forked from bbartling/open-fdd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fc12.py
66 lines (54 loc) · 2.23 KB
/
fc12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from datetime import timedelta
import pandas as pd
from faults import FaultConditionTwelve
from reports import FaultCodeTwelveReport
from utils import custom_arg_parser, save_report, describe_dataset
# python 3.10 on Windows 10
# py .\fc12.py -i ./ahu_data/MZVAV-1.csv -o MZVAV-1_fc12_report
# py .\fc12.py -i ./ahu_data/MZVAV-2-1.csv -o MZVAV-2-1_fc12_report
# py .\fc12.py -i ./ahu_data/MZVAV-2-2.csv -o MZVAV-2-2_fc12_report
if __name__ == '__main__':
args = custom_arg_parser()
# ADJUST this param for the AHU MIN OA damper stp
AHU_MIN_OA = 20
# G36 params shouldn't need adjusting
# error threshold parameters
DELTA_SUPPLY_FAN = 2
MIX_DEGF_ERR_THRES = 5
SUPPLY_DEGF_ERR_THRES = 2
var_dict = {
"sat_col": "AHU: Supply Air Temperature",
"mat_col": "AHU: Mixed Air Temperature",
"clg_col": "AHU: Cooling Coil Valve Control Signal",
"economizer_sig_col": "AHU: Outdoor Air Damper Control Signal",
"fan_vfd_speed_col": "AHU: Supply Air Fan Speed Control Signal"
}
_fc12 = FaultConditionTwelve(
delta_supply_fan=DELTA_SUPPLY_FAN,
mix_err_thres=MIX_DEGF_ERR_THRES,
supply_err_thres=SUPPLY_DEGF_ERR_THRES,
ahu_min_oa_dpr=AHU_MIN_OA,
sat_col=var_dict["sat_col"],
mat_col=var_dict["mat_col"],
clg_col=var_dict["clg_col"],
economizer_sig_col=var_dict["economizer_sig_col"]
# sat_col="AHU: Supply Air Temperature",
# mat_col="AHU: Mixed Air Temperature",
# clg_col="AHU: Cooling Coil Valve Control Signal",
# economizer_sig_col="AHU: Outdoor Air Damper Control Signal"
)
_fc12_report = FaultCodeTwelveReport(
sat_col=var_dict["sat_col"],
mat_col=var_dict["mat_col"],
clg_col=var_dict["clg_col"],
economizer_sig_col=var_dict["economizer_sig_col"],
fan_vfd_speed_col=var_dict["fan_vfd_speed_col"]
)
df = pd.read_csv(args.input, index_col="Date", parse_dates=True).rolling(timedelta(minutes=5)).mean()
# describe dataset printing some stuff
describe_dataset(df)
# return a whole new dataframe with fault flag as new col
df2 = _fc12.apply(df)
print(df2.head())
print(df2.describe())
save_report(args, df, _fc12_report)