-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswc2nrrd.py
88 lines (67 loc) · 2.88 KB
/
swc2nrrd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import sys, os
import nrrd
def sphere(shape, radius, position):
# assume shape and position are both a 3-tuple of int or float
# the units are pixels / voxels (px for short)
# radius is a int or float in px
semisizes = (radius,) * 3
#ignore divide by zero
np.seterr(divide='ignore', invalid='ignore')
# genereate the grid for the support points
# centered at the position indicated by position
grid = [slice(-x0, dim - x0) for x0, dim in zip(position, shape)]
position = np.ogrid[grid]
# calculate the distance of all points from `position` center
# scaled by the radius
arr = np.zeros(shape, dtype=float)
for x_i, semisize in zip(position, semisizes):
arr += (np.abs(x_i / semisize) ** 2)
# the inner part of the sphere will have distance below 1
return arr <= 1.0
scale=1
if (len(sys.argv) < 2):
print('Error: missing arguments!')
print('e.g. python swc2nrrd.py template.nrrd neuron.swc Image.nrrd [width] [scale] [Xoffset,Yoffset,Zoffset]')
else:
Itemp = str(sys.argv[1])
Iswc = str(sys.argv[2])
Iout = str(sys.argv[3])
offset = [0.0,0.0,0.0]
bounded = True
w = 0
if (len(sys.argv) > 4):
w=np.int32(sys.argv[4])
if (len(sys.argv) > 5):
scale=np.float(sys.argv[5])
bounded = False
if (len(sys.argv) > 6):
offset=np.float(sys.argv[6].split(','))
print('Loading %s...'% (Itemp))
tempData1, tempHeader1 = nrrd.read(Itemp)
print('Loading %s...'% (Iswc))
with open(Iswc) as fI:
swcIn = fI.readlines()
lineDict = {}
for thisLine in swcIn:
if thisLine[0]!='#':
splitLine = thisLine.split(" ")
lineDict[int(splitLine[0])] = {'position':np.array([np.float(splitLine[2])+offset[0],np.float(splitLine[3])+offset[1],np.float(splitLine[4])+offset[2]],dtype=np.float),
'radius':splitLine[5],
'parent':int(splitLine[6])}
extent=tempHeader1['sizes']
print(extent)
outputImg = np.zeros(extent,dtype=np.uint8)
r=0
for thisDict in lineDict.values():
r=w
p = np.clip(np.floor(np.divide(np.divide(thisDict['position'],[tempHeader1['space directions'][0][0],tempHeader1['space directions'][1][1],tempHeader1['space directions'][2][2]]),scale)),[0,0,0],np.subtract(extent,1)).astype(np.int)
if thisDict['radius'] != "NA" and np.divide(float(thisDict['radius']),scale)>r:
r=np.divide(float(thisDict['radius']),scale)
if r<1:
outputImg[p[0],p[1],p[2]]=np.uint8(255)
else:
point = np.multiply(sphere(extent, r, p),np.uint8(255)).astype(np.uint8)
outputImg = np.maximum(outputImg, point).astype(np.uint8)
nrrd.write(Iout, np.uint8(outputImg), header=tempHeader1)
print('saved to ' + Iout)