-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
75 lines (67 loc) · 2.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import json
# import urllib2
import numpy as np
# API = 'http://ec2-52-25-205-214.us-west-2.compute.amazonaws.com/challenge19/api.py'
# def get_blocked_videos(api=API):
# api_url = '{}?action=get_blocked'.format(api)
# req = urllib2.Request(api_url)
# response = urllib2.urlopen(req)
# return json.loads(response.read())
def interpolated_prec_rec(prec, rec):
"""Interpolated AP - VOCdevkit from VOC 2011.
"""
mprec = np.hstack([[0], prec, [0]])
mrec = np.hstack([[0], rec, [1]])
for i in range(len(mprec) - 1)[::-1]:
mprec[i] = max(mprec[i], mprec[i + 1])
idx = np.where(mrec[1::] != mrec[0:-1])[0] + 1
ap = np.sum((mrec[idx] - mrec[idx - 1]) * mprec[idx])
return ap
def segment_iou_time(target_segment, candidate_segments):
"""Compute the temporal intersection over union between a
target segment and all the test segments.
Parameters
----------
target_segment : 1d array
Temporal target segment containing [starting, ending] times.
candidate_segments : 2d array
Temporal candidate segments containing N x [starting, ending] times.
Outputs
-------
tiou : 1d array
Temporal intersection over union score of the N's candidate segments.
"""
tt1 = np.maximum(target_segment[0], candidate_segments[:, 0])
tt2 = np.minimum(target_segment[0], candidate_segments[:, 0])
# Intersection including Non-negative overlap score.
# segments_intersection = (tt2 - tt1).clip(0)
# Segment union.
# segments_union = (candidate_segments[:, 1] - candidate_segments[:, 0]) \
# + (target_segment[1] - target_segment[0]) - segments_intersection
# Compute overlap as the ratio of the intersection
# over union of two segments.
tIoU = (tt1-tt2).astype(float)
# print(target_segment,candidate_segments)
# print(tIoU)
return tIoU
def wrapper_segment_iou_time(target_segments, candidate_segments):
"""Compute intersection over union btw segments
Parameters
----------
target_segments : ndarray
2-dim array in format [m x 2:=[init, end]]
candidate_segments : ndarray
2-dim array in format [n x 2:=[init, end]]
Outputs
-------
tiou : ndarray
2-dim array [n x m] with IOU ratio.
Note: It assumes that candidate-segments are more scarce that target-segments
"""
if candidate_segments.ndim != 2 or target_segments.ndim != 2:
raise ValueError('Dimension of arguments is incorrect')
n, m = candidate_segments.shape[0], target_segments.shape[0]
tiou = np.empty((n, m))
for i in range(m):
tiou[:, i] = segment_iou_time(target_segments[i,:], candidate_segments)
return tiou