forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sol1.py
119 lines (98 loc) · 3.15 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
Truncatable primes
Problem 37: https://projecteuler.net/problem=37
The number 3797 has an interesting property. Being prime itself, it is possible
to continuously remove digits from left to right, and remain prime at each stage:
3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right
and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
"""
from __future__ import annotations
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def list_truncated_nums(n: int) -> list[int]:
"""
Returns a list of all left and right truncated numbers of n
>>> list_truncated_nums(927628)
[927628, 27628, 92762, 7628, 9276, 628, 927, 28, 92, 8, 9]
>>> list_truncated_nums(467)
[467, 67, 46, 7, 4]
>>> list_truncated_nums(58)
[58, 8, 5]
"""
str_num = str(n)
list_nums = [n]
for i in range(1, len(str_num)):
list_nums.append(int(str_num[i:]))
list_nums.append(int(str_num[:-i]))
return list_nums
def validate(n: int) -> bool:
"""
To optimize the approach, we will rule out the numbers above 1000,
whose first or last three digits are not prime
>>> validate(74679)
False
>>> validate(235693)
False
>>> validate(3797)
True
"""
if len(str(n)) > 3:
if not is_prime(int(str(n)[-3:])) or not is_prime(int(str(n)[:3])):
return False
return True
def compute_truncated_primes(count: int = 11) -> list[int]:
"""
Returns the list of truncated primes
>>> compute_truncated_primes(11)
[23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397]
"""
list_truncated_primes: list[int] = []
num = 13
while len(list_truncated_primes) != count:
if validate(num):
list_nums = list_truncated_nums(num)
if all(is_prime(i) for i in list_nums):
list_truncated_primes.append(num)
num += 2
return list_truncated_primes
def solution() -> int:
"""
Returns the sum of truncated primes
"""
return sum(compute_truncated_primes(11))
if __name__ == "__main__":
print(f"{sum(compute_truncated_primes(11)) = }")