-
Notifications
You must be signed in to change notification settings - Fork 1
/
Full body model_V1.2.R
548 lines (486 loc) · 21.7 KB
/
Full body model_V1.2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# Whole-body PBPK model for Doxorubicin
#DNA content: 2.15 ug
rm(list=ls(all=TRUE))
#REQUIRED PACKAGES:
require(distr)
require(data.table)
require(dplyr)
require(ggplot2)
require(deSolve)
require(plotly)
{
t_end <- 45 #[h] time of the end of simulation
times <- seq(0, t_end, by = 0.1) #time of simulation
age <- 25 #the age of chosen sample
gender <- 'male'
weight <- 70 #[kg]
height <- 180 #[cm]
BSA <- weight ^ 0.425 * height ^ 0.725 * 0.007184 #[m2] Body surface area according to [DuBois-DuBois 1916]
oral_dose <- 0 #[mg] oral bolus dose
inf_dose <- 50 * BSA #[mg] infusion dose according to Pfizer guidance : https://www.pfizermedicalinformation.com/en-us/doxorubicin/dosage-admin
inf_time <- 2 #[h] infusion time
CO <- 1.1 * BSA - 0.05 * age + 5.5 #[L/min] cardiac output
CO <- CO * 60 #[L/h] cardiac output units change from [L/min] to [L/h]
#SEX DEPENDENT BLOOD FLOWS for healthy population according to [Simycp Simulator v.16]
# BLOOD FLOWS [L/h] -------------------------------------------------------
Qbr <- CO * 0.12 #Brain
Qhe <- CO * 0.04 #Heart
Qsk <- CO * 0.05 #Skin
Qmu <- CO * 0.17 #Muscle
Qad <- CO * 0.05 #Adipose
Qsp <- CO * 0.02 #Spleen
Qgu <- CO * 0.16 #Gut
Qki <- CO * 0.19 #Kidney
Qha <- CO * 0.065#Hepatic artery
Qbo <- CO * 0.05 #Bone
Qre <- CO * 0.085#Rest
Qlu <- CO#lung
Qli <- Qha + Qsp + Qgu#Liver
# ORGAN VOLUMES [L] -----------------------------------------------------------
#BW fraction (according to Simcyp Simulator) * random BW / tissue density
Vad <- (0.259 * weight) / 0.923
Vbo <- (0.090 * weight) / 1.850
Vbr <- (0.017 * weight) / 1.04
Vgu <- (0.016 * weight) / 1.04
Vhe <- (0.005 * weight) / 1.04
Vki <- (0.004 * weight) / 1.05
Vli <- (0.022 * weight) / 1.08
Vlu <- (0.007 * weight) / 1.05
Vmu <- (0.403 * weight) / 1.04
Vsk <- (0.043 * weight) / 1.1
Vsp <- (0.002 * weight) / 1.06
Vre <- (0.057 * weight) / 1.05
Vpl <- (0.044 * weight) / 1.025
Vrb <- (0.031 * weight) / 1.125
Vbl <- Vpl + Vrb
# CARDIOMYOCYTE VOLUME AND SURFACE AREA according to [Polak 2012] -------------------------------------------------------
MV <- exp(age * 0.04551 + 7.36346) #[cm^3]
MSA <-exp(sqrt(0.102 ^ 2 + (log(MV)) ^ 2 * 0.002939 ^ 2)) #[cm^2]
}
{
# MODEL -------------------------------------------------------------------
#Arguments of the function are the model parameters that vary
ModelVar <- function (BW,
CO,
MPPGL,
Vad,
Vbl,
Vrb,
Vbo,
Vbr,
Vgu,
Vheart,
Vki,
Vli,
Vlu,
Vpl,
Vmu,
Vsk,
Vsp,
Vre,
Qre,
Qad,
Qbo,
Qbr,
Qgu,
Qheart,
Qki,
Qh,
Qlu,
Qmu,
Qsk,
Qsp,
CYP3A4,
tlag,
Fabs,
t_end,
fup,
BP,
MV,
MSA)
times <- seq(0, t_end, by = 0.1)
# PHYSICO-CHEMICAL PARAMETERS OF DOX -------------------------------------------------------
MW <- 543.52 #[g/mol] Molecular weight
pKa <- 8.22 # [Zahra 2020]
HBD <- 6 #number of hydrogen bond donors: [PubChem Compound Database; CID = 31703];
PSA <- 206 #Polar Surface Area: [PubChem Compound Database; CID = 31703]
logD74 <- 0.02 #octanol/water distribution coefficient at pH 7.4 [Alves 2017]
# PHYSIOLOGICAL PARAMETERS -------------------------------------------------------
liver_density <- 1080 #[g/L]
heart_density <- 1055 #[g/L] [Alexandra 2019]
#Tissue volumes [L] -------------------------------------------------------
Vendo = 0.5 * Vhe #endocardial
Vmid = 0.3 * Vhe #midmyocardial
Vepi = 0.2 * Vhe #epicardial
Vendo_ic = 87.5 / 100 * Vendo #intracellular space of endocardial [Sjogaard 1982] -> data for skeletal muscle; calculated the proportion of extracellular water to total water in skeletal muscle
Vepi_ic = 87.5 / 100 * Vepi #intracellular space of epicardial
Vmid_ic = 87.5 / 100 * Vmid #intracellular space of midmyocardial
Vhe_ec = 12.5 / 100 * Vhe #extracellular space of heart tissue
Vve = (2 / 3) * Vbl #venous blood; assumed 2/3 of total blood according to volmues published in CPT. Regarding the distribution of blood volume within the circulation, the greatest volume resides in the venous vasculature, where 70-80% of the blood volume is found. -> http://www.cvphysiology.com/Blood%20Pressure/BP019
Var = Vbl - Vve #arterial blood
Vplas_ven = Vpl * (Vve / (Vve + Var)) #venous plasma
Vplas_art = Vpl * (Var / (Vve + Var)) #arterial plasma
#myocyte volume -------------------------------------------------------
ML <- 134 #[mcm] myocyte length [Tracy 2011, Gerdes 1995]
MB <- ML / 7 #=2r [mcm] myocyte breadth ML:MB = 7:1 [Tracy 2011, Gerdes 1995]
MVol <- MV * (10 ^ -15) #[L] random age dependent myocate volume in cm3 -> changing to liters
#cells amounts -------------------------------------------------------
cell_amount_epi <- Vepi_ic / MVol #epicardial
cell_amount_mid <- Vmid_ic / MVol #midmyocardial
cell_amount_endo <- Vendo_ic / MVol #endocardial
#cells concentration -------------------------------------------------------
cell_concentration_epi <- cell_amount_epi / Vhe #epicardial
cell_concentration_mid <- cell_amount_mid / Vhe #midmyocardial
cell_concentration_endo <- cell_amount_endo / Vhe#endocardial
#heart DNA: 90.6 ng/ul = 90.6 mg/l from literature -------------------------------------------------------
DNA_epi <- 2.15 * 0.001 / Vhe
DNA_mid <- 2.15 * 0.001 / Vhe
DNA_endo <- 2.15 * 0.001 / Vhe
mtDNA_epi <- 2.15 * 0.001 * 0.01 / Vhe
mtDNA_mid <- 2.15 * 0.001 * 0.01 / Vhe
mtDNA_endo <- 2.15 * 0.001 * 0.01 / Vhe
#DNA concentration (6pg = 6 * 10^-9 mg DNA per cell) # DNA and mtDNA concentration, assume epi:mid:endo = 0.2 : 0.3 : 0.5 [DOI:10.6000/1927-5129.2017.13.35]
#DNA_epi <- cell_concentration_epi * 6 * 10 ^ -9
#DNA_mid <- cell_concentration_mid * 6 * 10 ^ -9
#DNA_endo <- cell_concentration_endo * 6 * 10 ^ -9
#mtDNA_epi <- DNA_epi * 0.01
#mtDNA_mid <- DNA_mid * 0.01
#mtDNA_endo <- DNA_endo * 0.01
#PER:cytoplasmic membrane permeability coefficient
PER <- 0.0756 # cm/h (huahe Unpublished)
#surface area -------------------------------------------------------
SA_epi <- (cell_amount_epi * MSA) / (10 ^ 8) #[cm^2]
SA_mid <- (cell_amount_mid * MSA) / (10 ^ 8) #[cm^2]
SA_endo <- (cell_amount_endo * MSA) / (10 ^ 8) #[cm^2]
SA_bloodcell <- 25800 #[dm2] [Huahe paper]
# PARAMETERS FOR ICF and ECF in heart tissue -------------------------------------------------------
pH_ic <- 7.2 #[Vaugha-Jones 2009, Zheng 2005]
pH_ec <- 7.4 #[Vaugha-Jones 2009, Zheng 2005]
#Henderson_Hasselbalch equation for base compound -> fraction of un-ionized base in heart compartments: -------------------------------------------------------
funionized_ic <- 1 / (1 + 10 ^ (pKa - pH_ic))
funionized_ec <- 1 / (1 + 10 ^ (pKa - pH_ec))
Kpp <- (1 + 10 ^ (pKa - pH_ic)) / (1 + 10 ^ (pKa - pH_ec))
#IV INFUSION RATE
r = inf_dose #[mg]
t = inf_time #time of infusion [h]
inf = r / t #infusion rate [mg/h]
#Absorption: -------------------------------------------------------
PAMPA <- 1 / 3600 #[cm/s] [Eikenberry 2009]
Pdiff_dox <- PAMPA #[cm/s]
#DISTRIBUTION -------------------------------------------------------
#Drug binding
fup <- 0.26 #fraction unbound in plasma (Huahe)
fu_ec <- 1 #fraction unbound in extracellular fluid is assumed
fu_heart <- 1 #fraction unbound in heart is assumed
fuha <- 0.1230352 #fraction unbound in hepatic arterial
# TISSUE TO PLASMA PARTITION COEFFICIENT -------------------------------------------------------
# E/P values gets from Simcyp Simulator (ratio); Equations to calculate Kpec for the heart
# other Kpvalues using KP values with KP scalar = 4; Vss = 26.248 L/kg; Compound type = Ampholyte; KP heart = 14.713 (KP scalar = 1)
ratio <- 0.157
Kpec <- (1- ratio) * fup + ratio
Kpad <- 7.7431
Kpbo <- 13.553
Kpbr <- 7.504
Kpgu <- 54.531
Kpki <- 37.792
Kpli <- 96.797
Kplu <- 18.689
Kpmu <- 48.424
Kpsk <- 25.527
Kpsp <- 54.269
Kpre <- 7.7431
Kphe <- 14.713
BP <- 1.15 #blood to plasma ratio from Simcyp
# Kp, partition coefficient due to nonspecific protein binding is optimized.
Kp_endo <- 45.63
Kp_mid <- 45.63
Kp_epi<- 45.63
# Passive permeability surface area product in heart tissue -------------------------------------------------------
PSA_epi = Pdiff_dox * SA_epi * (10 ^ -3) * 60 * 60 #[L/h] passive permeability surface area product
PSA_mid = Pdiff_dox * SA_mid * (10 ^ -3) * 60 * 60 #[L/h] passive permeability surface area product
PSA_endo = Pdiff_dox * SA_endo * (10 ^ -3) * 60 * 60 #[L/h] passive permeability surface area product
Kd_DNA <- 0.4 # nM to Molar
Kd_mtDNA <- 5.6 # nM to Molar
# CL clearance [Leandro 2019] -------------------------------------------------------
CL_renal <- 0.66 #[L/ h] renal clearance
CL_hepatic <- 29.97 #[L/ h] hepatic clearance
CLint_heart <- 0 #[L/ h] heart clearance CYP3A4 was not detected in heart tissue
# MODEL -------------------------------------------------------------------
parameters <- c(
BP = BP,
Kpec = Kpec,
Kplu = Kplu,
Kpli = Kpli,
Kpad = Kpad,
Kpbo = Kpbo,
Kpbr = Kpbr,
Kpgu = Kpgu,
Kpki = Kpki,
Kpmu = Kpmu,
Kpsk = Kpsk,
Kpsp = Kpsp,
Kpre = Kpre,
Kphe = Kphe,
Vendo = Vendo,
Vmid = Vmid,
Vepi = Vepi,
fup = fup,
funionized_ic = funionized_ic,
funionized_ec = funionized_ec,
fu_ec = fu_ec,
PSA_epi = PSA_epi,
PSA_mid = PSA_mid,
PSA_endo = PSA_endo,
CL_renal = CL_renal,
CL_hepatic = CL_hepatic
)
# State variables -------------------------------------------------------
state <- c(
INFUSION = r,
Aad = 0,
Abo = 0,
Abr = 0,
Agu = 0,
Aki = 0,
Ali = 0,
Alu = 0,
Amu = 0,
Ask = 0,
Asp = 0,
Ave = 0,
Aar = 0,
Are = 0,
Aheart_ec = 0,
Aepi_ict = 0,
Amid_ict = 0,
Aendo_ict = 0,
Abloodcell = 0,
Cendo_ic = 0,
Cmid_ic = 0,
Cepi_ic = 0)
###Differential equations - mg/h -------------------------------------------------------
PBPKModel = function(times, state, parameters) {
with(as.list(c(state, parameters)), {
inf <- ifelse(times <= t, inf, 0)
# if (times <= t)
# inf
# else
# 0
#DOX concentrations:
Cadipose <- Aad / Vad #adipose
Cbone <- Abo / Vbo #bone
Cbrain <- Abr / Vbr #brain
Cgut <- Agu / Vgu #gut
Ckidney <- Aki / Vki #kidney
Cliver <- Ali / Vli #liver
Cliverfree <- Cliver * (fup / BP) #liver free concentration
Ckidneyfree <- Ckidney * (fup / BP) #kidney free concentration
Clung <- Alu / Vlu #lung
Cmuscle <- Amu / Vmu #muscle
Cskin <- Ask / Vsk #skin
Cspleen <- Asp / Vsp #spleen
Crest <- Are / Vre #rest of body
Cvenous <- Ave / Vve #venous blood
Carterial <- Aar / Var #arterial blood
Cplasmavenous <- Cvenous / BP #venous plasma concentration
Cbloodcell <- Abloodcell / Vrb#blood cell concentration
Cheart_ec <- Aheart_ec / Vhe_ec #heart extracellular fluid
Cendo_ict <- Aendo_ict / Vendo_ic
Cmid_ict <- Amid_ict / Vmid_ic
Cepi_ict <- Aepi_ict / Vepi_ic
# Nuclear sub-compartment
Cendo_ic <- 0.5 * (sqrt((Cendo_ict + DNA_endo + Kd_DNA )^2 - 4* DNA_endo *Cendo_ict) + sqrt((Cendo_ict + mtDNA_endo + Kd_mtDNA )^2 - 4* mtDNA_endo *Cendo_ict) - (DNA_endo + Kd_DNA + mtDNA_endo + Kd_mtDNA) )
Cmid_ic <- 0.5 * (sqrt((Cmid_ict + DNA_mid + Kd_DNA )^2 - 4* DNA_mid *Cmid_ict) + sqrt((Cmid_ict + mtDNA_mid + Kd_mtDNA )^2 - 4* mtDNA_mid *Cmid_ict) - (DNA_mid + Kd_DNA + mtDNA_mid + Kd_mtDNA) )
Cepi_ic <- 0.5 * (sqrt((Cepi_ict + DNA_epi + Kd_DNA )^2 - 4* DNA_epi *Cepi_ict) + sqrt((Cepi_ict + mtDNA_epi + Kd_mtDNA )^2 - 4* mtDNA_epi *Cepi_ict) - (DNA_epi + Kd_DNA + mtDNA_epi + Kd_mtDNA) )
## rates of changes
dINFUSION <- -inf
dAad <- Qad * (Carterial - Cadipose / Kpad * BP) #adipose
dAbo <- Qbo * (Carterial - Cbone / Kpbo * BP) #bone
dAbr <- Qbr * (Carterial - Cbrain / Kpbr * BP) #brain
dAgu <- Qgu * (Carterial - Cgut / Kpgu * BP) #gut
dAki <- Qki * (Carterial - Ckidney / Kpki * BP) - CL_renal * Ckidney * (fup / BP) #kidney
dAli <- Qha * Carterial + Qgu * (Cgut / Kpgu * BP) + Qsp * (Cspleen / Kpsp * BP) - Qli * (Cliver / Kpli * BP) - Cliver * (fup / BP) * CL_hepatic #liver
dAlu <- Qlu * Cvenous - Qlu * (Clung / Kplu * BP) #lung
dAmu <- Qmu * (Carterial - Cmuscle / Kpmu * BP) #muscle
dAsk <- Qsk * (Carterial - Cskin / Kpsk * BP) #skin
dAsp <- Qsp * (Carterial - Cspleen / Kpsp * BP) #spleen
dAre <- Qre * (Carterial - Crest / Kpre * BP) #rest of body
dAve <- inf + Qad * (Cadipose / Kpad * BP) + Qbo * (Cbone / Kpbo * BP) + Qbr * (Cbrain / Kpbr * BP) + Qgu * (Cgut / Kpgu * BP) + Qki* (Ckidney / Kpki * BP) + Qli * (Cliver / Kpli * BP) + Qmu* (Cmuscle / Kpmu * BP) + Qsk* (Cskin / Kpsk * BP)+ Qhe * (Cheart_ec / Kpec * BP) + Qre*(Crest / Kpre * BP) - Qlu * Cvenous - PER * SA_bloodcell * 0.1 * (Cvenous - Cbloodcell) #venous blood
dAar <- Qlu * (Clung / Kplu * BP) - Qad * Carterial - Qbo * Carterial - Qbr * Carterial - Qgu * Carterial- Qki * Carterial- Qha * Carterial- Qmu * Carterial- Qsk * Carterial- Qsp * Carterial- Qre * Carterial #arterial blood
dAbloodcell <- PER * SA_bloodcell * 0.1 * (Cvenous - Cbloodcell) + PER * SA_bloodcell * 0.1 * (Carterial - Cbloodcell)
# Heart extracellular sub-compartment
dAheart_ec <- Qhe * (Carterial - (Cheart_ec/Kpec) * BP) - 0.001 * PER * SA_endo * (Cheart_ec * fu_ec * funionized_ec - Cendo_ic/(Kp_endo * Kpp) * funionized_ic ) -0.001 * PER * SA_mid * (Cheart_ec * fu_ec * funionized_ec - Cmid_ic/(Kp_mid * Kpp) * funionized_ic ) - 0.001 *PER * SA_epi * (Cheart_ec * fu_ec * funionized_ec - Cepi_ic/(Kp_epi * Kpp) * funionized_ic )
dAendo_ict <- 0.001 * PER * SA_endo * (Cheart_ec * fu_ec * funionized_ec - Cendo_ic/(Kp_endo * Kpp) * funionized_ic ) - Cendo_ict * fu_heart * CLint_heart * (Vendo_ic/Vhe)
dAmid_ict <- 0.001 * PER * SA_mid * (Cheart_ec * fu_ec * funionized_ec - Cmid_ic/(Kp_mid * Kpp) * funionized_ic ) - Cepi_ict * fu_heart * CLint_heart * (Vmid_ic/Vhe)
dAepi_ict <- 0.001 * PER * SA_epi * (Cheart_ec * fu_ec * funionized_ec - Cepi_ic/(Kp_epi * Kpp) * funionized_ic ) - Cepi_ict * fu_heart * CLint_heart * (Vepi_ic/Vhe)
#return the rate of changes
list(
c(dINFUSION,
dAad,
dAbo,
dAbr,
dAgu,
dAki,
dAli,
dAlu,
dAmu,
dAsk,
dAsp,
dAve,
dAar,
dAre,
dAheart_ec,
dAepi_ict,
dAmid_ict,
dAendo_ict,
dAbloodcell,
Cendo_ic,
Cmid_ic,
Cepi_ic),
Cadipose = Aad / Vad,
Cbone = Abo / Vbo ,
Cbrain = Abr / Vbr,
Cgut = Agu / Vgu,
Ckidney = Aki / Vki,
Cliver = Ali / Vli,
Clung = Alu / Vlu,
Cmuscle = Amu / Vmu,
Cskin = Ask / Vsk,
Cspleen = Asp / Vsp,
Crest = Are / Vre,
MID = (Amid_ict / Vmid_ic),
ENDO = (Aendo_ict) / Vendo_ic,
EPI = (Aepi_ict) / Vepi_ic,
EC = Cheart_ec,
logHT = log10((Aheart_ec + Aepi_ict + Amid_ict + Aendo_ict) / Vhe),
logBL = log10(Cplasmavenous),
BL = Cplasmavenous,
BLCELL = Cbloodcell,
HT = (Aheart_ec + Aepi_ict + Amid_ict + Aendo_ict) / Vhe
)
})
}
}
out <-
ode(
y = state,
times = times,
func = PBPKModel,
parm = parameters
)
results <- data.frame(out)
plot(
results$time,
results$BL,
type = "l",
col = "blue",
xlab = "Time [h]",
ylab = "Blood Concentration [mg/L]"
)
plot(
results$time,
results$BLCELL,
type = "l",
col = "blue",
xlab = "Time [h]",
ylab = "Blood cells Concentration [mg/L]"
)
cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00",
"#CC79A7")
plot1 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=HT,col="HT"),lty=1,size=1.5)+
geom_line(aes(y=MID,col= "MID"),lty=1,size=1.5)+
geom_line(aes(y=ENDO,col="ENDO"),lty=1,size=1.5)+
geom_line(aes(y=EPI,col="EPI"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_fill_manual( breaks = c("HT","MID","ENDO","EPI"),
values = c("#000000", "#E69F00", "#56B4E9","#009E73"),
labels = c("HT","MID","ENDO","EPI"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of sub-compartment layers", size=1)
plot1
plot2 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=MID,col= "MID"),lty=1,size=1.5)+
geom_line(aes(y=ENDO,col="ENDO"),lty=1,size=1.5)+
geom_line(aes(y=EPI,col="EPI"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_fill_manual( breaks = c("MID","ENDO","EPI"),
values = c( "#E69F00", "#56B4E9","#009E73"),
labels = c("MID","ENDO","EPI"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of sub-compartment layers", size=1)
plot2
ggplotly(plot2)
plot3 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=HT,col="Mean heart"),lty=1,size=1.5)+
geom_line(aes(y=MID,col= "Midmyocardial"),lty=1,size=1.5)+
geom_line(aes(y=BL,col= "Blood"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_x_continuous(limits = c(0, 45))+
scale_fill_manual( breaks = c("Mean heart","Midmyocardial","Blood"),
values = c("#000000", "#E69F00", "#56B4E9"),
labels = c("Mean heart","Midmyocardial","Blood"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of sub-compartment layers", size=1)
plot3
plot4 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=Cendo_ic,col="Cendo_ic"),lty=1,size=1.5)+
geom_line(aes(y=Cmid_ic,col= "Cmid_ic"),lty=1,size=1.5)+
geom_line(aes(y=Cepi_ic,col= "Cepi_ic"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_x_continuous(limits = c(0, 45))+
scale_fill_manual( breaks = c("Cendo_ic","Cmid_ic","Cepi_ic"),
values = c("#000000", "#E69F00", "#56B4E9"),
labels = c("Cendo_ic","Cmid_ic","Cepi_ic"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of layers", size=1)
plot4
plot5 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=Cadipose,col="Cadipose"),lty=1,size=1.5)+
geom_line(aes(y=Cbone,col= "Cbone"),lty=1,size=1.5)+
geom_line(aes(y=Cbrain,col= "Cbrain"),lty=1,size=1.5)+
geom_line(aes(y=Cgut,col= "Cgut"),lty=1,size=1.5)+
geom_line(aes(y=Ckidney,col= "Ckidney"),lty=1,size=1.5)+
geom_line(aes(y=Cliver,col= "Cliver"),lty=1,size=1.5)+
geom_line(aes(y=Clung,col= "Clung"),lty=1,size=1.5)+
geom_line(aes(y=Cmuscle,col= "Cmuscle"),lty=1,size=1.5)+
geom_line(aes(y=Cskin,col= "Cskin"),lty=1,size=1.5)+
geom_line(aes(y=Crest,col= "Crest"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_x_continuous(limits = c(0, 45))+
scale_fill_manual( breaks = c("Cadipose","Cbone","Cbrain","Cgut","Ckidney","Cliver","Clung","Cmuscle","Cskin","Crest"),
values = c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00","#CC79A7"),
labels = c("Cadipose","Cbone","Cbrain","Cgut","Ckidney","Cliver","Clung","Cmuscle","Cskin","Crest"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of organs", size=1)
plot5
ggplotly(plot5)
# MPPGL [mg/g] according to [Barter 2008]
MPPGL <- 10 ^ (1.407 + 0.0158 * age - 0.00038 * (age ^ 2) + 0.0000024 *(age ^ 3))
# the content of CYP1A2 and CYP3A4 in liver [pmol/mg protein]
CYP1A2_L <- 52
CYP3A4_L <- 137
#Metabolism (hydroxylation)
#LIVER (L)
#Vmax for DOX after [pmol/min/pmol CYP]
#Km for DOX [mcM]
#1.CYP1A2
V_1A2 <- 1.79 * MW * 10 ^ -9 #[mg/min/pmol CYP]
K_1A2 <- 63.5 * MW * 10 ^ -3 #[mg/L]
CLint_1A2 <- (ISEF1A2 * (V_1A2 / (K_1A2 + Cliver)) * CYP1A2_L) / fumic #[L/min/mg of microsomal protein]
#2.CYP3A4
V_3A4 <- 3.37 * MW * 10 ^ -9 #[mg/min/pmol CYP]#[Ghahramani 1997]
K_3A4 <- 213.8 * MW * 10 ^ -3 #[mg/L]
CLint_3A4 <- (ISEF3A4 * (V_3A4 / (K_3A4 + Cliver)) * CYP3A4_L) / fumic #[L/min/mg of microsomal protein]
#Hepatic intrinsic clearance:
CLint_L <- (CLint_1A2 + CLint_3A4) * MPPGL * Vli * liver_density #[L/h]
#HEART (H) CYP3A4 was not detected in heart tissue: assumed no metabolism of DOX in heart tissue
# ELIMINATION
#1) LIVER
#ISEF
#values from Simcyp. rCYP system: Lymph B
ISEF1A2 = 11.1
ISEF3A4 = 3.92
#fumic
fumic <- 0.82# [Venkatakrishnan 2001]
CYP3A4_H <- 0 #CYP 3A4 abundance in average human heart [pmol/mg tissue][Thum 2000]