forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_reader.py
263 lines (230 loc) · 10.1 KB
/
batch_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Batch reader to seq2seq attention model, with bucketing support."""
from collections import namedtuple
import Queue
from random import shuffle
from threading import Thread
import time
import numpy as np
import tensorflow as tf
import data
ModelInput = namedtuple('ModelInput',
'enc_input dec_input target enc_len dec_len '
'origin_article origin_abstract')
BUCKET_CACHE_BATCH = 100
QUEUE_NUM_BATCH = 100
class Batcher(object):
"""Batch reader with shuffling and bucketing support."""
def __init__(self, data_path, vocab, hps,
article_key, abstract_key, max_article_sentences,
max_abstract_sentences, bucketing=True, truncate_input=False):
"""Batcher constructor.
Args:
data_path: tf.Example filepattern.
vocab: Vocabulary.
hps: Seq2SeqAttention model hyperparameters.
article_key: article feature key in tf.Example.
abstract_key: abstract feature key in tf.Example.
max_article_sentences: Max number of sentences used from article.
max_abstract_sentences: Max number of sentences used from abstract.
bucketing: Whether bucket articles of similar length into the same batch.
truncate_input: Whether to truncate input that is too long. Alternative is
to discard such examples.
"""
self._data_path = data_path
self._vocab = vocab
self._hps = hps
self._article_key = article_key
self._abstract_key = abstract_key
self._max_article_sentences = max_article_sentences
self._max_abstract_sentences = max_abstract_sentences
self._bucketing = bucketing
self._truncate_input = truncate_input
self._input_queue = Queue.Queue(QUEUE_NUM_BATCH * self._hps.batch_size)
self._bucket_input_queue = Queue.Queue(QUEUE_NUM_BATCH)
self._input_threads = []
for _ in xrange(16):
self._input_threads.append(Thread(target=self._FillInputQueue))
self._input_threads[-1].daemon = True
self._input_threads[-1].start()
self._bucketing_threads = []
for _ in xrange(4):
self._bucketing_threads.append(Thread(target=self._FillBucketInputQueue))
self._bucketing_threads[-1].daemon = True
self._bucketing_threads[-1].start()
self._watch_thread = Thread(target=self._WatchThreads)
self._watch_thread.daemon = True
self._watch_thread.start()
def NextBatch(self):
"""Returns a batch of inputs for seq2seq attention model.
Returns:
enc_batch: A batch of encoder inputs [batch_size, hps.enc_timestamps].
dec_batch: A batch of decoder inputs [batch_size, hps.dec_timestamps].
target_batch: A batch of targets [batch_size, hps.dec_timestamps].
enc_input_len: encoder input lengths of the batch.
dec_input_len: decoder input lengths of the batch.
loss_weights: weights for loss function, 1 if not padded, 0 if padded.
origin_articles: original article words.
origin_abstracts: original abstract words.
"""
enc_batch = np.zeros(
(self._hps.batch_size, self._hps.enc_timesteps), dtype=np.int32)
enc_input_lens = np.zeros(
(self._hps.batch_size), dtype=np.int32)
dec_batch = np.zeros(
(self._hps.batch_size, self._hps.dec_timesteps), dtype=np.int32)
dec_output_lens = np.zeros(
(self._hps.batch_size), dtype=np.int32)
target_batch = np.zeros(
(self._hps.batch_size, self._hps.dec_timesteps), dtype=np.int32)
loss_weights = np.zeros(
(self._hps.batch_size, self._hps.dec_timesteps), dtype=np.float32)
origin_articles = ['None'] * self._hps.batch_size
origin_abstracts = ['None'] * self._hps.batch_size
buckets = self._bucket_input_queue.get()
for i in xrange(self._hps.batch_size):
(enc_inputs, dec_inputs, targets, enc_input_len, dec_output_len,
article, abstract) = buckets[i]
origin_articles[i] = article
origin_abstracts[i] = abstract
enc_input_lens[i] = enc_input_len
dec_output_lens[i] = dec_output_len
enc_batch[i, :] = enc_inputs[:]
dec_batch[i, :] = dec_inputs[:]
target_batch[i, :] = targets[:]
for j in xrange(dec_output_len):
loss_weights[i][j] = 1
return (enc_batch, dec_batch, target_batch, enc_input_lens, dec_output_lens,
loss_weights, origin_articles, origin_abstracts)
def _FillInputQueue(self):
"""Fill input queue with ModelInput."""
start_id = self._vocab.WordToId(data.SENTENCE_START)
end_id = self._vocab.WordToId(data.SENTENCE_END)
pad_id = self._vocab.WordToId(data.PAD_TOKEN)
input_gen = self._TextGenerator(data.ExampleGen(self._data_path))
while True:
(article, abstract) = input_gen.next()
article_sentences = [sent.strip() for sent in
data.ToSentences(article, include_token=False)]
abstract_sentences = [sent.strip() for sent in
data.ToSentences(abstract, include_token=False)]
enc_inputs = []
# Use the <s> as the <GO> symbol for decoder inputs.
dec_inputs = [start_id]
# Convert first N sentences to word IDs, stripping existing <s> and </s>.
for i in xrange(min(self._max_article_sentences,
len(article_sentences))):
enc_inputs += data.GetWordIds(article_sentences[i], self._vocab)
for i in xrange(min(self._max_abstract_sentences,
len(abstract_sentences))):
dec_inputs += data.GetWordIds(abstract_sentences[i], self._vocab)
# Filter out too-short input
if (len(enc_inputs) < self._hps.min_input_len or
len(dec_inputs) < self._hps.min_input_len):
tf.logging.warning('Drop an example - too short.\nenc:%d\ndec:%d',
len(enc_inputs), len(dec_inputs))
continue
# If we're not truncating input, throw out too-long input
if not self._truncate_input:
if (len(enc_inputs) > self._hps.enc_timesteps or
len(dec_inputs) > self._hps.dec_timesteps):
tf.logging.warning('Drop an example - too long.\nenc:%d\ndec:%d',
len(enc_inputs), len(dec_inputs))
continue
# If we are truncating input, do so if necessary
else:
if len(enc_inputs) > self._hps.enc_timesteps:
enc_inputs = enc_inputs[:self._hps.enc_timesteps]
if len(dec_inputs) > self._hps.dec_timesteps:
dec_inputs = dec_inputs[:self._hps.dec_timesteps]
# targets is dec_inputs without <s> at beginning, plus </s> at end
targets = dec_inputs[1:]
targets.append(end_id)
# Now len(enc_inputs) should be <= enc_timesteps, and
# len(targets) = len(dec_inputs) should be <= dec_timesteps
enc_input_len = len(enc_inputs)
dec_output_len = len(targets)
# Pad if necessary
while len(enc_inputs) < self._hps.enc_timesteps:
enc_inputs.append(pad_id)
while len(dec_inputs) < self._hps.dec_timesteps:
dec_inputs.append(end_id)
while len(targets) < self._hps.dec_timesteps:
targets.append(end_id)
element = ModelInput(enc_inputs, dec_inputs, targets, enc_input_len,
dec_output_len, ' '.join(article_sentences),
' '.join(abstract_sentences))
self._input_queue.put(element)
def _FillBucketInputQueue(self):
"""Fill bucketed batches into the bucket_input_queue."""
while True:
inputs = []
for _ in xrange(self._hps.batch_size * BUCKET_CACHE_BATCH):
inputs.append(self._input_queue.get())
if self._bucketing:
inputs = sorted(inputs, key=lambda inp: inp.enc_len)
batches = []
for i in xrange(0, len(inputs), self._hps.batch_size):
batches.append(inputs[i:i+self._hps.batch_size])
shuffle(batches)
for b in batches:
self._bucket_input_queue.put(b)
def _WatchThreads(self):
"""Watch the daemon input threads and restart if dead."""
while True:
time.sleep(60)
input_threads = []
for t in self._input_threads:
if t.is_alive():
input_threads.append(t)
else:
tf.logging.error('Found input thread dead.')
new_t = Thread(target=self._FillInputQueue)
input_threads.append(new_t)
input_threads[-1].daemon = True
input_threads[-1].start()
self._input_threads = input_threads
bucketing_threads = []
for t in self._bucketing_threads:
if t.is_alive():
bucketing_threads.append(t)
else:
tf.logging.error('Found bucketing thread dead.')
new_t = Thread(target=self._FillBucketInputQueue)
bucketing_threads.append(new_t)
bucketing_threads[-1].daemon = True
bucketing_threads[-1].start()
self._bucketing_threads = bucketing_threads
def _TextGenerator(self, example_gen):
"""Generates article and abstract text from tf.Example."""
while True:
e = example_gen.next()
try:
article_text = self._GetExFeatureText(e, self._article_key)
abstract_text = self._GetExFeatureText(e, self._abstract_key)
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
yield (article_text, abstract_text)
def _GetExFeatureText(self, ex, key):
"""Extract text for a feature from td.Example.
Args:
ex: tf.Example.
key: key of the feature to be extracted.
Returns:
feature: a feature text extracted.
"""
return ex.features.feature[key].bytes_list.value[0]