Skip to content

Latest commit

 

History

History
241 lines (175 loc) · 4.59 KB

README.md

File metadata and controls

241 lines (175 loc) · 4.59 KB

homemade-pytorch

Flint

A toy deep learning framework implemented in Numpy from scratch with a PyTorch-like API. I'm trying to make it as clean as possible.

Flint is not as powerful as torch, but it is still able to start a fire.

 

Installation

git clone https://github.com/Renovamen/flint.git
cd flint
python setup.py install

or

pip install git+https://github.com/Renovamen/flint.git --upgrade

 

Documentation

Documentation is available here.

 

Example

Add these imports:

import flint
from flint import nn, optim, Tensor

Build your net first:

class Net(nn.Module):
    def __init__(self, in_features, n_classes):
        super(MLP, self).__init__()

        self.l1 = nn.Linear(in_features, 5)
        self.l2 = nn.Linear(5, n_classes)
        self.relu = nn.ReLU()

    def forward(self, x):
        out = self.l1(x)
        out = self.relu(out)
        out = self.l2(out)
        return out

Or you may prefer to use a Sequential container:

class Net(nn.Module):
    def __init__(self, in_features, n_classes):
        super(MLP, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(in_features, 5)
            nn.ReLU(),
            nn.Linear(5, n_classes)
        )

    def forward(self, x):
        out = self.model(x)
        return out

Define these hyper parameters:

# training parameters
n_epoch = 20
lr = 0.001
batch_size = 5

# model parameters
in_features = 10
out_features = 2

Here we generate a fake dataset:

import numpy as np
inputs = np.random.rand(batch_size, in_features)
targets = np.random.randint(0, n_classes, (batch_size, ))
x, y = Tensor(inputs), Tensor(targets)

Initialize your model, optimizer and loss function:

net = Net(in_features, n_classes)
net.train()
optimer = optim.Adam(params=net.parameters(), lr=lr)
loss_function = nn.CrossEntropyLoss()

Then we can train it:

for i in range(n_epoch):
    # clear gradients
    optimer.zero_grad()
    
    # forward prop.
    scores = net(x)

    # compute loss and do backward prop.
    loss = loss_function(scores, y)
    loss.backward()
    
    # update weights
    optimer.step()

    # compute accuracy
    preds = scores.argmax(dim=1)
    correct_preds = flint.eq(preds, y).sum().data
    accuracy = correct_preds / y.shape[0]

    # print training status
    print(
        'Epoch: [{0}][{1}/{2}]\t'
        'Loss {loss:.4f}\t'
        'Accuracy {acc:.3f}'.format(
            epoch + 1, i + 1, len(train_loader),
            loss = loss.data,
            acc = accuracy
        )
    )

Check the examples folder for more detailed examples.

 

Features / To-Do List

Autograd

Support autograding on the following operations:

  • Add
  • Substract
  • Negative
  • Muliply
  • Divide
  • Matmul
  • Power
  • Natural Logarithm
  • Exponential
  • Sum
  • Max
  • Softmax
  • Log Softmax
  • View
  • Transpose
  • Permute
  • Squeeze
  • Unsqueeze
  • Padding

Layers

  • Linear
  • Convolution (1D / 2D)
  • MaxPooling (1D / 2D)
  • Unfold
  • RNN
  • Flatten
  • Dropout
  • BatchNormalization
  • Sequential
  • Identity

Optimizers

  • SGD
  • Momentum
  • Adagrad
  • RMSprop
  • Adadelta
  • Adam

Loss Functions

  • Cross Entropy
  • Negative Log Likelihood
  • Mean Squared Error
  • Binary Cross Entropy

Activation Functions

  • ReLU
  • Leaky ReLU
  • Sigmoid
  • Tanh
  • GELU

Initializers

Others

  • Dataloaders
  • Support GPU

 

License

MIT

 

Acknowledgements

Flint is inspired by the following projects: