-
Notifications
You must be signed in to change notification settings - Fork 1
/
EasingFunctions.lua
550 lines (454 loc) · 12.2 KB
/
EasingFunctions.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
-- Prescribed Material design Beziers and optimized Robert Penner functions
-- @author Robert Penner
-- @author Emmanual Oga
--[[
Tweener authors,
Yuichi Tateno,
Emmanuel Oga
The MIT License
--------
Copyright (c) 2010, Emmanuel Oga.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
--]]
local Resources = require(game:GetService("ReplicatedStorage"):WaitForChild("Resources"))
local Table = Resources:LoadLibrary("Table")
local Bezier = Resources:LoadLibrary("Bezier")
local Enumeration = Resources:LoadLibrary("Enumeration")
-- @specs https://material.io/guidelines/motion/duration-easing.html#duration-easing-natural-easing-curves
local Sharp = Bezier.new(0.4, 0, 0.6, 1)
local Standard = Bezier.new(0.4, 0, 0.2, 1)
local Acceleration = Bezier.new(0.4, 0, 1, 1)
local Deceleration = Bezier.new(0, 0, 0.2, 1)
Enumeration.EasingFunction = {
"Standard";
"Deceleration";
"Acceleration";
"Sharp";
"Linear";
"InSine";
"OutSine";
"InOutSine";
"OutInSine";
"InBack";
"OutBack";
"InOutBack";
"OutInBack";
"InQuad";
"OutQuad";
"InOutQuad";
"OutInQuad";
"InQuart";
"OutQuart";
"InOutQuart";
"OutInQuart";
"InQuint";
"OutQuint";
"InOutQuint";
"OutInQuint";
"InBounce";
"OutBounce";
"InOutBounce";
"OutInBounce";
"InElastic";
"OutElastic";
"InOutElastic";
"OutInElastic";
"InCirc";
"OutCirc";
"InOutCirc";
"OutInCirc";
"InCubic";
"OutCubic";
"InOutCubic";
"OutInCubic";
"InExpo";
"OutExpo";
"InOutExpo";
"OutInExpo";
"Smooth";
"Smoother";
"RevBack";
"RidiculousWiggle";
"Spring";
"SoftSpring";
}
--[[
Disclaimer for Robert Penner's Easing Equations license:
TERMS OF USE - EASING EQUATIONS
Open source under the BSD License.
Copyright © 2001 Robert Penner
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
]]
-- For all easing functions:
-- t = elapsed time
-- b = beginning value
-- c = change in value same as: ending - beginning
-- d = duration (total time)
-- Where applicable
-- a = amplitude
-- p = period
local sin, cos, pi, abs, asin = math.sin, math.cos, math.pi, math.abs, math.asin
local _2pi = 2 * pi
local _halfpi = 0.5 * pi
local SoftSpringpi = -3.2*pi
local Springpi = 2*SoftSpringpi
local function Linear(t, b, c, d)
return c * t / d + b
end
local function Smooth(t, b, c, d)
t = t / d
return c * t * t * (3 - 2*t) + b
end
local function Smoother(t, b, c, d)
t = t / d
return c*t*t*t * (t * (6*t - 15) + 10) + b
end
-- Arceusinator's Easing Functions
local function RevBack(t, b, c, d)
t = 1 - t / d
return c*(1 - (sin(t*_halfpi) + (sin(t*pi) * (cos(t*pi) + 1)*0.5))) + b
end
local function RidiculousWiggle(t, b, c, d)
t = t / d
return c*sin(sin(t*pi)*_halfpi) + b
end
-- YellowTide's Easing Functions
local function Spring(t, b, c, d)
t = t / d
return (1 + (-2.72^(-6.9*t) * cos(Springpi*t))) * c + b
end
local function SoftSpring(t, b, c, d)
t = t / d
return (1 + (-2.72^(-7.5*t) * cos(SoftSpringpi*t))) * c + b
end
-- End of YellowTide's functions
local function InQuad(t, b, c, d)
t = t / d
return c * t * t + b
end
local function OutQuad(t, b, c, d)
t = t / d
return -c * t * (t - 2) + b
end
local function InOutQuad(t, b, c, d)
t = t / d * 2
return t < 1 and c * 0.5 * t * t + b or -c * 0.5 * ((t - 1) * (t - 3) - 1) + b
end
local function OutInQuad(t, b, c, d)
if t < d * 0.5 then
t = 2 * t / d
return -0.5 * c * t * (t - 2) + b
else
t, c = ((t * 2) - d) / d, 0.5 * c
return c * t * t + b + c
end
end
local function InCubic(t, b, c, d)
t = t / d
return c * t * t * t + b
end
local function OutCubic(t, b, c, d)
t = t / d - 1
return c * (t * t * t + 1) + b
end
local function InOutCubic(t, b, c, d)
t = t / d * 2
if t < 1 then
return c * 0.5 * t * t * t + b
else
t = t - 2
return c * 0.5 * (t * t * t + 2) + b
end
end
local function OutInCubic(t, b, c, d)
if t < d * 0.5 then
t = t * 2 / d - 1
return c * 0.5 * (t * t * t + 1) + b
else
t, c = ((t * 2) - d) / d, c * 0.5
return c * t * t * t + b + c
end
end
local function InQuart(t, b, c, d)
t = t / d
return c * t * t * t * t + b
end
local function OutQuart(t, b, c, d)
t = t / d - 1
return -c * (t * t * t * t - 1) + b
end
local function InOutQuart(t, b, c, d)
t = t / d * 2
if t < 1 then
return c * 0.5 * t * t * t * t + b
else
t = t - 2
return -c * 0.5 * (t * t * t * t - 2) + b
end
end
local function OutInQuart(t, b, c, d)
if t < d * 0.5 then
t, c = t * 2 / d - 1, c * 0.5
return -c * (t * t * t * t - 1) + b
else
t, c = ((t * 2) - d) / d, c * 0.5
return c * t * t * t * t + b + c
end
end
local function InQuint(t, b, c, d)
t = t / d
return c * t * t * t * t * t + b
end
local function OutQuint(t, b, c, d)
t = t / d - 1
return c * (t * t * t * t * t + 1) + b
end
local function InOutQuint(t, b, c, d)
t = t / d * 2
if t < 1 then
return c * 0.5 * t * t * t * t * t + b
else
t = t - 2
return c * 0.5 * (t * t * t * t * t + 2) + b
end
end
local function OutInQuint(t, b, c, d)
if t < d * 0.5 then
t = t * 2 / d - 1
return c * 0.5 * (t * t * t * t * t + 1) + b
else
t, c = ((t * 2) - d) / d, c * 0.5
return c * t * t * t * t * t + b + c
end
end
local function InSine(t, b, c, d)
return -c * cos(t / d * _halfpi) + c + b
end
local function OutSine(t, b, c, d)
return c * sin(t / d * _halfpi) + b
end
local function InOutSine(t, b, c, d)
return -c * 0.5 * (cos(pi * t / d) - 1) + b
end
local function OutInSine(t, b, c, d)
c = c * 0.5
return t < d * 0.5 and c * sin(t * 2 / d * _halfpi) + b or -c * cos(((t * 2) - d) / d * _halfpi) + 2 * c + b
end
local function InExpo(t, b, c, d)
return t == 0 and b or c * 2 ^ (10 * (t / d - 1)) + b - c * 0.001
end
local function OutExpo(t, b, c, d)
return t == d and b + c or c * 1.001 * (1 - 2 ^ (-10 * t / d)) + b
end
local function InOutExpo(t, b, c, d)
t = t / d * 2
return t == 0 and b or t == 2 and b + c or t < 1 and c * 0.5 * 2 ^ (10 * (t - 1)) + b - c * 0.0005 or c * 0.5 * 1.0005 * (2 - 2 ^ (-10 * (t - 1))) + b
end
local function OutInExpo(t, b, c, d)
c = c * 0.5
return t < d * 0.5 and (t * 2 == d and b + c or c * 1.001 * (1 - 2 ^ (-20 * t / d)) + b) or t * 2 - d == 0 and b + c or c * 2 ^ (10 * ((t * 2 - d) / d - 1)) + b + c - c * 0.001
end
local function InCirc(t, b, c, d)
t = t / d
return -c * ((1 - t * t) ^ 0.5 - 1) + b
end
local function OutCirc(t, b, c, d)
t = t / d - 1
return c * (1 - t * t) ^ 0.5 + b
end
local function InOutCirc(t, b, c, d)
t = t / d * 2
if t < 1 then
return -c * 0.5 * ((1 - t * t) ^ 0.5 - 1) + b
else
t = t - 2
return c * 0.5 * ((1 - t * t) ^ 0.5 + 1) + b
end
end
local function OutInCirc(t, b, c, d)
c = c * 0.5
if t < d * 0.5 then
t = t * 2 / d - 1
return c * (1 - t * t) ^ 0.5 + b
else
t = (t * 2 - d) / d
return -c * ((1 - t * t) ^ 0.5 - 1) + b + c
end
end
local function InElastic(t, b, c, d, a, p)
t = t / d - 1
p = p or d * 0.3
return t == -1 and b or t == 0 and b + c or (not a or a < abs(c)) and -(c * 2 ^ (10 * t) * sin((t * d - p * .25) * _2pi / p)) + b or -(a * 2 ^ (10 * t) * sin((t * d - p / _2pi * asin(c/a)) * _2pi / p)) + b
end
local function OutElastic(t, b, c, d, a, p)
t = t / d
p = p or d * 0.3
return t == 0 and b or t == 1 and b + c or (not a or a < abs(c)) and c * 2 ^ (-10 * t) * sin((t * d - p * .25) * _2pi / p) + c + b or a * 2 ^ (-10 * t) * sin((t * d - p / _2pi * asin(c / a)) * _2pi / p) + c + b
end
local function InOutElastic(t, b, c, d, a, p)
if t == 0 then
return b
end
t = t / d * 2 - 1
if t == 1 then
return b + c
end
p = p or d * .45
a = a or 0
local s
if not a or a < abs(c) then
a = c
s = p * .25
else
s = p / _2pi * asin(c / a)
end
if t < 1 then
return -0.5 * a * 2 ^ (10 * t) * sin((t * d - s) * _2pi / p) + b
else
return a * 2 ^ (-10 * t) * sin((t * d - s) * _2pi / p ) * 0.5 + c + b
end
end
local function OutInElastic(t, b, c, d, a, p)
if t < d * 0.5 then
return OutElastic(t * 2, b, c * 0.5, d, a, p)
else
return InElastic(t * 2 - d, b + c * 0.5, c * 0.5, d, a, p)
end
end
local function InBack(t, b, c, d, s)
s = s or 1.70158
t = t / d
return c * t * t * ((s + 1) * t - s) + b
end
local function OutBack(t, b, c, d, s)
s = s or 1.70158
t = t / d - 1
return c * (t * t * ((s + 1) * t + s) + 1) + b
end
local function InOutBack(t, b, c, d, s)
s = (s or 1.70158) * 1.525
t = t / d * 2
if t < 1 then
return c * 0.5 * (t * t * ((s + 1) * t - s)) + b
else
t = t - 2
return c * 0.5 * (t * t * ((s + 1) * t + s) + 2) + b
end
end
local function OutInBack(t, b, c, d, s)
c = c * 0.5
s = s or 1.70158
if t < d * 0.5 then
t = (t * 2) / d - 1
return c * (t * t * ((s + 1) * t + s) + 1) + b
else
t = ((t * 2) - d) / d
return c * t * t * ((s + 1) * t - s) + b + c
end
end
local function OutBounce(t, b, c, d)
t = t / d
if t < 1 / 2.75 then
return c * (7.5625 * t * t) + b
elseif t < 2 / 2.75 then
t = t - (1.5 / 2.75)
return c * (7.5625 * t * t + 0.75) + b
elseif t < 2.5 / 2.75 then
t = t - (2.25 / 2.75)
return c * (7.5625 * t * t + 0.9375) + b
else
t = t - (2.625 / 2.75)
return c * (7.5625 * t * t + 0.984375) + b
end
end
local function InBounce(t, b, c, d)
return c - OutBounce(d - t, 0, c, d) + b
end
local function InOutBounce(t, b, c, d)
if t < d * 0.5 then
return InBounce(t * 2, 0, c, d) * 0.5 + b
else
return OutBounce(t * 2 - d, 0, c, d) * 0.5 + c * 0.5 + b
end
end
local function OutInBounce(t, b, c, d)
if t < d * 0.5 then
return OutBounce(t * 2, b, c * 0.5, d)
else
return InBounce(t * 2 - d, b + c * 0.5, c * 0.5, d)
end
end
return Table.Lock {
[0] = Standard;
Deceleration;
Acceleration;
Sharp;
Linear;
InSine;
OutSine;
InOutSine;
OutInSine;
InBack;
OutBack;
InOutBack;
OutInBack;
InQuad;
OutQuad;
InOutQuad;
OutInQuad;
InQuart;
OutQuart;
InOutQuart;
OutInQuart;
InQuint;
OutQuint;
InOutQuint;
OutInQuint;
InBounce;
OutBounce;
InOutBounce;
OutInBounce;
InElastic;
OutElastic;
InOutElastic;
OutInElastic;
InCirc;
OutCirc;
InOutCirc;
OutInCirc;
InCubic;
OutCubic;
InOutCubic;
OutInCubic;
InExpo;
OutExpo;
InOutExpo;
OutInExpo;
Smooth;
Smoother;
RevBack;
RidiculousWiggle;
Spring;
SoftSpring;
}