rasa.shared.core.domain import Domain, InvalidDomain
from rasa.shared.core.constants import (
ACTION_BACK_NAME,
ACTION_RESTART_NAME,
USER_INTENT_BACK,
USER_INTENT_RESTART,
)
from rasa.shared.exceptions import InvalidConfigException
from rasa.shared.importers.importer import TrainingDataImporter
from rasa.shared.nlu.training_data.training_data import TrainingData
import rasa.shared.utils.io
# TODO: Can we replace this with the registered types from the regitry?
TRAINABLE_EXTRACTORS = [MitieEntityExtractor, CRFEntityExtractor, DIETClassifier]
# TODO: replace these once the Recipe is merged (used in tests)
POLICY_CLASSSES = {TEDPolicy, MemoizationPolicy, RulePolicy}
def _types_to_str(types: Iterable[Type]) -> Text:
"""Returns a text containing the names of all given types.
Args:
types: some types
Returns:
text containing all type names
"""
return ", ".join([type.__name__ for type in types])
class DefaultV1RecipeValidator(GraphComponent):
"""Validates a "DefaultV1" configuration against the training data and domain."""
@classmethod
def create(
cls,
config: Dict[Text, Any],
model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext,
) -> DefaultV1RecipeValidator:
"""Creates a new `ConfigValidator` (see parent class for full docstring)."""
return cls(execution_context.graph_schema)
def __init__(self, graph_schema: GraphSchema) -> None:
"""Instantiates a new `ConfigValidator`.
Args:
graph_schema: a graph schema
"""
self._graph_schema = graph_schema
self._component_types = set(node.uses for node in graph_schema.nodes.values())
self._policy_schema_nodes: List[SchemaNode] = [
node
for node in self._graph_schema.nodes.values()
if issubclass(node.uses, Policy)
]
def validate(self, importer: TrainingDataImporter) -> TrainingDataImporter:
"""Validates the current graph schema against the training data and domain.
Args:
importer: the training data importer which can also load the domain
Raises:
`InvalidConfigException` or `InvalidDomain` in case there is some mismatch
"""
nlu_data = importer.get_nlu_data()
self._validate_nlu(nlu_data)
story_graph = importer.get_stories()
domain = importer.get_domain()
self._validate_core(story_graph, domain)
return importer
def _validate_nlu(self, training_data: TrainingData) -> None:
"""Validates whether the configuration matches the training data.
Args:
training_data: The training data for the NLU components.
"""
training_data.validate()
self._raise_if_more_than_one_tokenizer()
self._raise_if_featurizers_are_not_compatible()
self._warn_of_competing_extractors()
self._warn_of_competition_with_regex_extractor(training_data=training_data)
self._warn_if_some_training_data_is_unused(training_data=training_data)
def _warn_if_some_training_data_is_unused(
self, training_data: TrainingData
) -> None:
"""Validates that all training data will be consumed by some component.
For example, if you specify response examples in your training data, but there
is no `ResponseSelector` component in your configuration, then this method
issues a warning.
Args:
training_data: The training data for the NLU components.
"""
if (
training_data.response_examples
and ResponseSelector not in self._component_types
):
rasa.shared.utils.io.raise_warning(
f"You have defined training data with examples for training a response "
f"selector, but your NLU configuration does not include a response "
f"selector component. "
f"To train a model on your response selector data, add a "
f"'{ResponseSelector.__name__}' to your configuration.",
docs=DOCS_URL_COMPONENTS,
)
if training_data.entity_examples and self._component_types.isdisjoint(
TRAINABLE_EXTRACTORS
):
rasa.shared.utils.io.raise_warning(
f"You have defined training data consisting of entity examples, but "
f"your NLU configuration does not include an entity extractor "
f"trained on your training data. "
f"To extract non-pretrained entities, add one of "
f"{_types_to_str(TRAINABLE_EXTRACTORS)} to your configuration.",
docs=DOCS_URL_COMPONENTS,
)
if training_data.entity_examples and self._component_types.isdisjoint(
{DIETClassifier, CRFEntityExtractor}
):
if training_data.entity_roles_groups_used():
rasa.shared.utils.io.raise_warning(
f"You have defined training data with entities that "
f"have roles/groups, but your NLU configuration does not "
f"include a '{DIETClassifier.__name__}' "
f"or a '{CRFEntityExtractor.__name__}'. "
f"To train entities that have roles/groups, "
f"add either '{DIETClassifier.__name__}' "
f"or '{CRFEntityExtractor.__name__}' to your "
f"configuration.",
docs=DOCS_URL_COMPONENTS,
)
if training_data.regex_features and self._component_types.isdisjoint(
[RegexFeaturizer, RegexEntityExtractor]
):
rasa.shared.utils.io.raise_warning(
f"You have defined training data with regexes, but "
f"your NLU configuration does not include a 'RegexFeaturizer' "
f" or a "
f"'RegexEntityExtractor'. To use regexes, include either a "
f"'{RegexFeaturizer.__name__}' or a "
f"'{RegexEntityExtractor.__name__}' "
f"in your configuration.",
docs=DOCS_URL_COMPONENTS,
)
if training_data.lookup_tables and self._component_types.isdisjoint(
[RegexFeaturizer, RegexEntityExtractor]
):
rasa.shared.utils.io.raise_warning(
f"You have defined training data consisting of lookup tables, but "
f"your NLU configuration does not include a featurizer "
f"or an entity extractor using the lookup table."
f"To use the lookup tables, include either a "
f"'{RegexFeaturizer.__name__}' "
f"or a '{RegexEntityExtractor.__name__}' "
f"in your configuration.",
docs=DOCS_URL_COMPONENTS,
)
if training_data.lookup_tables:
if self._component_types.isdisjoint([CRFEntityExtractor, DIETClassifier]):
rasa.shared.utils.io.raise_warning(
f"You have defined training data consisting of lookup tables, but "
f"your NLU configuration does not include any components "
f"that uses the features created from the lookup table. "
f"To make use of the features that are created with the "
f"help of the lookup tables, "
f"add a '{DIETClassifier.__name__}' or a "
f"'{CRFEntityExtractor.__name__}' "
f"with the 'pattern' feature "
f"to your configuration.",
docs=DOCS_URL_COMPONENTS,
)
elif CRFEntityExtractor in self._component_types:
crf_schema_nodes = [
schema_node
for schema_node in self._graph_schema.nodes.values()
if schema_node.uses == CRFEntityExtractor
]
has_pattern_feature = any(
CRFEntityExtractorOptions.PATTERN in feature_list
for crf in crf_schema_nodes
for feature_list in crf.config.get("features", [])
)
if not has_pattern_feature:
rasa.shared.utils.io.raise_warning(
f"You have defined training data consisting of "
f"lookup tables, but your NLU configuration's "
f"'{CRFEntityExtractor.__name__}' "
f"does not include the "
f"'pattern' feature. To featurize lookup tables, "
f"add the 'pattern' feature to the "
f"'{CRFEntityExtractor.__name__}' "
"in your configuration.",
docs=DOCS_URL_COMPONENTS,
)
if (
training_data.entity_synonyms
and EntitySynonymMapper not in self._component_types
):
rasa.shared.utils.io.raise_warning(
f"You have defined synonyms in your training data, but "
f"your NLU configuration does not include an "
f"'{EntitySynonymMapper.__name__}'. "
f"To map synonyms, add an "
f"'{EntitySynonymMapper.__name__}' to your "
f"configuration.",
docs=DOCS_URL_COMPONENTS,
)
def _raise_if_more_than_one_tokenizer(self) -> None:
"""Validates that only one tokenizer is present in the configuration.
Note that the existence of a tokenizer and its position in the graph schema
will be validated via the validation of required components during
schema validation.
Raises:
`InvalidConfigException` in case there is more than one tokenizer
"""
types_of_tokenizer_schema_nodes = [
schema_node.uses
for schema_node in self._graph_schema.nodes.values()
if issubclass(schema_node.uses, Tokenizer) and schema_node.fn != "train"
]
is_end_to_end = any(
issubclass(schema_node.uses, CoreFeaturizationInputConverter)
for schema_node in self._graph_schema.nodes.values()
)
allowed_number_of_tokenizers = 2 if is_end_to_end else 1
if len(types_of_tokenizer_schema_nodes) > allowed_number_of_tokenizers:
raise InvalidConfigException(
f"The configuration configuration contains more than one tokenizer, "
f"which is not possible at this time. You can only use one tokenizer. "
f"The configuration contains the following tokenizers: "
f"{_types_to_str(types_of_tokenizer_schema_nodes)}. "
)
def _warn_of_competing_extractors(self) -> None:
"""Warns the user when using competing extractors.
Competing extractors are e.g. `CRFEntityExtractor` and `DIETClassifier`.
Both of these look for the same entities based on the same training data
leading to ambiguity in the results.
"""
extractors_in_configuration: Set[
Type[GraphComponent]
] = self._component_types.intersection(TRAINABLE_EXTRACTORS)
if len(extractors_in_configuration) > 1:
rasa.shared.utils.io.raise_warning(
f"You have defined multiple entity extractors that do the same job "
f"in your configuration: "
f"{_types_to_str(extractors_in_configuration)}. "
f"This can lead to the same entity getting "
f"extracted multiple times. Please read the documentation section "
f"on entity extractors to make sure you understand the implications.",
docs=f"{DOCS_URL_COMPONENTS}#entity-extractors",
)
def _warn_of_competition_with_regex_extractor(
self, training_data: TrainingData
) -> None:
"""Warns when regex entity extractor is competing with a general one.
This might be the case when the following conditions are all met:
* You are using a general entity extractor and the `RegexEntityExtractor`
* AND you have regex patterns for entity type A
* AND you have annotated text examples for entity type A
Args:
training_data: The training data for the NLU components.
"""
present_general_extractors = self._component_types.intersection(
TRAINABLE_EXTRACTORS
)
has_general_extractors = len(present_general_extractors) > 0
has_regex_extractor = RegexEntityExtractor in self._component_types
regex_entity_types = {rf["name"] for rf in training_data.regex_features}
overlap_between_types = training_data.entities.intersection(regex_entity_types)
has_overlap = len(overlap_between_types) > 0
if has_general_extractors and has_regex_extractor and has_overlap:
rasa.shared.utils.io.raise_warning(
f"You have an overlap between the "
f"'{RegexEntityExtractor.__name__}' and the "
f"statistical entity extractors "
f"{_types_to_str(present_general_extractors)} "
f"in your configuration. Specifically both types of extractors will "
f"attempt to extract entities of the types "
f"{', '.join(overlap_between_types)}. "
f"This can lead to multiple "
f"extraction of entities. Please read "
f"'{RegexEntityExtractor.__name__}''s "
f"documentation section to make sure you understand the "
f"implications.",
docs=f"{DOCS_URL_COMPONENTS}#regexentityextractor",
)
def _raise_if_featurizers_are_not_compatible(self) -> None:
"""Raises or warns if there are problems regarding the featurizers.
Raises:
`InvalidConfigException` in case the featurizers are not compatible
"""
featurizers: List[SchemaNode] = [
node
for node_name, node in self._graph_schema.nodes.items()
if issubclass(node.uses, Featurizer)
# Featurizers are split in `train` and `process_training_data` -
# we only need to look at the nodes which _add_ features.
and node.fn == "process_training_data"
# Tokenizers are re-used in the Core part of the graph when using End-to-End
and not node_name.startswith("e2e")
]
Featurizer.raise_if_featurizer_configs_are_not_compatible(
[schema_node.config for schema_node in featurizers]
)
def _validate_core(self, story_graph: StoryGraph, domain: Domain) -> None:
"""Validates whether the configuration matches the training data.
Args:
story_graph: a story graph (core training data)
domain: the domain
"""
if not self._policy_schema_nodes and story_graph.story_steps:
rasa.shared.utils.io.raise_warning(
"Found data for training policies but no policy was configured.",
docs=DOCS_URL_POLICIES,
)
if not self._policy_schema_nodes:
return
self._warn_if_no_rule_policy_is_contained()
self._raise_if_domain_contains_form_names_but_no_rule_policy_given(domain)
self._raise_if_a_rule_policy_is_incompatible_with_domain(domain)
self._validate_policy_priorities()
self._warn_if_rule_based_data_is_unused_or_missing(story_graph=story_graph)
def _warn_if_no_rule_policy_is_contained(self) -> None:
"""Warns if there is no rule policy among the given policies."""
if not any(node.uses == RulePolicy for node in self._policy_schema_nodes):
rasa.shared.utils.io.raise_warning(
f"'{RulePolicy.__name__}' is not included in the model's "
f"policy configuration. Default intents such as "
f"'{USER_INTENT_RESTART}' and '{USER_INTENT_BACK}' will "
f"not trigger actions '{ACTION_RESTART_NAME}' and "
f"'{ACTION_BACK_NAME}'.",
docs=DOCS_URL_DEFAULT_ACTIONS,
)
def _raise_if_domain_contains_form_names_but_no_rule_policy_given(
self, domain: Domain
) -> None:
"""Validates that there exists a rule policy if forms are defined.
Raises:
`InvalidConfigException` if domain and rule policies do not match
"""
contains_rule_policy = any(
schema_node
for schema_node in self._graph_schema.nodes.values()
if issubclass(schema_node.uses, RulePolicy)
)
if domain.form_names and not contains_rule_policy:
raise InvalidDomain(
"You have defined a form action, but have not added the "
f"'{RulePolicy.__name__}' to your policy ensemble. "
f"Either remove all forms from your domain or add the "
f"'{RulePolicy.__name__}' to your policy configuration."
)
def _raise_if_a_rule_policy_is_incompatible_with_domain(
self, domain: Domain
) -> None:
"""Validates the rule policies against the domain.
Raises:
`InvalidDomain` if domain and rule policies do not match
"""
for schema_node in self._graph_schema.nodes.values():
if schema_node.uses == RulePolicy:
RulePolicy.raise_if_incompatible_with_domain(
config=schema_node.config, domain=domain
)
def _validate_policy_priorities(self) -> None:
"""Checks if every policy has a valid priority value.
A policy must have a priority value. The priority values of
the policies used in the configuration should be unique.
Raises:
`InvalidConfigException` if any of the policies doesn't have a priority
"""
priority_dict = defaultdict(list)
for schema_node in self._policy_schema_nodes:
default_config = schema_node.uses.get_default_config()
if POLICY_PRIORITY not in default_config:
raise InvalidConfigException(
f"Found a policy {schema_node.uses.__name__} which has no "
f"priority. Every policy must have a priority value which you "
f"can set in the `get_default_config` method of your policy."
)
default_priority = default_config[POLICY_PRIORITY]
priority = schema_node.config.get(POLICY_PRIORITY, default_priority)
priority_dict[priority].append(schema_node.uses)
for k, v in priority_dict.items():
if len(v) > 1:
rasa.shared.utils.io.raise_warning(
f"Found policies {_types_to_str(v)} with same priority {k} "
f"in PolicyEnsemble. When personalizing "
f"priorities, be sure to give all policies "
f"different priorities.",
docs=DOCS_URL_POLICIES,
)
def _warn_if_rule_based_data_is_unused_or_missing(
self, story_graph: StoryGraph
) -> None:
"""Warns if rule-data is unused or missing.
Args:
story_graph: a story graph (core training data)
"""
consuming_rule_data = any(
cast(Policy, policy_node.uses).supported_data()
in [SupportedData.RULE_DATA, SupportedData.ML_AND_RULE_DATA]
for policy_node in self._policy_schema_nodes
)
# Reminder: We generate rule trackers via:
# rasa/shared/core/generator/...
# .../TrainingDataGenerator/_generate_rule_trackers/
contains_rule_tracker = any(
isinstance(step, RuleStep) for step in story_graph.ordered_steps()
)
if consuming_rule_data and not contains_rule_tracker:
rasa.shared.utils.io.raise_warning(
f"Found a rule-based policy in your configuration but "
f"no rule-based training data. Please add rule-based "
f"stories to your training data or "
f"remove the rule-based policy "
f"(`{RulePolicy.__name__}`) from your "
f"your configuration.",
docs=DOCS_URL_RULES,
)
elif not consuming_rule_data and contains_rule_tracker:
rasa.shared.utils.io.raise_warning(
f"Found rule-based training data but no policy supporting rule-based "
f"data. Please add `{RulePolicy.__name__}` "
f"or another rule-supporting "
f"policy to the `policies` section in `{DEFAULT_CONFIG_PATH}`.",
docs=DOCS_URL_RULES,
)