tags: Hard, Array, Binary Search, Divide and Conquer
我提交的解法
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int count = nums1.length + nums2.length;
int mi = 0;
int ni = 0;
int midVal = 0;
int mid = (count - 1) / 2;
while (mi + ni <= mid) {
if (mi == nums1.length) {
midVal = nums2[mid - nums1.length];
break;
}
if (ni == nums2.length) {
midVal = nums1[mid - nums2.length];
break;
}
if (nums1[mi] >= nums2[ni]) {
midVal = nums2[ni];
++ni;
} else {
midVal = nums1[mi];
++mi;
}
}
if (count % 2 != 0) {
return (double)midVal;
} else {
if (mi == nums1.length) {
return (midVal + nums2[mid + 1 - nums1.length]) / 2.0;
} else if (ni == nums2.length) {
return (midVal + nums1[mid + 1 - nums2.length]) / 2.0;
} else {
if (nums1[mi] >= nums2[ni]) {
return (midVal + nums2[ni]) / 2.0;
} else {
return (midVal + nums1[mi]) / 2.0;
}
}
}
}
}
官方解法
class Solution {
public double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length;
int n = B.length;
if (m > n) { // to ensure m<=n
int[] temp = A; A = B; B = temp;
int tmp = m; m = n; n = tmp;
}
int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
while (iMin <= iMax) {
int i = (iMin + iMax) / 2;
int j = halfLen - i;
if (i < iMax && B[j-1] > A[i]){
iMin = i + 1; // i is too small
}
else if (i > iMin && A[i-1] > B[j]) {
iMax = i - 1; // i is too big
}
else { // i is perfect
int maxLeft = 0;
if (i == 0) { maxLeft = B[j-1]; }
else if (j == 0) { maxLeft = A[i-1]; }
else { maxLeft = Math.max(A[i-1], B[j-1]); }
if ( (m + n) % 2 == 1 ) { return maxLeft; }
int minRight = 0;
if (i == m) { minRight = B[j]; }
else if (j == n) { minRight = A[i]; }
else { minRight = Math.min(B[j], A[i]); }
return (maxLeft + minRight) / 2.0;
}
}
return 0.0;
}
}