Data Munging With (&

JiM HOLTMAN

Data Munger Guru

PROBLEM S OLVERS

Jim Holtman
Kroger J_.’.l H Hcmhcnrcv:- Cr.
Data Munger Guru Cincinnati, OH 45249

513 646 9390

What is the problem you are trying to
solve?

iholtman@gmail . com
] 4

@ cinDay R User Group



Topics Covered

® What is “data munging”

® Summarizing data with various tools
— EDA: exploratory data analysis
— Visualization of the data

m Measuring performance
®m Reading in data & Time/Date classes

® Debugging

2 CinDay R User Group



Data Munging

Your desktop dictionary may not include it, but ‘'munging’' is a
common term in the programmer's world. Many computing tasks
require taking data from one computer system, manipulating it in
some way, and passing it to another. Munging can mean
manipulating raw data to achieve a final form. It can mean parsing
or filtering data, or the many steps required for data recognition.

“R” is an open source software package directed at analyzing and
visualizing data, but with the power of the language, and available
packages, it also provides a powerful means of slicing/dicing the
data to get it into a form for analysis.

3 CinDay R User Group



Summarizing Data

m Various ways of collecting information about relationships of data
elements

® | am going to use weekly shipments of products to stores

— Create the data since | cannot use actual (proprietary) information, but the
techniques are the same.

— 52 weeks of deliveries to 12 stores of 4000 products (~2.5M rows of data)

m Tools used
— ‘tapply’: part of the ‘base’ R

— ‘data.table’: package that is fast for many of these summarization operations; it has
been one that | am using more and more.

— ‘sqldf’: package that allows SQL access to dataframes; shortens the learning curve
on some R activities if you already know SQL.

— ‘plyr’: package for slicing/dicing that is used by many users.

CinDay R User Group



?tapply

tapply {base} R Documentation

Apply a Function Over a Ragged Array

Description

Apply a function to each cell of a ragged array, that is to each (non-empty) group of values given by a unique combination of the levels of certain
factors.

Usage

tapply (X, INDEX, FUN = WUOLL, ..., simplify = TRUE)

Arguments

X an atomic object, typically a vector.

INDEX list of factors, each of same length as x. The elements are coerced to factors by as. factozr.

FU the function to be applied, or NULL. In the case of functions like +, $+3%, etc., the function name must be backquoted or quoted. If

FUN is NULL, tapply returns a vector which can be used to subscript the multi-way array tapply normally produces.
optional arguments to FUN: the Note section.

Simplify [f FALSE, tapply always returns an array of mode "1isc». If TRUE (the default), then if FUN always returns a scalar, tapply
retirns an array with the mode of the scalar.

5 @ CinDay R User Group



tapply (x$Count, x$Key, sum)

Key

AW W W DD DN A

X

10
23
2
89
1
2
5

—_—

> x <— data.frame(Key = <(1, 1, 2, 2, 3, 3, 3)

+ ;, Count = <(10, 23, 2, 89, 1, 2, 5)
+ )

> tapply (x8Count, xSKey, sum)

1 2 3

33 91 8

1
10 2 2
23 89 5

Key =2 Key =3
J
|
91 8

@ CinDay R User Group



?data.table

data table {data table} R Documentation

Enhanced data.frame
Description

data.table imherits from data. frame_ It offers fast subset, fast grouping and fast ordered joins in a short and flexible syntax, for faster
development. It was inspired by A [B] svatax in R where & is a matrix and B is a 2-column matrix_ Since a data.table is a data.frame it is
compatible with R functions and packages that only accept data.frame.

The 10 minute quick start guide to data.table may be a good place to start; type vignette ("datatable-intro™).

Usage

data.table{..., keep.rownames=FALSE, check.names=TRIOE, key=HNULL)

#% 53 method for class 'data.table'
X[1i, 3, by=NULL, with=TRUE, nomatch = HA,
malt = "gll", roll = FALSE, rolltolast = FALSE,
which = FALSE, bvsameorder = FALSE,
verbose=getOption ("datatable.verbose™, FALSE), drop=NULL]

7 @ CinDay R User Group



?sqldf

sqldf {sqldf} E. Documentation

SQL select on data frames

Description
SQL select on data frames

Usage

sgldf (x, =stringsAsFactors = TRUE, col.classes = NOLL,
row.names = FALSE, envir = parent.frame(),
method = getOption("sgldf.method™),
file.format = li=st(), dbname, drv = getOption("sgldf.driver™),
user, password = "', host = "localhost™,
dll = getCption("=gldf.dl11"), connection = getOption("=gqldf.connection™))

Arguments

X Character string representing an SQL select statement or character vector whose components each represent a
successive SQQL statement to be executed. The select statement syntax must conform to the particular database being
used. If x is missing then it establishes a connection which subsequent sqldf statements access. In that case the database is
not destroved until the next sqldf statement with no x.

stringshksFactors [f TRUE then output "character” columns are converted to "factoxr™ if the heuristic is unable to determine the class. If
method="raw" then stringsAsFactors is ignored.

8 @ CinDay R User Group



plyr Package

plyr: Tools for splitting, applying and combining data

plyr is a set of tools that solves a common set of problems: you
need to break a big problem down into manageable pieces,
operate on each pieces and then put all the pieces back together.
For example, you might want to fit a model to each spatial
location or time point in your study, summarise data by panels or
collapse high-dimensional arrays to simpler summary statistics.

CinDay R User Group



Setup for Script

> # here is an example of using 4 different ways of aggregating data: tapply,
> # data.table, plyr and sqldf
>
> # create sample data representing real data that I work with in analyzing how
> # physical warehouse should be laid out.
>
> # here I am leooking at the weekly shipments from a warehouse which has about 4000
> # unique preoducts going to 12 different store for the period of a year (52 weeks)
>
> X <- expand.grid(upc = 1:4000 # create a dataframe with all combinations
+ , store = 1:12 # of these 3 walues
+ , week = 1:52
+ , KEEP.OUT.ATTRS = FALSE
+ )
> # add shipment
> set.seed(l) # generate the same sequence each time
> x8ship <- ceiling(rexp (4000 * 12 * 52, 1/k)) # average of 5 items
> str(x)
'data.frame': 2496000 obs. of 4 wariables
Supc : int 1 2 3 45 6 7 8 9 10
§ store: int 1111111111
Sweek : int 1111111111
$ ship : num 4 6 1 1 3 15 7 3 5 1
> my.func (x8$ship)
Count Mean 8D Min Median 90% 95% Max S

.496000e+06 5.520843e+00 4.9939642+00 1.000000e+00 4.000000e+00 1.200000e+01 1.500000e+01 8.100000e+01 $§
require (data.table) # bring in the required packages that we will be using

recuire (plyr)

require (sgldf)

# create intermediate objects for some of the packages

x.id <- idata.frame (x) # makes for faster 'plyr' functions

x.dt <- data.table (x) # compatible with a data.frame

VWOV Y WY N

10 @ CinDay R User Group



EDA: Distribution of “ship” Data

Density Plot of "ship" Distribution

B Actual Data
B rexp Distribution

E Mean
> plot (density (xSship)
- , main = "Density Plot of \"ship\" Distribution"
+ , xlab = 'Items Shipped’'
+ , yaxt = 'n' # supress y-axis; don't need it
+ )
> >
= > # now draw in the actual density plot for the distribution that is not
g > # truncated to an integer
ég > lines (density (rexp (100000, 1/5)), col = 'red', lwd = 3)
> # add the 'mean’
> abline (v = mean(x$ship), col = 'green', lwd = 2)
> legend('topright’
+ , legend = c("Actual Data", "rexp Distribution", "Mean")
- , £ill = e¢('black', 'red', 'green')
+ )
I I I I I
0 20 40 60 80

Items Shipped
11 @ CinDay R User Group



How To Determine Shipments Per Week?

[ R Data: al1:100, ] SEI)
File
upc store |week ship
1 (3633 9 12 5
2 (1178 12 45 1
3 (1107 12 9 13
4 |1823 5 3 1
5 |2054 4 22 2
e 567 ] 40 7
7 (3841 4 10 4
g8 (1778 1 28 1
9 [3153 g8 35 1
10 |1e49 5 32 7
11 |559 9 3 1
12 |1831 5 45 8
13 |3079 12 36 9
14 |3625 9 40 3
15 |18 9 14 1
lé |1041 11 g 14
17 [544 5 34 12
18 |303 11 35 1%
1% |1853 g 24 12
20 |1508 7 43 5
21 |1217 12 10 2
22 |1572 9 39 15
23 |2085 5 24 5
24 |1358 7 41 2
25 |3028 7 27 1
26 277 2 10 5
27 |2823 2 51 10
28 |1871 12 37 24
12 °©

® What process would you use to create a
summary of shipments per week?

— Using C++/Java

— Using Excel (Pivot Tables?)

— Using SQL

— Your “other” favorite language

m What approach would you use in R?
— You want to work on the objects as a whole.

— Think of how you would split/partition the data
and then operate on each group.

' CinDay R User Group



Total Products Ordered Per Week

> # shipments per week

> system.time(x.s.t <- tapply(x$ship, xSweek, sum)) # using tapply _ . .
user system elapsed AnyﬂnnglnuHQSUng
3.086 0.13 3.93 about the time it took

i ) - i to execute the
> system.time(x.s.dt <- x.dt[, sum(ship), by = week]) # using data.table various commands?

user system elapsed Which one would

0.14 0.02 0.15 you want to use?
> system.time(x.s.pl <- count(x.id, "week", "ship")) # using plyr

user system elapsed

0.75 0.07 0.82
> system.time(x.s.pl.d <- ddply(x.id, 'week',K function(a) sum(aSship))) # plyr

user system elapsed

0.56 0.04 0.61

> system.time(x.s.s5ql <- sgldf('select week, sum(ship) from x group by week'))
user system elapsed
17.70 6.61 25.53
> stri(x.s.t)
num [1:52(1d)] 265291 265577 263449 264307 265408
- attr(*, "dimnames")=List of 1
$ . GhI‘ [152] 1!11! 1!21! 1!31! 1!41!
> strix.s.dt)

Classes ‘data.table’ and 'data.frame': K2 obs. of 2 wariables:
Sweek: int 1 2 3 45 6 7 8 9 10

SVl : num 265291 265577 263449 264307 265408

> str(x.s.pl)

'data.frame': K2 obs. of 2 wariables:

: Notice that all the commands
$ week: int 1 2 3 4567 8 9 10 ... above returned the same values.
8§ freq: num 265291 265577 263449 264307 265408

> str(x.s.sql)

'data.frame"' : E2 obs. of 2 wvariables:

S week :int 1 2 3 45 6 78 929 10

8 sum(ship): num 265291 265577 263449 264307 265408
190

Wy Linoay R User Group



Plot of Shipments Per Week

Total Shipments by Week

o

8 _|

~

Q
Is there
seasonal
variation in the

’ data?

o

S |

®

“ Notice the y-
axis scaling.

Cases Per Week
265000
|
e
———

o v
S
o _
<
©
I3Y
plot(x.3.dt8week
, X.=5.dosV1
8 , main = "Total Shipments by Weesk"
§ — , %lab = "Wesks"
N r ¥lab = "Cases Per Week"
I I I I I , type = '"1' # line plot
0 10 20 30 40 pooer T e
, lwd =
)
Weeks

14 @ CinDay R User Group



“Better?” Plot of Shipments

15

Cases Per Week

100000 150000 200000 250000

50000

Total Shipments by Week

plot(®x.3.dciweek
, X.=.doSVl

, main = "Total Shipments
, Xlab = "NWesks"
, ¥lab = "Ca=sesz Per Wesk"

, ¥lim = c(0, ma=x(x.=s.dc5V1))

# create y-axis at 07 "wvisualization'

15 1mportant

; Cyvpe = "1" § line plot
, c0ol = "bBlue'
, Lwd = =
)
I I I I I
10 20 30 40 50
Weeks

@ CinDay R User Group



Products Per Store Per Week

> # shipments per store by week

user system elapsed
4.54 0.06 4,88

user system elapsed
0.27 0.02 0.28
> system.time(x.sw.pl <- count(x.id, c('store’,
user system elapsed
1.68 0.14 1.86
system.time(x.ws.pl.d <- ddply(x.id

+ + + V

))

user system elapsed
1.57 0.13 1.70

S store: int 1111111111
Sweek : int 1 2 345678 9 10
5 V1 r num 22222 22533 22242 21791 21855

> system.time(x.sw.t <- tapply(x$ship, list(x$week, x$store), sum))

> system.time(x.sw.dt <- x.dt[, sum(ship), by = list(store, week)])

'week') , "ship"))

;, ¢('store', 'week')
, function(a) sum(a$ship)

> str(x.sw.dt) # others are similar and the same results
Classes ‘data.table’ and 'data.frame'’': 624 obs.

of 3 variables:

16

@ CinDay R User Group



Use “View” to Look at Your Data

Brings up a
separate window
that you can
scroll through to
see all the
Information in a
dataframe.

Does this data seem
reasonable?

IR Data: xsw.dt EIEI rR Data: x.sw.dt SEEIT)
File File
store |(week (V1 |A| store |week |V1 B

1|1 1 22222 605 |12 33 21885

2 |1 2 22533 606 |12 34 22179

3 |1 3 22242 607 |12 35 21936

4 |1 4 21791 608 |12 36 21629

5 |1 5 21855 609 |12 37 22307

6 |1 6 21831 610 |12 38 22361

7 |1 7 22529 611 |12 39 21740

g8 |1 8 22534 612 |12 40 22196

9 |1 9 21961 613 |12 41 22238
10 |1 10 21964 614 |12 42 22034
11 |1 11 22506 615 |12 43 22327
12 |1 12 21914 616 |12 44 21766
13 |1 13 22597 617 |12 45 22430
14 |1 14 22132 618 |12 46 22031
15 |1 15 22664 619 |12 47 22188
16 |1 16 22882 620 |12 48 21917
17 |1 17 22243 621 |12 49 21875
18 |1 18 22413 622 |12 50 21972
19 |1 19 22196 623 |12 51 21877

Il 20 |1 20 21597 624 |12 52 22660 |

17

@ CinDay R User Group



Store per Week by UPC (Original Data!)

> # shipments per store by week by upc

> system.time (x.swu.t <- tapply(x$ship, list(x$week, x$store, x$upc), sum))
user system elapsed

107.05 1.03 109.50

> system.time (x.swu.dt <- x.dt[, sum(ship), by = list(store, week, upc)l)
user system elapsed
4,62 0.04 4.77

> system.time (x.swu.pl <- count(x.id, c('store', 'week', 'upc'), 'ship'))
user system elapsed
23.80 0.08 24 .45

> str(x.swu.dt)

Classes ‘data.table’ and 'data.frame': 2496000 obs. of 4 wvariables:
S store: int 1111111111
$week : int 1111111111 ..
$upc : int 1 2 3 456 78 9 10
$vi :num 46113157351
> x5ship <- ceiling(rexp (4000 * 12 * 52, 1/5)) # average of 5 items
> str(=)
'data.frame': 2496000 obs. of 4 wariables:
Supc : int 1 2 3456 7 8 9 10 — —
$ store: int 1 11111 1111. This is from the original
S woek : inmt 1111111111, creation of the data and we
S ship : num 4 6 1 1 3 157 3 5 1 did get back the same result.

18 @ CinDay R User Group



Let’s Add Some Extra Information to the Data

19

In many cases, you may have data from different tables that you
want to ‘join’ (merge) together based on a common key.

In this example, | have a file with the names of the 4000 products
that | would like to add to the 2.5M row dataframe that | have that
defines the shipments.

In SQL | would do a JOIN; in R | could use the “merge” function, or |
could do it with some of the basic functions.

Functions like “merge” are nice, but “hide” what they are doing. It

is good to understand what is happening so if necessary, you can
improve the performance of your program.

CinDay R User Group



Read Iin the UPC Name File

> # read in a database of the UPCs so we can add them to the input data

> upcs <— read.csv("upc.csv", as.is = TRUE)
> str(upcs)
'data.frame': 4000 cobs. of 2 wvariables:

Supe : int 1 2 3 45 6 7 8 9 10
% desc: chr "TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF" "Red & White S8liced White Pota$
> head (upcs)
upc desc
TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF
Red & White Sliced White Potatoes
Trader Joe's Almond Butter Crunchy Unsalted
Trader Mings's General Tsac Sauce
"Savannah Presents Jazz" - Various Artists [compact disc]
SHPR ADVIL.100 + 50 TABS 150.00 CT

N s W R
Nk Wk

R Data: upcs =NNCN X
File

| »

desc
TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVI>|
Red & White Sliced White Potatoes

Trader Joe's Almond Butter Crunchy Unsalted

=
i)
o]

Trader Mings's General Tsaoc Sauce

"Savannah Presents Jazz" - Various Artists [compa>
SHPR ADVIL.100 + 50 TABS 150.00 CT

Trader Joes French Roast Coffee Beans

Paddock Laboratories Ipecac Syrup

W 0[N WA]| =
W (WA

premier encore moisture blast for all Hair types

10 |10 Certs Peppermint Cool Mint Drops

11 |11 Trader Joe's - Corn Dogs - Meatless

12 |12 Corsair lgig DDR2 Notebook Memory

13 |13 trader giotto's balsamic wvinegar

14 |14 Lady Speed Stick Invisible "Wild Freesia"

15 |15 Complete Far Side 1980-199%4, The

16 (16 Close to Home 2005 desk calendar

17 |17 Gunsmoke Collector's Edition: Matt Gets It, Tap D>
18 |18 Gunsmoke Collector's Edition: Kitty's Outlaw, Twe>
19 |19 Gunsmoke Collector's Edition: Kangarco, Saludos, >

20 { 3 @ CinDay R User Group




Using “merge”

B “merge” is general purpose and does a lots of checking/validation
that can lead to extended execution times.

> # now lets add the description based on the UPC code number
> # one way of doing this is to use the "merge" function which will do a "join"
> # of the data based on a common index between the dataframes

> system.time (newld <- merge(x, upcs, by = "upa"))
user system elapsed
21.80 0.41 22.51
» str (newi)
'data.frame’': 2496000 obs. of 5 wariables:
Suape : int 111111 1111..
§ store: int 1113 8 3 3 10 2 &5 ...
§ week : int 1 33 17 52 26 20 4 29 3 23
S ship : num 4 1 4 3 2 3 321 3
$ desc : chr "TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF" "TRADER JOES DOUBLE DARK WHOLES

> head (newi)
upc store week ship desc

1 1 1 1 4 TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF
2 1 1 33 1 TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF
3 1 1 17 4 TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF
4 1 3 52 3 TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF
5 1 8 26 2 TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF
6 1 3 20 3 TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF

21 @ CinDay R User Group




Using the “base” functions

m Understanding how some of the “base” functions work can lead to
improved performance. The technique of creating a set of indices
and then using them is powerful and gets to the heart of “R” with
“vectorization” of operations. Notice that this is 100X faster than

the use of “merge” and gives the same result.

> # another way is to determine here the 'upc' in 'x' matches the 'upce' in "upcs'
> # and then copy over the 'desc' to the result
> newd.match <- x # make a copy so we don't mess it up
> system.time ({
+ indx <- match (x8upc, upcs$upc) # determine where they match
+ newX.match$desc <- upcsSdesc[indx] # copy over the matching 'desc’
+ 1)
user system elapsed
0.22 0.00 0.22
> str(newi.match)
'data.frame': 2496000 obs. of § wariables:
Supe : int 1 2 3 45 6 7 8 9 10
S store: int 11111 11111.
Sweek : int 1111111111 .
$ ship : num 4 6 11 3 15 7 3 51
$ desc : chr "TRADER JOES DOUBLE DARK WHOLE BEAN COFFEE MONROVIA CALIF" "Red & White Sliced White Pot$

22

CinDay R User Group



Where Does the Time Go0?

® Profiling helps to see what is happening.

> Rprof() # turn on prefiling
> system.time (newX <- merge (x,
user system elapsed
31.77 0.50 32.84
> Bprof (NULL) # turn it off
> summaryRprof ()

upcs, by = "upc"))

Sby.self

self.time self.pct total.time total.pect
nchar 18.62 56.39 18.62 56.39
make . unique 6.22 18.84 7.54 22.83
data.frame 1.70 5.15 21.52 65.17
[.data.frame 1.48 4.48 10.086 30.47
as.character 1.32 4.00 1.32 4.00
anyDuplicated.default 0.86 2.60 0.86 2.60
merge.data. frame 0.72 2.18 32.76 99.21
unlist 0.68 2.06 0.68 2.06
match 0.38 1.15 0.38 1.15
sort.list 0.32 0.97 0.32 0.97
gc 0.26 0.79 0.26 0.79
is.na 0.10 0.30 0.10 0.30
length 0.08 0.24 0.08 0.24
list 0.08 0.24 0.08 0.24
any 0.06 0.18 0.06 0.18
names<-— 0.06 0.18 0.06 0.18
attr<- 0.04 0.12 0.04 0.12
c 0.02 0.06 0.02 0.06
row.names<-.data. frame 0.02 0.06 0.02 0.086

23

Of the 32 secs, 18.6 were
consumed by the ‘nchar’
function which counts the
number of charactersin a
character object. 6.2 secs were
in the ‘make.unique’ which
makes character strings
unigue, which is important
when combining dataframes
that might have the same
names for columns.

As mentioned before, ‘merge’ is
general purpose and does a lot
of validation on the data since
it is not sure what the caller
may be passing in.

@ CinDay R User Group




Another Way of Showing the Rprof Data

24

C:\jph\CinDay>perl /perf/bin/readRprof.pl Rprof.out

0

[y

NOUOB_BB_MMOOOOONOOJIJOOOOONNOONOUDIdNdINNIJdJOJOVWOIIdJOUOI_WDN

33.0 root

33.0 system. time
32.8 merge
32.8 merge.data.frame
21.5 cbind
21.5 cbind

O O o
OO RrR N

0.3 gc

21.5 data.frame

18.6 nchar

0.7 unlist

0.2 data.row.names

.2 anyDuplicated

0.2 anyDuplicated.default
anyDuplicated

.2 anyDuplicated.default
list

any

attr<-

is.na

o
oONJ

O oOooo
OoOoORronN

.data.frame
make.unique

.3 as.character
anyDuplicated

.5 anyDuplicated.default
sort.list

is.na

vector

.1 length

. 0.1 length

0.0 any

0.0 ¢

0.0 attr<-

match

names<-

row.names<-

.0 row.names<-.data.frame

oORrRrRPR WOOUR U —

This shows that most of the time (21.5
secs) is spend in ‘cbind’ putting
together the resulting dataframe. Itis
in there you can see 18.6 secs being
used by ‘nchar’.

This shows the “calling tree”.

The 10.1 secs being used by “[“ is the
accessing of information in a
dataframe. This can be costly if you
are doing alot of it. In many cases,
depending on the structure of your
data, you are better off (performance
wise) is using a ‘matrix’ instead of a
dataframe.

CinDay R User Group




Hints on Reading in Data

m If you don’t need “factors”, use “as.is = TRUE” in read.table &
read.csv to read in as “characters”.

— Also goes when creating “data.frames”; use “stringsAsFactors = FALSE”

m If your data has quotes, and is not a ‘csv’ file, you will probably have
to have “quotes = “” as a parameter. If you don’t, you will probably
see fewer lines read than what you thought you had in your file.

m [f your data has “#” as part of data, use “comment.char="".

m |f your data lines do not all have the same number of fields, you may
have to understand what the ‘fill’ and ‘flush’ parameters do.

m ‘read.table’ tries to determine what type each field is, but it is best to
use ‘colClasses’ to explicitly define the type of each field.

25 CinDay R User Group



Sample Performance Data From UNIX

m Blank separated fields from a ‘vmstat’ command executed every 30
seconds during the day.

date time r

b w swap free re mf pi po fr de sr intr

syscalls cs user sys id

07/27/05 00:13:06 0 0 O 27755440 13051648 20 86 0 0 0 O O 456 2918 1323 0 1 99
07/27/05 00:13:36 0 0 0 27755280 13051480 11 53 0 0 0 O O 399 1722 1411 0 1 99
07/27/05 00:14:06 0 0 O 27753952 13051248 18 88 0 0 0 O O 424 1259 1254 0 1 99
07/27/05 00:14:36 0 0 0 27755304 13051496 17 85 0 0 0 O O 430 1029 1246 0 1 99
07/27/05 00:15:06 0 0 O 27755064 13051232 41 278 0 1 1 0 0 452 2047 1386 0 1 99
07/27/05 00:15:36 0 0 0 27753824 13040720 125 1039 0 0 0 O O 664 4097 1901 3 2 95
07/27/05 00:16:06 0 O O 27754472 13027000 15 91 0 0 0 O O 432 1160 1273 0 1 99
07/27/05 00:16:36 0 0 0 27754568 13027104 17 85 0 0 0 O O 416 1058 1271 0 1 99
07/27/05 00:17:06 0 0 0 27754560 13027096 13 69 0 0 O O O 425 1198 1268 0 1 99
07/27/05 00:17:36 0 0 O 27754704 13027240 12 51 0 1 1 0 0 432 1727 1477 0 1 99
07/27/05 00:18:06 0 0 O 27755096 13027592 27 120 0 0 0 O O 426 1449 1302 0 1 99
07/27/05 00:18:36 0 0 0 27755168 13027664 16 76 0 0 O O O 420 1002 1278 0 1 99
07/27/05 00:19:06 0 0 O 27755096 13027584 14 86 0 0 0 O O 410 1224 1263 0 1 99
07/27/05 00:19:36 0 0 0 27755344 13027832 7 26 0 0 0 O O 409 1606 1445 0 1 99
07/27/05 00:20:06 0 0 0 27755168 13027624 56 337 0 1 1 0 O 438 2112 1406 0 1 98
07/27/05 00:20:36 0 0 O 27755496 13027872 16 77 0 0 0 O O 418 1045 1259 0 1 99
07/27/05 00:21:06 0 0 0 27755648 13028016 14 88 0 0 O O O 410 1264 1254 0 1 99
07/27/05 00:21:36 0 0 0 27755712 13028088 8 34 0 0 0 O O 418 1666 1427 0 1 99
07/27/05 00:22:06 0 0 0 27755816 13028192 14 76 0 0 O O O 443 1246 1295 0 1 99
07/27/05 00:22:36 0 0 0 27755816 13028184 19 85 0 1 1 0 O 422 1084 1277 0 1 99
26

< CinDay R User Group



Time Classes

m Some of your data will probably have some columns with time/date
that you will have to handle.

— Need to convert from a character string into some time/date “class”

— There are operations you can perform on dates: differences between them, when is
a start of a month/quarter/year, plotting/summarizing by date, etc.

m There are several different “classes” that can be used, but the two
most prevalent one are “POSIX” and “Date”

— See the R Journal 4/1 June 2004 for a good discussion on the subject.
— Using dates has a “learning curve”; the above reference helps.

®m Times and dates are typically read in as character strings and then
converted to the appropriate date “class”

m | use “POSIXct” for almost all my date related values

— This is based on 1/1/1970 as the epoch which is the same as UNIX/LINUX uses and
makes the transfer of data between systems easier.

27 CinDay R User Group



Read In and Convert the Time

> # read in some wvmstat data; data has 'header' defining the columns

> my.stats('start', oper = 'push') # function for timing my scripts

start (2) - Rgui 22:16:26 <0.0 0.0> 18170.4 T07.6MB

> VMstat <- read.table('vmstat.txt', header=TRUE, as.is=TRUE)

>

> # need to 'paste' together the two fields 'date' and 'time' for conversion

> VMstatSPOSIX <- as.POSIXct(paste (VMstatSdate, VMstatStime)

+ , format = "Em/%d/%y %H:%M:%8"

+ )

> my.stats('done', oper = 'pop')

done (2) - Rgui 22:16:26 <0.4 0.5> 18170.9 : 711.5MB

> str(VMstat)

'data.frame’': 2856 obs. of 21 wvariables:

5 date chr "O07/27/05" v07/27/05" vO07/27/05" vOT7/27/056"

% time chr "00:13:06" "00:13:36" "00:14:06" "00:14:36"

Sr int 00 0CO0O0O0CO0O0OO0OO0

5b int 00 O0CO0O0O0CO0O0OO0OO0

S w int 00 O0CO0O0CO0O0O0CO0O0

S8 swap int 27755440 27755280 27753952 27755304 27755064 27753824 27754472 27754568 27754560 277548
5 free int 13051648 13051480 13051248 130514%6 13051232 13040720 13027000 13027104 13027096 130278
5 re int 20 11 18 17 41 125 15 17 13 12

8 mf int 86 53 88 85 278 1039% 321 85 69 51

5 pi int 00 0CO0O0O0CO0O0OO0OO0

5 po int 0000100001

8 fr int 0000100001

5 de int 00 0CO0O0O0CO0O0OO0OO0

5 sr int 00 0CO0O0CO0CO0O0O0O0 ...

8§ intr int 456 399 424 430 452 664 432 416 425 432

8 syscalls: int 2918 1722 1259% 1029 2047 4097 1160 1058 1198 1727

5 e¢s int 1323 1411 1254 1246 1386 1901 1273 1271 1268 1477

8 user int 00 0CO0DO030O0O0O0

S8 sys int 1111121111

5 id int 9% 9% 99 9% 99 95 99 99 99 99

5 POSIX POSI¥ct, format: "2005-07-27 00:13:06" "2005-07-27 00:13:36" "2005-07-27 00:14:06" ... [
28 @ CinDay R User Group



Plot ‘user + sys’ Over Time

plot(VMstat$POSIX, VMstat$user + VMstat$sys, type="l')
lines(VMstat$POSIX, VMstat$sys, col="red")
abline(h=mean(VMstat$user + VMstat$sys), col='green’, lwd=3)

80
I

60

VMstat$user + VMstat$sys
40
l

J
AN TR

I I I I I
02:00 07:00 12:00 17:00 22:00

20
l

VMstat$POSIX
29 CinDay R User Group



30

potential potential
outlier outliers

Boxplots | X,

lower T T I upper

adjacent lower  median upper adjacent
value  quartile quartile value

Many organizations like to summarize the utilization on some time
period. | am going to assume that we would like to see statistics for
each one hour period during the day.

One technique that is used is to created a “box and whiskers” chart
of the data. The ‘box’ contains 50% of the data points (between the
25" and 75% percentiles). The line in the box is the median value.

The whiskers extend above/below the box to the last data point or a
maximum of 1.5X the size of the box.

Any data points lying outside the whiskers are plotted as individual
points.

CinDay R User Group



boxplot Showing Utilization in Each Hour

VMstat$hour <- as.integer(format(VMstat$POSIX, format ="%H"))
boxplot(user + sys ~ hour, data=VMstat, ylab="Utilization", xlab="Time of Day")

80
I

Utilization

40

I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day

31 CinDay R User Group



String Handling/Regular Expressions

m Until recently, the only two languages | needed (out of the over 100 |
have written programs in) were R and Perl: Perl to prepare the data
for R, and R to analyze the data.

m R currently has most of the regular expression capabilities of Perl,
and | have had to revert to Perl less and less since | can do most of
my processing in R.

m So with the 4,000 product descriptions that we have, let’s count up
the number of times each word occurs and prints the 20 most
frequently appearing.

m Let’s then select one, and list out all that contain that word.

32 CinDay R User Group



> # parse the descripticon, breaking it into words (character strings separated by
> # blanks) and then count how many times each occurs. 'strsplit' will do it.

> words <- strsplit{upcsS8desc, ' ') # split on blanks
>
>
-

# this returns a 'list', the first few entries of which are
str({words[1:8]) # only list the first 8 list entries
List of 8
: chr [1:9] "TRADER" "JOES" "DOUBLE" "DARK"
: chr [1:7] "Red" "&" "White" "Sliced"” .
chr [1:6] "Trader" "Joe's" "Almond" "Butter"
chr [1:5] "Trader" "Mings's" "General" "Tsao"
chr [1:8] "\"Savannah" "Presents" "Jazzi"" v"-nu
chr [1:7] "SHPR" "ADVIL.100" "4+m vwhHQw
chr [1:6] "Trader" "Joes" "French" "Roast"”
chr [1:4] "Paddock" "Laboratories" "Ipecac" "Syrup"

Ly Ly Ly Ary Ly L L AR

>

> # to count them, 'unlist' to create a single character wvector and then count

> words <- unlist(words)

> str(words) # now a character wvector

chr [1:28343] "TRADER" "JOES" "DOUBLE" "DARK" "WHOLE" "BEAN" "COFFEE" "MONROVIA"
>

> # count and print the top 20

> head(sort(table (words) , decreasing = TRUE), 20)

words
- THE & OZ CT The OF
1325 404 342 261 254 221 215 187
of BEST Collector's Epson and 1.00 the for
157 129 119 117 115 107 100 93
Edition 2 Kroger Paper
88 77 73 72

33 @ CinDay R User Group



> # count the number of times a word appear and only list the ones that
> # appear in 32 products (just choose a number)
> word.count <£- table (words)
> word.count [word. count == 32]
words
—
FOR LEE White
32 3z 32

> # list the rows in 'upcs' that contain "White"
> subset (upcs, grepl ("White", desc))

upc desc
2 2 Red & White Sliced White Potatoes
139 139 All Whites Egg Whites 16 0Oz Carton W/Cap
140 140 211 wWhites Egg Whites 3-4 0Oz Cups
143 143 All Whites Egg Whites 2-8 0Oz Cartons
185 185 Bagables Refill White Self-Opening Bags
191 191 BIC White Out - Quick Dry Correction Fluid
519 519 Starkist Sclid White Albacore Tuna in spring water
563 563 Charter Club Vail White Comforter
&70 e70 White Diamond Quilted Tree Skirt w/ applique
B62 862 Princess Beanie Baby 1997 tag, Purple Color, White Rose
B85 885 Ty Beanie Baby ( Red, White & Blue)
921 921 Avia Women's Running Sneakers White/Grey/Light Pink A212WWSQ
929 929 Art's Mexican Products - Lightly Salted - White Corn Chips
981 981 Trader Joes's Pomegranate White Tea - tea bags
1002 1002 AT-1015 White Impedance matching wvolume control
1006 1006 Zig-Zag Cigarette Paper, KutCorners Blue, Free Buring, Super-White
1017 1017 Zig Zag White with Free White Lights
1050 1050 Lindt Lindor Milk Chocolate Truffle With White Center - Holiday Blend
1699 1699 Chely Wright - Single White Female CD
1817 1817 Woods Household Extension Cord, White
1928 1928 Shaun White Snowboarding game - X¥box 360
2082 2082 25 White Plastic Pom Poms (4" in diameter)
2367 2367 Paper Packs - White Cardstock - 8 1/2" x 11v
2710 2710 Polident Mouthwash Whitening For Denture Wearers Bright Mint
2711 2711 Polident Mouthwash Whitening For Denture Wearers Peppermint
34 @ CinDay R User Group




Debugging

35

All programs have bugs.

When the “error” occurs, you need to “see” the environment in
which it happened

— May be deep in a series of functions calls
— Need to go up through each level to see what the parameters were
— Need to examine the objects in each function environment

One way of trapping the error and gaining control is to put the
following function call in your script; | have it as part of my Startup
so that it is always active:

— options(error = utils::recover)

— Onaerror it will give you the stack trace and let you set the “browser” at the
appropriate environment to examine values.

Also checkout the ‘debug’ package.

CinDay R User Group



Example of Processing Error

> # create two functions that call one another so we can create a error and show
> % how to lock at wvalues.

> £f.1 «<- function() f£.2(list()) # just call f.2 with NULL list

> £.2 «<- function(x) x[[2]] # cause a subscript error

= £.10() ¥ Cause error

Error in x[[2]] : subscript out of bounds < errorrnessage

Enter a frame number, or 0 to exit

1: £.1() |
2: £.2(1ist()) } Calling stacks

Selection: 2 < go to stack frame 2
Called from: top level

Browse[1l]> LS{}(—————___________________—____—_—
[1] "="

Browse[1]> =

list() ( 
Browse[1l] >

Enter a frame number, or 0 to exit

get list of objects in frame

examine value of “x”

36 @ CinDay R User Group



FAQ 7.31

® [n the R-Help news group, this is referred to a lot: “Why doesn't R
think these numbers are equal?”

> # FAQ T7.31
> myData <- seq(0, 5, 0.1) # increments of 0.1
> myData
[1] 0.0 O
[20] 1.9 2
3
41

o =l

=
[ I Y
L =
=
=] 20

ha L2
&= 0n

o o~] OO
= ha O
<
= b
@ oo
= L
© o H
N
SRS
W=
W=
RS
W =

0.
2.
4.

o R
= b o
W
= ha O
SRS
= b o
W e o
= ha O
B0 oy
= b o
LR
= ha O

[39] 3.8 3.
> myDatal
[1] 4.8
> myData[49] =— 4.8 # comes up FALSE!! Why?

[1] FALSE

> myData[49] - 4.8 # see the small rounding error?

[1] 8.881784e-16

> print (myData[49], digits = 20)

[1] 4.8000000000000007105

> print (4.8, digits = 20)

[1] 4.7999999999999998224

> all.equal (myData[49], 4.8) # use when comparing 'numerics’'
[1] TRUE

1
0
9
1

9 # 4.8

“What Every Computer Scientist Should Know About Floating-Point Arithmetic”,
ACM Computing Surveys, 23/1, 5-48, also available via
http://www.validlab.com/goldberg/paper.pdf.

37 @ CinDay R User Group


http://www.validlab.com/goldberg/paper.pdf

Subset of R Functions to Start With

38

abline

abs

all
all.equal
any

apply
approx
approxfun
arrows
as.integer
as.numeric
as.POSIXct
assign
attr

axis
barplot
boxplot
break

c

cat

cbind
ceiling
character
colMeans
colSums
count.fields
cummax
cummin
cumprod
cumsum
curve

cut
data.frame
density
deparse
dev.off
diff

dim
do.call
duplicated
eval
exists
factor
floor
flush.console
for
function
gc

get

grep
help.search
hist

if

ifelse
image
integer
Jjitter
lapply
layout
layout.show
length
level.plot

levels
lines
list

1m

load

1s
match
matplot
matrix
max
mean
median
min
mtext
names
nchar
ncol
next
nrow
numeric
options
order
pairs
palette
par
parse
paste
pdf
plot
postscript
print

quantile
quit
range
rbind
read.csv
read.table
regexpr
rep
return
rle

rm

row
rowMeans
rownames
rowsums
Rprof
rug
sample
sapply
save
save.limage
scan

seq
set.seed
setwd
sink
sort
source
split
sprintf
str

strftime
strptime
strsplit
structure
substr
sum
summary
supsmu
table
tapply
terms
text
title
traceback
trunc
trunc.POSIXt
truncate
try
unclass
unique
unlist
which
which.max
which.min
while
window
with
write.csv

@ CinDay R User Group



