forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path09_01_softmax_loss.py
62 lines (47 loc) · 1.74 KB
/
09_01_softmax_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Cross entropy example
import numpy as np
# One hot
# 0: 1 0 0
# 1: 0 1 0
# 2: 0 0 1
Y = np.array([1, 0, 0])
Y_pred1 = np.array([0.7, 0.2, 0.1])
Y_pred2 = np.array([0.1, 0.3, 0.6])
print("loss1 = ", np.sum(-Y * np.log(Y_pred1)))
print("loss2 = ", np.sum(-Y * np.log(Y_pred2)))
# Softmax + CrossEntropy (logSoftmax + NLLLoss)
loss = nn.CrossEntropyLoss()
# target is of size nBatch
# each element in target has to have 0 <= value < nClasses (0-2)
# Input is class, not one-hot
Y = Variable(torch.LongTensor([0]), requires_grad=False)
# input is of size nBatch x nClasses = 1 x 4
# Y_pred are logits (not softmax)
Y_pred1 = Variable(torch.Tensor([[2.0, 1.0, 0.1]]))
Y_pred2 = Variable(torch.Tensor([[0.5, 2.0, 0.3]]))
l1 = loss(Y_pred1, Y)
l2 = loss(Y_pred2, Y)
print("PyTorch Loss1 = ", l1.data, "\nPyTorch Loss2=", l2.data)
print("Y_pred1=", torch.max(Y_pred1.data, 1)[1])
print("Y_pred2=", torch.max(Y_pred2.data, 1)[1])
# target is of size nBatch
# each element in target has to have 0 <= value < nClasses (0-2)
# Input is class, not one-hot
Y = Variable(torch.LongTensor([2, 0, 1]), requires_grad=False)
# input is of size nBatch x nClasses = 2 x 4
# Y_pred are logits (not softmax)
Y_pred1 = Variable(torch.Tensor([[0.1, 0.2, 0.9],
[1.1, 0.1, 0.2],
[0.2, 2.1, 0.1]]))
Y_pred2 = Variable(torch.Tensor([[0.8, 0.2, 0.3],
[0.2, 0.3, 0.5],
[0.2, 0.2, 0.5]]))
l1 = loss(Y_pred1, Y)
l2 = loss(Y_pred2, Y)
print("Batch Loss1 = ", l1.data, "\nBatch Loss2=", l2.data)