-
Notifications
You must be signed in to change notification settings - Fork 1
/
Full body_V2.8.R
930 lines (806 loc) · 33.4 KB
/
Full body_V2.8.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
# Whole-body PBPK model for Doxorubicin
# Volume
rm(list=ls(all=TRUE))
#REQUIRED PACKAGES:
require(distr)
require(data.table)
require(dplyr)
require(ggplot2)
require(deSolve)
require(plotly)
require(openxlsx)
require(ggquickeda)
{
t_end <- 8 #[h] time of the end of simulation
times <- seq(0, t_end, by = 0.1) #time of simulation
age <- 25 #the age of chosen sample
gender <- 'male'
weight <- 70 #[kg]
height <- 180 #[cm]
pKa <- 8.22 # [Zahra 2020]
BSA <- weight ^ 0.425 * height ^ 0.725 * 0.007184 #[m2] Body surface area according to [DuBois-DuBois 1916]
oral_dose <- 0 #[mg] oral bolus dose
inf_dose <- 60 * BSA #[mg] infusion dose according to Pfizer guidance : https://www.pfizermedicalinformation.com/en-us/doxorubicin/dosage-admin
inf_time <- 1/30 #[h] infusion time
CO <- 1.1 * BSA - 0.05 * age + 5.5 #[L/min] cardiac output
CO <- CO * 60 #[L/h] cardiac output units change from [L/min] to [L/h]
#SEX DEPENDENT BLOOD FLOWS for healthy population according to [Simycp Simulator v.16]
# BLOOD FLOWS [L/h] -------------------------------------------------------
Qbr <- CO * 0.12 #Brain
Qhe <- CO * 0.04 #Heart
Qsk <- CO * 0.05 #Skin
Qmu <- CO * 0.17 #Muscle
Qad <- CO * 0.05 #Adipose
Qsp <- CO * 0.02 #Spleen
Qgu <- CO * 0.16 #Gut
Qki <- CO * 0.19 #Kidney
Qha <- CO * 0.065#Hepatic artery
Qbo <- CO * 0.05 #Bone
Qre <- CO * 0.085#Rest
Qlu <- CO #lung
Qli <- Qha + Qsp + Qgu#Liver
# ORGAN VOLUMES [L] -----------------------------------------------------------
#BW fraction (according to Simcyp Simulator) * random BW / tissue density
Vad <- (0.259 * weight) / 0.923
Vbo <- (0.090 * weight) / 1.850
Vbr <- (0.017 * weight) / 1.04
Vgu <- (0.016 * weight) / 1.04
Vhe <- (0.005 * weight) / 1.04
Vki <- (0.004 * weight) / 1.05
Vli <- (0.022 * weight) / 1.08
Vlu <- (0.007 * weight) / 1.05
Vmu <- (0.403 * weight) / 1.04
Vsk <- (0.043 * weight) / 1.1
Vsp <- (0.002 * weight) / 1.06
Vre <- (0.057 * weight) / 1.05
Vpl <- (0.044 * weight) / 1.025
Vrb <- (0.031 * weight) / 1.125
Vbl <- Vpl + Vrb
Vbo_ic <- 87.5 / 100 * Vbo
Vbo_ec <- 12.5 / 100 * Vbo
Vbr_ic <- 87.5 / 100 * Vbr
Vbr_ec <- 12.5 / 100 * Vbr
Vsk_ic <- 87.5 / 100 * Vsk
Vsk_ec <- 12.5 / 100 * Vsk
Vli_ic <- 87.5 / 100 * Vli
Vli_ec <- 12.5 / 100 * Vli
Vki_ic <- 87.5 / 100 * Vki
Vki_ec <- 12.5 / 100 * Vki
Vlu_ic <- 87.5 / 100 * Vlu
Vlu_ec <- 12.5 / 100 * Vlu
Vmu_ic <- 87.5 / 100 * Vmu
Vmu_ec <- 12.5 / 100 * Vmu
Vre_ic <- 87.5 / 100 * Vre
Vre_ec <- 12.5 / 100 * Vre
Vsk_ic <- 87.5 / 100 * Vsk
Vsk_ec <- 12.5 / 100 * Vsk
Vsp_ic <- 87.5 / 100 * Vsp
Vsp_ec <- 12.5 / 100 * Vsp
Vgu_ic <- 87.5 / 100 * Vgu
Vgu_ec <- 12.5 / 100 * Vgu
Vad_ic <- 87.5 / 100 * Vad
Vad_ec <- 12.5 / 100 * Vad
# CARDIOMYOCYTE VOLUME AND SURFACE AREA according to [Polak 2012] -------------------------------------------------------
MV <- exp(age * 0.04551 + 7.36346) #[cm^3]
MSA <-exp(sqrt(0.102 ^ 2 + (log(MV)) ^ 2 * 0.002939 ^ 2)) #[cm^2]
}
{
# MODEL -------------------------------------------------------------------
#Arguments of the function are the model parameters that vary
ModelVar <- function (BW,
CO,
MPPGL,
Vad,
Vbl,
Vrb,
Vbo,
Vbr,
Vgu,
Vheart,
Vki,
Vli,
Vlu,
Vpl,
Vmu,
Vsk,
Vsp,
Vre,
Qre,
Qad,
Qbo,
Qbr,
Qgu,
Qheart,
Qki,
Qh,
Qlu,
Qmu,
Qsk,
Qsp,
CYP3A4,
tlag,
Fabs,
t_end,
fup,
BP,
MV,
MSA)
times <- seq(0, t_end, by = 0.1)
# PHYSIOLOGICAL PARAMETERS -------------------------------------------------------
liver_density <- 1080 #[g/L]
heart_density <- 1055 #[g/L] [Alexandra 2019]
#Tissue volumes [L] -------------------------------------------------------
Vmyo = 0.8 * Vhe #midmyocardial
Vother = 0.2 * Vhe #epicardial
Vother_ic = 87.5 / 100 * Vother #intracellular space of epicardial
Vmyo_ic = 87.5 / 100 * Vmyo #intracellular space of midmyocardial
Vhe_ec = 12.5 / 100 * Vhe #extracellular space of heart tissue
Vve = (2 / 3) * Vbl #venous blood; assumed 2/3 of total blood according to volmues published in CPT. Regarding the distribution of blood volume within the circulation, the greatest volume resides in the venous vasculature, where 70-80% of the blood volume is found. -> http://www.cvphysiology.com/Blood%20Pressure/BP019
Var = Vbl - Vve #arterial blood
Vplas_ven = Vpl * (Vve / (Vve + Var)) #venous plasma
Vplas_art = Vpl * (Var / (Vve + Var)) #arterial plasma
#myocyte volume -------------------------------------------------------
ML <- 134 #[mcm] myocyte length [Tracy 2011, Gerdes 1995]
MB <- ML / 7 #=2r [mcm] myocyte breadth ML:MB = 7:1 [Tracy 2011, Gerdes 1995]
MVol <- MV * (10 ^ -15) #[L] random age dependent myocate volume in cm3 -> changing to liters
#cells amounts -------------------------------------------------------
cell_amount_other <- Vother_ic / MVol #epicardial
cell_amount_myo <- Vmyo_ic / MVol #midmyocardial
#the concentration of cardiolipin derive from [Daniel 2002]
DNA_li <- 23.7 #umol/L
DNA_he <- 8.3 #umol/L
DNA_ki <- 16.2 #umol/L
DNA_bo <- 19.1 #umol/L
DNA_gu <- 25.2 #umol/L
DNA_mu <- 4.5 #umol/L Slowly perfused organs
DNA_ad <- 4.5 #umol/L
DNA_sk <- 4.5 #umol/L
DNA_sp <- 4.5 #umol/L
DNA_pa <- 4.5 #umol/L
DNA_gu <- 4.5 #umol/L
DNA_br <- 1.5 #mol/L Rapidly perfused organ
DNA_lu <- 1.5 #mol/L
Cardiolipin_li <- 44.6 #mol/L
Cardiolipin_he <- 43.8 #mol/L
Cardiolipin_ki <- 52.3 #mol/L
Cardiolipin_bo <- 25 #mol/L
Cardiolipin_gu <- 25 #mol/L
Cardiolipin_ad <- 15 #mol/L Slowly perfused
Cardiolipin_mu <- 15 #mol/L Slowly perfused
Cardiolipin_sk <- 15 #mol/L Slowly perfused
Cardiolipin_sp <- 15 #mol/L Slowly perfused
Cardiolipin_pa <- 15 #mol/L Slowly perfused
Cardiolipin_br <- 30 #mol/L Rapidly perfused
Cardiolipin_lu <- 30 #mol/L Rapidly perfused
mtDNA_li <- 2.37 #mol/L assume basesd on DNA concentration
mtDNA_he <- 8.3 #mol/L
mtDNA_ki <- 1.62 #mol/L
mtDNA_bo <- 1.91 #mol/L
mtDNA_gu <- 2.52 #mol/L
mtDNA_mu <- 0.45 #mol/L
mtDNA_ad <- 0.45 #mol/L
mtDNA_sk <- 0.45 #mol/L
mtDNA_sp <- 0.45 #mol/L
mtDNA_pa <- 0.45 #mol/L
mtDNA_gu <- 0.45 #mol/L
mtDNA_br <- 0.15 #mol/L
mtDNA_lu <- 0.15 #mol/L
DNA_other <- 0.05 * DNA_he
DNA_myo <- 0.95 * DNA_he
mtDNA_other <- 0.05 * mtDNA_he
mtDNA_myo <- 0.95 * mtDNA_he
Cardiolipin_other <- 0.05 * Cardiolipin_he
Cardiolipin_myo <- 0.95 * Cardiolipin_he
Kd_DNA <- 3.23 # 3.23 umol/L = 0.00000323 mol/L = 0.00323 mM = 3.23 x 10^-6 M = 3230 nmol/L
Koff_DNA <- 30564 #509.4 min-1 = 30564 h-1
Kon_DNA <- Koff_DNA / Kd_DNA
Kd_mtDNA <- 1 # 100nM to Molar (assume)
Koff_mtDNA <- 30564 #509.4 min-1 = 30564 h-1
Kon_mtDNA <- Koff_mtDNA / Kd_mtDNA
Kd_cardiolipin <- 4 # 400nM to Molar (assume)
Koff_cardiolipin <- 30564 #509.4 min-1 = 30564 h-1
Kon_cardiolipin <- Koff_cardiolipin / Kd_cardiolipin
kon1 <- Kon_DNA
koff1 <- Koff_DNA
kon2 <- Kon_cardiolipin
koff2 <- Koff_cardiolipin
kon3 <- Kon_mtDNA
koff3 <- Koff_mtDNA
#PER:cytoplasmic membrane permeability coefficient
PER <- 0.0756 # cm/h (huahe Unpublished)
#surface area -------------------------------------------------------
SA_other <- (cell_amount_other * MSA) / (10 ^ 8) #[cm^2]
SA_myo <- (cell_amount_myo * MSA) / (10 ^ 8) #[cm^2]
SA_bloodcell <- 25800 #[dm2] [Huahe paper]
SA_bo = 381752.22
SA_br = 55916.8
SA_ki = 95801.19
SA_li = 383745.62
SA_lu = 668945.11
SA_mu = 775236.33
SA_pa = 36192.33
SA_sk = 164447.1
SA_sp = 64874.62
SA_gu = 7495.21 + 5122.72
SA_ad = 250634.81
# PARAMETERS FOR ICF and ECF in heart tissue -------------------------------------------------------
pH_ic <- 7.2 #[Vaugha-Jones 2009, Zheng 2005]
pH_ec <- 7.4 #[Vaugha-Jones 2009, Zheng 2005]
#Henderson_Hasselbalch equation for base compound -> fraction of un-ionized base in heart compartments: -------------------------------------------------------
funionized_ic <- 1 / (1 + 10 ^ (pKa - pH_ic))
funionized_ec <- 1 / (1 + 10 ^ (pKa - pH_ec))
Kpp <- (1 + 10 ^ (pKa - pH_ic)) / (1 + 10 ^ (pKa - pH_ec))
#IV INFUSION RATE
r = inf_dose #[mg]
t = inf_time #time of infusion [h]
inf = r / t #infusion rate [mg/h]
#Absorption: -------------------------------------------------------
PAMPA <- 1 / 3600 #[cm/s] [Eikenberry 2009]
Pdiff_dox <- PAMPA #[cm/s]
#DISTRIBUTION -------------------------------------------------------
#Drug binding
fup <- 0.26 #fraction unbound in plasma (Huahe)
fu_ec <- 1 #fraction unbound in extracellular fluid is assumed
fu_heart <- 1 #fraction unbound in heart is assumed
fuec_he <- 1 #fraction unbound in heart extracellular fluid is assumed
fuec_bo <- 1
fuec_br <- 1
fuec_ki <- 1
fuec_li <- 1
fuec_lu <- 1
fuec_mu <- 1
fuec_pa <- 1
fuec_sk <- 1
fuec_sp <- 1
fuec_gu <- 1
fuec_ad <- 1
# TISSUE TO PLASMA PARTITION COEFFICIENT -------------------------------------------------------
BP <- 1.15 #blood to plasma ratio [Dong 2022]
{
pKa <- 8.15 # (amine)
pH_iw <- 7 #pH of intracellular water
pH_ew <- 7.4 #pH of extracellular water
pH_rbc <- 7.15 #pH of red blood cells [swietach, 2010]
logPow <- 1.27
P <- 10^logPow #the n octanol: buffer partition coefficient for non-adipose tissue and the olive oil buffer partition coefficient for adipose tissue
X_rbc <- 1 + 10^(pKa-pH_rbc)
Y_rbc <- 10^(pKa-pH_rbc)
X_iw <- 1 + 10^(pKa-pH_iw)
X_ew <- 1 + 10^(pKa-pH_ew)
Y_iw <- 10^(pKa-pH_iw)
logPvow <- (1.115 * logPow - 1.35) - log(X_ew) #For the partitioning into the adipose tissue, it is more accurate to use the vegetable oil:water partition coefficient
Pad <- 10^ logPvow
# Relative Volume of Wet Tissue (%)
# Adipose
EW_ad <- 0.141
IW_ad <- 0.039
NL_ad <- 0.79
NP_ad <- 0.002
AP_ad <- 0.4 #mg/g the concentration of acidic phospholipids AP in adipose
# Bone
EW_bo <- 0.098
IW_bo <- 0.341
NL_bo <- 0.074
NP_bo <- 0.0011
AP_bo <- 0.67 #mg/g the concentration of acidic phospholipids AP in Bone
# Brain
EW_br <- 0.092
IW_br <- 0.678
NL_br <- 0.051
NP_br <- 0.0565
AP_br <- 0.4 #mg/g the concentration of acidic phospholipids AP in Brain
# Gut
EW_gu <- 0.267
IW_gu <- 0.451
NL_gu <- 0.0487
NP_gu <- 0.0163
AP_gu <- 2.84 #mg/g the concentration of acidic phospholipids AP in Gut
# Heart
EW_he <- 0.313
IW_he <- 0.445
NL_he <- 0.0115
NP_he <- 0.0166
AP_he <- 3.07 #mg/g the concentration of acidic phospholipids AP in Heart
# Kidney
EW_ki <- 0.283
IW_ki <- 0.50
NL_ki <- 0.0207
NP_ki <- 0.0162
AP_ki <- 2.48 #mg/g the concentration of acidic phospholipids AP in kidney
# Liver
EW_li <- 0.165
IW_li <- 0.586
NL_li <- 0.0348
NP_li <- 0.0252
AP_li <- 5.09 #mg/g the concentration of acidic phospholipids AP in liver
# Lung
EW_lu <- 0.348
IW_lu <- 0.463
NL_lu <- 0.003
NP_lu <- 0.009
AP_lu <- 0.5 #mg/g the concentration of acidic phospholipids AP in Lung
# Muscle
EW_mu <- 0.091
IW_mu <- 0.669
NL_mu <- 0.0238
NP_mu <- 0.0072
AP_mu <- 2.49 #mg/g the concentration of acidic phospholipids AP in muscle
# Pancreas
EW_pa <- 0.12
IW_pa <- 0.664
NL_pa <- 0.041
NP_pa <- 0.0093
AP_pa <- 1.67 #mg/g the concentration of acidic phospholipids AP in Pancreas
# Skin
EW_sk <- 0.623
IW_sk <- 0.0947
NL_sk <- 0.0284
NP_sk <- 0.0111
AP_sk <- 1.32 #mg/g the concentration of acidic phospholipids AP in Skin
# Spleen
EW_sp <- 0.208
IW_sp <- 0.579
NL_sp <- 0.0201
NP_sp <- 0.0198
AP_sp <- 2.81 #mg/g the concentration of acidic phospholipids AP in Spleen
# Plasma
EW_pl <- 0.945
IW_pl <- 0
NL_pl <- 0.0035
NP_pl <- 0.0023
AP_pl <- 0.04 #mg/g the concentration of acidic phospholipids AP in Plasma
# RBC
EW_rbc <- 0
IW_rbc <- 0.666
NL_rbc <- 0.0017
NP_rbc <- 0.0029
AP_rbc <- 0.44 #mg/g the concentration of acidic phospholipids AP in Plasma
HCT <- 0.45 #hematocrit (Adult males: 41% to 50%)
fup <- 0.26 #fraction unbound in plasma (Huahe)
BP <- 1.15 #blood to plasma ratio [Dong 2022]
Kpu_rbc <- (BP * HCT + (1 - HCT)) / fup
KaAP <- (Kpu_rbc - (X_rbc / X_ew * IW_rbc) - ((logPow * NL_rbc + (0.3 * logPow + 0.7) * NP_rbc) /X_ew)) * (X_ew / (AP_rbc * Y_rbc))#affinity constant for acidic phospholipids (AP)
# Rodger and Rowland method to calculate moderate to strong bases (pKa > 7) and ampholytes
Kpu_ad <- EW_ad + (X_iw / X_ew) * IW_ad + ( Pad * NL_ad + (0.3 * P + 0.7) * NP_ad) / EW_ad + KaAP * AP_ad * Y_iw / X_ew
Kpu_bo <- EW_bo + (X_iw / X_ew) * IW_bo + ( P * NL_bo + (0.3 * P + 0.7) * NP_bo) / EW_bo + KaAP * AP_bo * Y_iw / X_ew
Kpu_br <- EW_br + (X_iw / X_ew) * IW_br + ( P * NL_br + (0.3 * P + 0.7) * NP_br) / EW_br + KaAP * AP_br * Y_iw / X_ew
Kpu_gu <- EW_gu + (X_iw / X_ew) * IW_gu + ( P * NL_gu + (0.3 * P + 0.7) * NP_gu) / EW_gu + KaAP * AP_gu * Y_iw / X_ew
Kpu_he <- EW_he + (X_iw / X_ew) * IW_he + ( P * NL_he + (0.3 * P + 0.7) * NP_he) / EW_he + KaAP * AP_he * Y_iw / X_ew
Kpu_ki <- EW_ki + (X_iw / X_ew) * IW_ki + ( P * NL_ki + (0.3 * P + 0.7) * NP_ki) / EW_ki + KaAP * AP_ki * Y_iw / X_ew
Kpu_li <- EW_li + (X_iw / X_ew) * IW_li + ( P * NL_li + (0.3 * P + 0.7) * NP_li) / EW_li + KaAP * AP_li * Y_iw / X_ew
Kpu_lu <- EW_lu + (X_iw / X_ew) * IW_lu + ( P * NL_lu + (0.3 * P + 0.7) * NP_lu) / EW_lu + KaAP * AP_lu * Y_iw / X_ew
Kpu_mu <- EW_mu + (X_iw / X_ew) * IW_mu + ( P * NL_mu + (0.3 * P + 0.7) * NP_mu) / EW_mu + KaAP * AP_mu * Y_iw / X_ew
Kpu_pa <- EW_pa + (X_iw / X_ew) * IW_pa + ( P * NL_pa + (0.3 * P + 0.7) * NP_pa) / EW_pa + KaAP * AP_pa * Y_iw / X_ew
Kpu_sk <- EW_sk + (X_iw / X_ew) * IW_sk + ( P * NL_sk + (0.3 * P + 0.7) * NP_sk) / EW_sk + KaAP * AP_sk * Y_iw / X_ew
Kpu_sp <- EW_sp + (X_iw / X_ew) * IW_sp + ( P * NL_sp + (0.3 * P + 0.7) * NP_sp) / EW_sp + KaAP * AP_sp * Y_iw / X_ew
Kpu_pl <- EW_pl + (X_iw / X_ew) * IW_pl + ( P * NL_pl + (0.3 * P + 0.7) * NP_pl) / EW_pl + KaAP * AP_pl * Y_iw / X_ew
Kpad <- Kpu_ad * fup
Kpbo <- Kpu_bo * fup
Kpbr <- Kpu_br * fup
Kpgu <- Kpu_gu * fup
Kphe <- Kpu_he * fup
Kpki <- Kpu_ki * fup
Kpli <- Kpu_li * fup
Kplu <- Kpu_lu * fup
Kpmu <- Kpu_mu * fup
Kpre <- Kpu_pa * fup
Kpsk <- Kpu_sk * fup
Kpsp <- Kpu_sp * fup
Kppl <- Kpu_pl * fup
# tissue to plasma albumin ratio
ad_ratio <- 0.037
bo_ratio <- 0.1
br_ratio <- 0.048
gu_ratio <- 0.158
he_ratio <- 0.157
ki_ratio <- 0.13
li_ratio <- 0.086
lu_ratio <- 0.212
mu_ratio <- 0.034
pa_ratio <- 0.06
sk_ratio <- 0.277
sp_ratio <- 0.097
# nonspecific protein binding (Kp) describe extracellular // intracellular
Kpec_he <- (1- he_ratio) * fup + he_ratio
Kpec_ad <- (1- ad_ratio) * fup + ad_ratio
Kpec_bo <- (1- bo_ratio) * fup + bo_ratio
Kpec_br <- (1- br_ratio) * fup + br_ratio
Kpec_gu <- (1- gu_ratio) * fup + gu_ratio
Kpec_ki <- (1- ki_ratio) * fup + ki_ratio
Kpec_li <- (1- li_ratio) * fup + li_ratio
Kpec_lu <- (1- lu_ratio) * fup + lu_ratio
Kpec_mu <- (1- mu_ratio) * fup + mu_ratio
Kpec_sk <- (1- sk_ratio) * fup + sk_ratio
Kpec_sp <- (1- sp_ratio) * fup + sp_ratio
Kpec_pa <- (1- pa_ratio) * fup + pa_ratio
}
# CL clearance [Leandro 2019] -------------------------------------------------------
CL_renal <- 0.66 #[L/ h] renal clearance
CL_hepatic <- 29.97 #[L/ h] hepatic clearance
CLint_heart <- 0 #[L/ h] heart clearance CYP3A4 was not detected in heart tissue
CL_total <- 30.6 #[L/ h] total clearance
# MODEL -------------------------------------------------------------------
parameters <- c(
BP = BP,
Kplu = Kplu,
Kpli = Kpli,
Kpad = Kpad,
Kpbo = Kpbo,
Kpbr = Kpbr,
Kpgu = Kpgu,
Kpki = Kpki,
Kpmu = Kpmu,
Kpsk = Kpsk,
Kpsp = Kpsp,
Kpre = Kpre,
Kphe = Kphe,
Vother = Vother,
Vmyo = Vmyo,
fup = fup,
funionized_ic = funionized_ic,
funionized_ec = funionized_ec,
fu_ec = fu_ec,
CL_renal = CL_renal,
CL_hepatic = CL_hepatic
)
# State variables -------------------------------------------------------
state <- c(
INFUSION = r,
Aad = 0,
Abo = 0,
Abr = 0,
Agu = 0,
Aki = 0,
Ali = 0,
Alu = 0,
Amu = 0,
Ask = 0,
Asp = 0,
Ahe = 0,
Ave = 0,
Aar = 0,
Are = 0,
Aheart_ec = 0,
Aad_ec = 0,
Abo_ec = 0,
Abr_ec = 0,
Agu_ec = 0,
Aki_ec = 0,
Ali_ec = 0,
Alu_ec = 0,
Amu_ec = 0,
Ask_ec = 0,
Asp_ec = 0,
Abloodcell = 0,
Cmyo_ict = 0,
Cother_ict = 0,
Cad_ict = 0,
Cbo_ict = 0,
Cbr_ict = 0,
Cgu_ict = 0,
Cki_ict = 0,
Cli_ict = 0,
Clu_ict = 0,
Cmu_ict = 0,
Csk_ict = 0,
Csp_ict = 0
)
###Differential equations - mg/h/L -------------------------------------------------------
PBPKModel = function(times, state, parameters) {
with(as.list(c(state, parameters)), {
inf <- ifelse(times <= t, inf, 0)
# if (times <= t)
# inf
# else
# 0
#DOX concentrations:
Cadipose <- Aad / Vad #adipose
Cbone <- Abo / Vbo #bone
Cbrain <- Abr / Vbr #brain
Cgut <- Agu / Vgu #gut
Ckidney <- Aki / Vki #kidney
Cliver <- Ali / Vli #liver
Cliverfree <- Cliver * (fup / BP) #liver free concentration
Ckidneyfree <- Ckidney * (fup / BP) #kidney free concentration
Clung <- Alu / Vlu #lung
Cmuscle <- Amu / Vmu #muscle
Cskin <- Ask / Vsk #skin
Cspleen <- Asp / Vsp #spleen
Cheart <- Ahe / Vhe #heart
Crest <- Are / Vre #rest of body
Cvenous <- Ave / Vve #venous blood
Carterial <- Aar / Var #arterial blood
Cplasmavenous <- Cvenous / BP #venous plasma concentration
Cbloodcell <- Abloodcell / Vrb#blood cell concentration
Cheart_ec <- Aheart_ec / Vhe_ec #heart extracellular fluid
Cad_ec <- Aad_ec / Vad_ec
Cbo_ec <- Abo_ec / Vbo_ec
Cbr_ec <- Abr_ec / Vbr_ec
Cgu_ec <- Agu_ec / Vgu_ec
Cki_ec <- Aki_ec / Vki_ec
Cli_ec <- Ali_ec / Vli_ec
Clu_ec <- Alu_ec/ Vlu_ec
Cmu_ec <- Amu_ec/ Vmu_ec
Csk_ec <- Ask_ec/ Vsk_ec
Csp_ec <- Asp_ec / Vsp_ec
# Heart extracellular sub-compartment
dAheart_ec <- Qhe * (Carterial - (Cheart_ec/Kpec_he) * BP) -0.001 * PER * SA_myo * (Cheart_ec * fu_ec * funionized_ec - Cmyo_ict/(Kpec_he * Kpp) * funionized_ic ) - 0.001 *PER * SA_other * (Cheart_ec * fu_ec * funionized_ec - Cother_ict/(Kpec_he * Kpp) * funionized_ic )
dAad_ec <- Qad * (Carterial - (Cad_ec/Kpad) * BP) - 0.001 * PER * SA_ad * (Cad_ec * fuec_ad * funionized_ec - Cad_ict/(Kpec_ad * Kpp) * funionized_ic)
dAbo_ec <- Qbo * (Carterial - Cbone / Kpbo * BP) #bone
dAbr_ec <- Qbr * (Carterial - Cbrain / Kpbr * BP) #brain
dAgu_ec <- Qgu * (Carterial - (Cgu_ec/Kpgu) * BP) - 0.001 * PER * SA_gu * (Cgu_ec * fuec_gu * funionized_ec - Cgu_ict/(Kpec_gu * Kpp) * funionized_ic)
dAki_ec <- Qki * (Carterial - (Cki_ec/Kpki) * BP) - 0.001 * PER * SA_ki * (Cki_ec * fuec_ki * funionized_ec - Cki_ict/(Kpec_ki * Kpp) * funionized_ic)
dAli_ec <- Qli * (Carterial - (Cli_ec/Kpli) * BP) - 0.001 * PER * SA_li * (Cli_ec * fuec_li * funionized_ec - Cli_ict/(Kpec_li * Kpp) * funionized_ic)
dAlu_ec <- Qlu * (Carterial - (Clu_ec/Kplu) * BP) - 0.001 * PER * SA_lu * (Clu_ec * fuec_lu * funionized_ec - Clu_ict/(Kpec_lu * Kpp) * funionized_ic)
dAmu_ec <- Qmu * (Carterial - (Cmu_ec/Kpmu) * BP) - 0.001 * PER * SA_mu * (Cmu_ec * fuec_mu * funionized_ec - Cmu_ict/(Kpec_mu * Kpp) * funionized_ic)
dAsk_ec <- Qsk * (Carterial - (Csk_ec/Kpsk) * BP) - 0.001 * PER * SA_sk * (Csk_ec * fuec_sk * funionized_ec - Csk_ict/(Kpec_sk * Kpp) * funionized_ic)
dAsp_ec <- Qsp * (Carterial - (Csp_ec/Kpsp) * BP) - 0.001 * PER * SA_sp * (Csp_ec * fuec_sp * funionized_ec - Csp_ict/(Kpec_sp * Kpp) * funionized_ic)
# Subcompartments intracellular total concentration
dCmyo_ict <- ( 0.001 * PER * SA_myo * (Cheart_ec * fu_ec * funionized_ec - Cmyo_ict/(Kpec_he * Kpp) * funionized_ic ) - Cmyo_ict * fu_heart * CLint_heart * (Vmyo_ic/Vhe) ) / Vmyo_ic
dCother_ict <- ( 0.001 * PER * SA_other * (Cheart_ec * fu_ec * funionized_ec - Cother_ict/(Kpec_he * Kpp) * funionized_ic ) - Cother_ict * fu_heart * CLint_heart * (Vother_ic/Vhe) ) / Vother_ic
dCad_ict <- (0.001 * PER * SA_ad * (Cad_ec * fuec_ad * funionized_ec - Cad_ict/(Kpec_ad * Kpp) * funionized_ic) ) / Vad_ic
dCbo_ict <- (0.001 * PER * SA_bo * (Cbo_ec * fuec_bo * funionized_ec - Cbo_ict/(Kpec_bo * Kpp) * funionized_ic) ) / Vbo_ic
dCbr_ict <- (0.001 * PER * SA_br * (Cbr_ec * fuec_br * funionized_ec - Cbr_ict/(Kpec_br * Kpp) * funionized_ic) ) / Vbr_ic
dCgu_ict <- (0.001 * PER * SA_gu * (Cgu_ec * fuec_gu * funionized_ec - Cgu_ict/(Kpec_gu * Kpp) * funionized_ic) ) / Vgu_ic
dCki_ict <- (0.001 * PER * SA_ki * (Cki_ec * fuec_ki * funionized_ec - Cki_ict/(Kpec_ki * Kpp) * funionized_ic) ) / Vki_ic
dCli_ict <- (0.001 * PER * SA_li * (Cli_ec * fuec_li * funionized_ec - Cli_ict/(Kpec_li * Kpp) * funionized_ic) ) / Vli_ic
dClu_ict <- (0.001 * PER * SA_lu * (Clu_ec * fuec_lu * funionized_ec - Clu_ict/(Kpec_lu * Kpp) * funionized_ic) ) / Vlu_ic
dCmu_ict <- (0.001 * PER * SA_mu * (Cmu_ec * fuec_mu * funionized_ec - Cmu_ict/(Kpec_mu * Kpp) * funionized_ic) ) / Vmu_ic
dCsk_ict <- (0.001 * PER * SA_sk * (Csk_ec * fuec_sk * funionized_ec - Csk_ict/(Kpec_sk * Kpp) * funionized_ic) ) / Vsk_ic
dCsp_ict <- (0.001 * PER * SA_sp * (Csp_ec * fuec_sp * funionized_ec - Csp_ict/(Kpec_sp * Kpp) * funionized_ic) ) / Vsp_ic
## rates of changes
dINFUSION <- -inf
dAad <- Qad * (Carterial - Cadipose / Kpad * BP) #adipose
dAbo <- Qbo * (Carterial - Cbone / Kpbo * BP) #bone
dAbr <- Qbr * (Carterial - Cbrain / Kpbr * BP) #brain
dAgu <- Qgu * (Carterial - Cgut / Kpgu * BP) #gut
dAki <- Qki * (Carterial - Ckidney / Kpki * BP) - CL_renal * Ckidneyfree #kidney
dAli <- Qha * Carterial + Qgu * (Cgut / Kpgu * BP) + Qsp * (Cspleen / Kpsp * BP) - Qli * (Cliver / Kpli * BP) - CL_hepatic * Cliverfree #liver
dAlu <- Qlu * Cvenous - Qlu * (Clung / Kplu * BP) #lung
dAmu <- Qmu * (Carterial - Cmuscle / Kpmu * BP) #muscle
dAsk <- Qsk * (Carterial - Cskin / Kpsk * BP) #skin
dAsp <- Qsp * (Carterial - Cspleen / Kpsp * BP) #spleen
dAhe <- Qhe * (Carterial - (Cheart/ Kphe) * BP) #heart
dAre <- Qre * (Carterial - Crest / Kpre * BP) #rest of body
dAve <- inf + Qad * (Cadipose / Kpad * BP) + Qbo * (Cbone / Kpbo * BP) + Qbr * (Cbrain / Kpbr * BP) + Qki* (Ckidney / Kpki * BP) + Qli * (Cliver / Kpli * BP) + Qmu* (Cmuscle / Kpmu * BP) + Qsk* (Cskin / Kpsk * BP)+ Qhe * (Cheart_ec / Kpec_he * BP) + Qre*(Crest / Kpre * BP) - Qlu * Cvenous - PER * SA_bloodcell * 0.1 * (Cvenous - Cbloodcell) #venous blood
dAar <- Qlu * (Clung / Kplu * BP) - Qad * Carterial - Qbo * Carterial - Qbr * Carterial - Qgu * Carterial- Qki * Carterial- Qha * Carterial- Qmu * Carterial- Qsk * Carterial- Qsp * Carterial- Qre * Carterial #arterial blood
dAbloodcell <- PER * SA_bloodcell * 0.1 * (Cvenous - Cbloodcell) + PER * SA_bloodcell * 0.1 * (Carterial - Cbloodcell)
#return the rate of changes
list(
c(dINFUSION,
dAad,
dAbo,
dAbr,
dAgu,
dAki,
dAli,
dAlu,
dAmu,
dAsk,
dAsp,
dAhe,
dAve,
dAar,
dAre,
dAheart_ec,
dAad_ec,
dAbo_ec,
dAbr_ec,
dAgu_ec,
dAki_ec,
dAli_ec,
dAlu_ec,
dAmu_ec,
dAsk_ec,
dAsp_ec,
dAbloodcell,
dCother_ict,
dCmyo_ict,
dCad_ict,
dCbo_ict,
dCbr_ict,
dCgu_ict,
dCki_ict,
dCli_ict,
dClu_ict,
dCmu_ict,
dCsk_ict,
dCsp_ict
),
Cadipose = Aad / Vad,
Cbone = Abo / Vbo ,
Cbrain = Abr / Vbr,
Cgut = Agu / Vgu,
Ckidney = Aki / Vki,
Cliver = Ali / Vli,
Clung = Alu / Vlu,
Cmuscle = Amu / Vmu,
Cskin = Ask / Vsk,
Cspleen = Asp / Vsp,
Cheart = Ahe / Vhe,
Crest = Are / Vre,
EC = Cheart_ec,
logBL = log10(Cplasmavenous),
BL = Cplasmavenous,
BLCELL = Cbloodcell
)
})
}
}
out <-
ode(y = state,
times = times,
func = PBPKModel,
parm = parameters
)
results <- data.frame(out)
run_ggquickeda(results)
par(mfrow=c(3,4))
plot(results$time, results$Cliver, type="l", col="red", xlab="Time", ylab="Concentration",
main="Liver")
plot(results$time, results$BL, type="l", col="red", xlab="Time", ylab="Concentration",
main="Plasma")
plot(results$time, results$Cadipose, type="l", col="red", xlab="Time", ylab="Concentration",
main="Adipose")
plot(results$time, results$Cbone, type="l", col="red", xlab="Time", ylab="Concentration",
main="Bone")
plot(results$time, results$Cbrain, type="l", col="red", xlab="Time", ylab="Concentration",
main="Brain")
plot(results$time, results$Cgut, type="l", col="red", xlab="Time", ylab="Concentration",
main="Gut")
plot(results$time, results$Cheart, type="l", col="red", xlab="Time", ylab="Concentration",
main="Heart")
plot(results$time, results$Ckidney, type="l", col="red", xlab="Time", ylab="Concentration",
main="Kidney")
plot(results$time, results$Clung, type="l", col="red", xlab="Time", ylab="Concentration",
main="Lung")
plot(results$time, results$Cmuscle, type="l", col="red", xlab="Time", ylab="Concentration",
main="Muscle")
plot(results$time, results$Cskin, type="l", col="red", xlab="Time", ylab="Concentration",
main="Skin")
plot(results$time, results$Cspleen, type="l", col="red", xlab="Time", ylab="Concentration",
main="Spleen")
plot(
results$time,
results$BL,
type = "l",
col = "blue",
xlab = "Time [h]",
ylab = "Blood Concentration [mg/L]"
)
plot(
results$time,
results$logBL,
type = "l",
col = "blue",
xlab = "Time [h]",
ylab = "Log Blood Concentration [mg/L]"
)
plot(
results$time,
results$BLCELL,
type = "l",
col = "blue",
xlab = "Time [h]",
ylab = "Blood cells Concentration [mg/L]"
)
plot(
results$time,
results$ICBOUND,
type = "l",
col = "blue",
xlab = "Time [h]",
ylab = "Bound Intracellular Concentration [mg/L]"
)
plot(
results$time,
results$Cheart,
type = "l",
col = "blue",
xlab = "Time [h]",
ylab = "Heart concentration Concentration [mg/L]"
)
cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00",
"#CC79A7")
plot1 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=HT,col="HT"),lty=1,size=1.5)+
geom_line(aes(y=MID_ict,col= "MID"),lty=1,size=1.5)+
geom_line(aes(y=ENDO_ict,col="ENDO"),lty=1,size=1.5)+
geom_line(aes(y=EPI_ict,col="EPI"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_fill_manual( breaks = c("HT","MID","ENDO","EPI"),
values = c("#000000", "#E69F00", "#56B4E9","#009E73"),
labels = c("HT","MID","ENDO","EPI"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of sub-compartment layers", size=1)
plot1
plot2 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=MID_ict,col= "MID"),lty=1,size=1.5)+
geom_line(aes(y=ENDO_ict,col="ENDO"),lty=1,size=1.5)+
geom_line(aes(y=EPI_ict,col="EPI"),lty=1,size=1.5)+
geom_line(aes(y=EC,col="EC"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_fill_manual( breaks = c("MID","ENDO","EPI","EC"),
values = c( "#E69F00", "#56B4E9","#009E73","#000000"),
labels = c("MID","ENDO","EPI","EC"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Total concentration of sub-compartment intracellular total comcentration", size=1)
plot2
ggplotly(plot2)
plot3 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=HT,col="Mean heart"),lty=1,size=1.5)+
geom_line(aes(y=MID_ict,col= "Midmyocardial"),lty=1,size=1.5)+
geom_line(aes(y=BL,col= "Blood"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_x_continuous(limits = c(0, 45))+
scale_fill_manual( breaks = c("Mean heart","Midmyocardial","Blood"),
values = c("#000000", "#E69F00", "#56B4E9"),
labels = c("Mean heart","Midmyocardial","Blood"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of sub-compartment layers", size=1)
plot3
plot4 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=Cendo_icfree,col="Cendo_icfree"),lty=1,size=1.5)+
geom_line(aes(y=Cmid_icfree,col= "Cmid_icfree"),lty=1,size=1.5)+
geom_line(aes(y=Cepi_icfree,col= "Cepi_icfree"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_x_continuous(limits = c(0, 48))+
scale_fill_manual( breaks = c("Cendo_icfree","Cmid_icfree","Cepi_icfree"),
values = c("#000000", "#E69F00", "#56B4E9"),
labels = c("Cendo_icfree","Cmid_icfree","Cepi_icfree"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of free DOX after DNA/cardiolipin/mtDNA", size=1)
plot4
plot5 <-ggplot(data=data.frame(results), aes(x=time))+
geom_line(aes(y=Cadipose,col="Cadipose"),lty=1,size=1.5)+
geom_line(aes(y=Cbone,col= "Cbone"),lty=1,size=1.5)+
geom_line(aes(y=Cbrain,col= "Cbrain"),lty=1,size=1.5)+
geom_line(aes(y=Cgut,col= "Cgut"),lty=1,size=1.5)+
geom_line(aes(y=Ckidney,col= "Ckidney"),lty=1,size=1.5)+
geom_line(aes(y=Cliver,col= "Cliver"),lty=1,size=1.5)+
geom_line(aes(y=Clung,col= "Clung"),lty=1,size=1.5)+
geom_line(aes(y=Cmuscle,col= "Cmuscle"),lty=1,size=1.5)+
geom_line(aes(y=Cskin,col= "Cskin"),lty=1,size=1.5)+
geom_line(aes(y=Cheart,col= "Cheart"),lty=1,size=1.5)+
geom_line(aes(y=Cspleen,col= "Cspleen"),lty=1,size=1.5)+
geom_line(aes(y=Crest,col= "Crest"),lty=1,size=1.5)+
ylab(" Concentration (mg/L)")+ xlab("Time (hour)")+
scale_x_continuous(limits = c(0, 3))+
scale_fill_manual( breaks = c("Cadipose","Cbone","Cbrain","Cgut","Ckidney","Cliver","Clung","Cmuscle","Cskin","Cheart","Cspleen","Crest"),
values = c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00","#CC79A7"),
labels = c("Cadipose","Cbone","Cbrain","Cgut","Ckidney","Cliver","Clung","Cmuscle","Cskin","Cheart","Cspleen","Crest"))+
theme_bw()+theme(text=element_text(size=15),plot.margin = unit(c(5,5,5,5),"mm"))+#changed all plot margins from 5 to 10
labs(title="Concentration of organs", size=1)
plot5
ggplotly(plot5)
#fumic (fumic is fraction of DOX unbound in an in vitro microsomal preparation)
fumic <- # [Venkatakrishnan 2001]
# MPPGL(the microsomal protein density (MPPGL)) [mg/g] according to [Barter 2008]
MPPGL <- 10 ^ (1.407 + 0.0158 * age - 0.00038 * (age ^ 2) + 0.0000024 *(age ^ 3))
# the content of CYP1A2 and CYP3A4 in liver [pmol/mg protein]
CYP1A2_L <- 52
CYP3A4_L <- 137
#1) LIVER
#ISEF
#values from Simcyp. rCYP system: Lymph B
ISEF1A2 = 11.1
ISEF3A4 = 3.92
#Metabolism (hydroxylation)
#LIVER (L)
#Vmax for DOX after [pmol/min/pmol CYP]
#Km for DOX [mcM]
#1.CYP1A2
V_1A2 <- 1.79 * MW * 10 ^ -9 #[mg/min/pmol CYP]
K_1A2 <- 63.5 * MW * 10 ^ -3 #[mg/L]
CLint_1A2 <- (ISEF1A2 * (V_1A2 / (K_1A2 + Cliver)) * CYP1A2_L) / fumic #[L/min/mg of microsomal protein]
#2.CYP3A4
V_3A4 <- 3.37 * MW * 10 ^ -9 #[mg/min/pmol CYP]#[Ghahramani 1997]
K_3A4 <- 213.8 * MW * 10 ^ -3 #[mg/L]
CLint_3A4 <- (ISEF3A4 * (V_3A4 / (K_3A4 + Cliver)) * CYP3A4_L) / fumic #[L/min/mg of microsomal protein]
#sum of intrinsic clearances for demethylation for all CYPs isoforms
CLint_demethylation_L <- (CLint_1A2 + CLint_3A4) * 60 #[L/h/mg of microsomal protein]
#Hepatic intrinsic clearance:
CLint_L <- (CLint_demethylation_L + CLint_hydroxylation_L) * MPPGL * Vli * liver_density #[L/h]
#HEART (H) CYP3A4 was not detected in heart tissue: assumed no metabolism of DOX in heart tissue
CYP3A4_H <- 0 #CYP 3A4 abundance in average human heart [pmol/mg tissue][Thum 2000]
write.xlsx(out, '~/Desktop/new_file.xlsx')