-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGBM.R
152 lines (103 loc) · 3.53 KB
/
GBM.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
rm(list = ls())
library(caret)
library(tidyverse)
library(AppliedPredictiveModeling)
library(pls) #kismi en kucuk kareler ve pcr icin
library(elasticnet)
library(broom) #tidy model icin
library(glmnet)
library(MASS)
library(ISLR)
library(PerformanceAnalytics)
library(funModeling)
library(Matrix)
library(kernlab) #svm
library(e1071) #svm icin
library(rpart) #cart icin
library(pgmm) #olive data seti icin
library(dslabs)
library(rpart.plot) #rpart gorsel icin
library(partykit) #karar agaci gorseli icin
library(ipred) #bagging icin
library(randomForest)
library(gbm)
library(nnet)
library(neuralnet)
library(GGally)
library(NeuralNetTools) #garson fonksiyonu icin
library(FNN)
library(dplyr)
library(ggpubr)
df <- Boston
head(df)
profiling_num(df)
glimpse(df)
summary(df)
ggpairs(df)
pairs(df,pch=18)
set.seed(3456)
train_indeks <- createDataPartition(df$medv, p=0.8, list = F, times = 1)
train <- df[train_indeks, ]
test <- df[-train_indeks, ]
train
train_x <- train %>% dplyr::select(-medv)
train_y <- train$medv
test_x <- test %>% dplyr::select(-medv)
test_y <- test$medv
gbm_fit <- gbm(medv ~., data = train, distribution = "gaussian",
n.trees = 5000,
interaction.depth = 1,
shrinkage = 0.01)
#shrinkage parametresi learning rate'e karşılık geliyor.
gbm_fit
summary(gbm_fit)
defaultSummary(data.frame(obs=train_y,
pred=gbm_fit$fit))
# parametrelerle oynayarak yeniden model deneyelim
gbm_fit <- gbm(medv ~., data = train, distribution = "gaussian",
n.trees = 10000,
interaction.depth = 1,
shrinkage = 0.01,
cv.folds = 5)
gbm.perf(gbm_fit, method = "cv")
defaultSummary(data.frame(obs=train_y,
pred=gbm_fit$fit))
# train için RMSE = 2.45 oldu. Ama test hatamızı da hesaplayıp sonucu görelim
pred_y <- predict(gbm_fit, test_x)
#pred_y <- predict(gbm_fit, test_x, n.trees = 500)
# predict fonksiyonuyla gbm kullanılırken n.trees ile kaç ağaç kullanılacağı belirlenebilir.
defaultSummary(data.frame(obs=test_y,
pred=pred_y))
plot(predict(gbm_fit, test_x, n.trees = 5000), test_y,
xlab = "Tahmin Edilen", ylab = "Gercek",
main = "Tahmin Edilen vs Gercek: GBM",
col = "dodgerblue", pch = 20)
grid()
abline(0, 1, col = "darkorange", lwd = 2)
#gbm için model tuning
# 4 tane parametreyi optimize edebiliriz:
# 1) n.trees, 2) interaction_depth (karmaşıklık katsayısı), 3)shrinkage, 4)minode
#minode eğitim seti içindeki gözlem sayısı
ctrl <- trainControl(method = "cv", number = 10, search = "grid")
gbm_grid <- expand.grid(interaction.depth = seq(1,7, by = 2),
n.trees = seq(100,1000, 50),
shrinkage = c(0.01, 0.1),
n.minobsinnode = c(10:20)
)
gbm_fit <- train(train_x, train_y, method = "gbm",
trControl = ctrl, tuneGrid = gbm_grid, verbose=FALSE)
plot(gbm_fit)
gbm_fit$finalModel
gbm_fit$results %>%
filter(n.trees == as.numeric(gbm_fit$bestTune$n.trees) &
interaction.depth == as.numeric(gbm_fit$bestTune$interaction.depth) &
shrinkage == as.numeric(gbm_fit$bestTune$shrinkage) &
n.minobsinnode == as.numeric(gbm_fit$bestTune$n.minobsinnode))
defaultSummary(data.frame(obs = test_y,
pred = predict(gbm_fit, test_x)))
"
shrinkage interaction.depth n.minobsinnode n.trees RMSE Rsquared MAE
1 0.1 5 10 700 3.1 0.9 2.2
RMSESD RsquaredSD MAESD
1 0.87 0.036 0.36
"