-
Notifications
You must be signed in to change notification settings - Fork 1
/
gaussian_kde_gpu.py
49 lines (43 loc) · 1.4 KB
/
gaussian_kde_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from numba import cuda
from math import exp
def bandwidth(x):
"""Scott's rule bandwidth."""
d = x.shape[1]
f = x.shape[0] ** (-1 / (d + 4))
H = f * np.eye(d) * np.std(x, axis=0)
return H*H
@cuda.jit('(float64[:], float64[:,:], float64[:,:], int64, int64, int64, float64[:], float64)')
def cuda_kernel(r, p, q, n, m, d, bw, f):
"""Numba based CUDA kernel."""
i = cuda.grid(1)
if i < m:
for j in range(n):
arg = 0.
for k in range(d):
res = p[j, k] - q[i, k]
arg += res * res * bw[k]
arg = f * exp(-arg / 2.)
r[i] += arg
def gaussian_kde_gpu(p, q, threadsperblock=64):
"""Gaussian kernel density estimation:
Density of points p evaluated at query points q."""
n = p.shape[0]
d = p.shape[1]
m = q.shape[0]
assert d == q.shape[1]
bw = bandwidth(p)
bwinv = np.diag(np.linalg.inv(bw))
bwinv = np.ascontiguousarray(bwinv)
f = (2 * np.pi) ** (-d / 2)
f /= np.sqrt(np.linalg.det(bw))
d_est = cuda.to_device(np.zeros(m))
d_p = cuda.to_device(p)
d_q = cuda.to_device(q)
d_bwinv = cuda.to_device(bwinv)
blockspergrid = m // threadsperblock + 1
cuda_kernel[blockspergrid, threadsperblock](d_est, d_p, d_q,
n, m, d, d_bwinv, f)
est = d_est.copy_to_host()
est /= n
return est