-
Notifications
You must be signed in to change notification settings - Fork 3
/
video_pretrain.py
442 lines (368 loc) · 17.3 KB
/
video_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
'''
Adapted from https://github.com/salesforce/BLIP
'''
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
import deepspeed
# from apex import amp
# from apex.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast
from torch.cuda.amp import GradScaler
from models.blip_pretrain import blip_pretrain, blip_videoimage_pretrain
import utils
from pprint import pformat
from utils import warmup_lr_schedule, step_lr_schedule
from data import create_dataset, create_sampler, create_loader
def get_deepspeed_config(args):
config_params = {
'train_batch_size': args.effective_batch_size,
}
use_fp16 = args.deepspeed_fp16
use_amp = not args.deepspeed_fp16 # by default, if not use deepspeed fp16, will enable deepspeed amp
if use_amp:
config_params['amp'] = {
'enabled': True,
'opt_level': f'O{args.amp_opt_level}',
}
if use_fp16:
config_params['fp16'] = {
'enabled': True,
}
gradient_clip = args.max_grad_norm
if gradient_clip:
config_params['gradient_clipping'] = gradient_clip
config_params['flops_profiler'] = {
'enabled': False,
'profile_step': 1,
'module_depth': -1,
'top_modules': 3,
'detailed': True,
}
# config_params['logging'] = {
# 'steps_per_print': 50,
# }
if hasattr(args, "zero_opt_stage") and args.zero_opt_stage > 0:
config_params['zero_optimization'] = {
'stage': args.zero_opt_stage,
}
if args.zero_opt_stage > 0:
config_params['fp16'] = {
'enabled': True
}
config_params['zero_allow_untested_optimizer'] = True
print(pformat(config_params))
return config_params
def fp32_to_fp16(inputs):
# deepspeed does not auto cast inputs.
for k, v in inputs.items():
if isinstance(v, torch.Tensor) and v.dtype == torch.float32:
v = v.to(dtype=torch.half)
inputs[k] = v
return inputs
def mixed_precision_init(args, model, optimizer):
if args.mixed_precision_method == "deepspeed":
config = get_deepspeed_config(args)
model, optimizer, _, _ = deepspeed.initialize(
config_params=config,
model=model,
optimizer=optimizer
)
'''
else:
# opt_level is O0, Apex will run as fp32
model, optimizer = amp.initialize(
model, optimizer,
enabled=True,
opt_level=f'O{args.amp_opt_level}')
if args.distributed:
model = DDP(model)
'''
return args, model, optimizer
def train(model, data_loader, optimizer, epoch, device, config, args, scaler):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_lm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
data_loader.sampler.set_epoch(epoch)
for i, (video, caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if epoch == 0:
warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
B, N, C, H, W = video.size()
if model.module.timesformer is False:
video = video.view(-1, C, H, W)
else:
video = video.permute(0, 2, 1, 3, 4) # (B,C,N,H,W)
video = video.to(device, non_blocking=True)
# ramp up alpha in the first 2 epochs
alpha = config['alpha'] * min(1, (epoch * len(data_loader) + i) / (2 * len(data_loader)))
if args.mixed_precision_method == 'deepspeed':
inputs = {"video": video, 'caption': caption}
inputs = fp32_to_fp16(inputs)
video = inputs['video']
caption = inputs['caption']
loss_ita, loss_itm, loss_lm = model(video, caption, alpha, video=True, B=B)
loss = loss_ita + loss_itm + loss_lm
elif args.mixed_precision_method == 'apex':
with autocast():
loss_ita, loss_itm, loss_lm = model(video, caption, alpha, video=True, B=B)
loss = loss_ita + loss_itm + loss_lm
else:
loss_ita, loss_itm, loss_lm = model(video, caption, alpha, video=True, B=B)
loss = loss_ita + loss_itm + loss_lm
if args.mixed_precision_method == 'apex':
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
elif args.mixed_precision_method == 'deepspeed':
model.backward(loss)
model.step()
else:
loss.backward()
optimizer.step()
optimizer.zero_grad()
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(loss_lm=loss_lm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def train_two_loaders(model, loader1, loader2, optimizer, epoch, device, config, args, scaler, max_steps):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_lm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
loader1.sampler.set_epoch(epoch)
loader2.sampler.set_epoch(epoch)
# loader1_iter = iter(loader1)
# loader2_iter = iter(loader2)
for i, ((video, caption), (video_2, caption_2)) in enumerate(
metric_logger.log_every(zip(loader1, loader2), print_freq, header, tot=max_steps)):
# video, caption = next(loader1_iter)
# video_2, caption_2 = next(loader2_iter)
if i > max_steps:
break
if epoch == 0:
warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
B1, N, C, H, W = video.size()
if model.module.timesformer is False:
video = video.view(-1, C, H, W)
else:
video = video.permute(0, 2, 1, 3, 4) # (B,C,N,H,W)
video = video.to(device, non_blocking=True)
B2, N, C, H, W = video_2.size()
if model.module.timesformer is False:
video_2 = video_2.view(-1, C, H, W)
else:
video_2 = video_2.permute(0, 2, 1, 3, 4) # (B,C,N,H,W)
video_2 = video_2.to(device, non_blocking=True)
# ramp up alpha in the first 2 epochs
alpha = config['alpha'] * min(1, (epoch + i / max_steps) / (2 * max_steps))
if args.mixed_precision_method == 'deepspeed':
inputs = {"video": video, 'caption': caption}
inputs = fp32_to_fp16(inputs)
video = inputs['video']
caption = inputs['caption']
inputs_2 = {"video": video_2, 'caption': caption_2}
inputs_2 = fp32_to_fp16(inputs_2)
video_2 = inputs_2['video']
caption_2 = inputs_2['caption']
loss_ita, loss_itm, loss_lm = model(video, caption, B1, video_2, caption_2, B2, alpha)
loss = loss_ita + loss_itm + loss_lm
elif args.mixed_precision_method == 'apex':
with autocast():
loss_ita, loss_itm, loss_lm = model(video, caption, B1, video_2, caption_2, B2, alpha)
loss = loss_ita + loss_itm + loss_lm
else:
loss_ita, loss_itm, loss_lm = model(video, caption, B1, video_2, caption_2, B2, alpha)
loss = loss_ita + loss_itm + loss_lm
if args.mixed_precision_method == 'apex':
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
elif args.mixed_precision_method == 'deepspeed':
model.backward(loss)
model.step()
else:
loss.backward()
optimizer.step()
optimizer.zero_grad()
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(loss_lm=loss_lm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config, img_config=None):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
scaler = None
#### Mixed precision
if args.mixed_precision_method == "apex":
fp16_trainning = f"apex O{args.amp_opt_level}"
scaler = GradScaler()
elif args.mixed_precision_method == "deepspeed":
amp_info = '' if args.deepspeed_fp16 else f'amp, {args.amp_opt_level}'
fp16_info = '' if not args.deepspeed_fp16 else f'fp16, {args.zero_opt_stage}'
fp16_trainning = f"deepspeed, {amp_info}{fp16_info}"
else:
fp16_trainning = None
print("16-bits training: {}".format(fp16_trainning))
#### Dataset ####
print("Creating dataset")
datasets = [create_dataset('pretrain_video', config, min_scale=0.5)]
print('number of training samples: %d' % len(datasets[0]))
if img_config is not None:
img_datasets = [create_dataset('pretrain_video', img_config, min_scale=0.5)]
print('number of image training samples: %d' % len(img_datasets[0]))
video_steps = len(datasets[0]) // (config['batch_size'] * args.world_size)
img_steps = len(img_datasets[0]) // (img_config['batch_size'] * args.world_size)
max_steps = min(video_steps, img_steps)
print("video bs:{}, video max steps:{}".format(len(datasets[0]), video_steps))
print("image bs:{}, image max steps:{}".format(len(img_datasets[0]), img_steps))
print("So max steps={}".format(max_steps))
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True], num_tasks, global_rank)
if img_config is not None:
img_samplpers = create_sampler(img_datasets, [True], num_tasks, global_rank)
data_loader = \
create_loader(datasets, samplers, batch_size=[config['batch_size']], num_workers=[4], is_trains=[True],
collate_fns=[None])[0]
if img_config is not None:
img_data_loader = \
create_loader(img_datasets, img_samplpers, batch_size=[img_config['batch_size']], num_workers=[4],
is_trains=[True], collate_fns=[None])[0]
#### Model ####
print("Creating model")
if img_config is not None:
model = blip_videoimage_pretrain(pretrained=config['pretrained'], image_size=config['image_size'],
vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'],
vit_ckpt_layer=config['vit_ckpt_layer'], queue_size=config['queue_size'],
model_cfg=config)
else:
model = blip_pretrain(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
vit_grad_ckpt=config['vit_grad_ckpt'],
vit_ckpt_layer=config['vit_ckpt_layer'], queue_size=config['queue_size'],
model_cfg=config)
model = model.to(device)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
decay_param_tp = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_decay)]
no_decay_param_tp = [(n, p) for n, p in param_optimizer if any(nd in n for nd in no_decay)]
weight_decay = args.weight_decay
optimizer_grouped_parameters = [
{'params': [p for n, p in decay_param_tp],
'weight_decay': weight_decay},
{'params': [p for n, p in no_decay_param_tp],
'weight_decay': 0.0}
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=config['init_lr'], eps=args.adam_epsilon)
start_epoch = 0
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
if 'optimizer' in checkpoint.keys() and 'epoch' in checkpoint.keys():
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
state_dict = checkpoint['model']
model.load_state_dict(state_dict)
print('resume checkpoint from %s' % args.checkpoint)
if args.mixed_precision_method:
args.effective_batch_size = config['batch_size'] * args.num_gpus
args, model, optimizer = mixed_precision_init(args, model, optimizer)
model_without_ddp = model
if args.distributed:
if args.mixed_precision_method != 'deepspeed':
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, config['max_epoch']):
step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
if img_config is not None:
train_stats = train_two_loaders(model, data_loader, img_data_loader, optimizer, epoch, device, config, args,
scaler, max_steps)
else:
train_stats = train(model, data_loader, optimizer, epoch, device, config, args, scaler)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth' % epoch))
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/pretrain_video.yaml')
parser.add_argument('--output_dir', default='output/Pretrain')
parser.add_argument('--checkpoint', default=None, type=str)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--rank', default=0, type=int, help='rank of process')
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--max_grad_norm', type=float, default=1.0)
parser.add_argument('--adam_epsilon', type=float, default=1e-8)
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--mixed_precision_method', type=str, default=None)
parser.add_argument('--amp_opt_level', type=int, default=1)
parser.add_argument('--deepspeed_fp16', action='store_true')
parser.add_argument('--zero_opt_stage', type=int, default=1)
parser.add_argument('--num_gpus', type=int, default=4)
parser.add_argument('--sep_image', action='store_true')
parser.add_argument('--img_config', type=str)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
img_config = None
if args.sep_image and (args.img_config is not None):
img_config = yaml.load(open(args.img_config, 'r'), Loader=yaml.Loader)
yaml.dump(img_config, open(os.path.join(args.output_dir, 'img_config.yaml'), 'w'))
main(args, config, img_config)