
User Manual

MM32SPIN05x

32-bit Microcontroller Based on ARM Cortex M0 Core

Version: 1.19_q

We reserve the right to change relevant information without notice.

Table of Contents

1 Memory and bus architecture 1
1.1 System architecture . 1
1.2 Memory organization . 2

1.2.1 Introduction . 2
1.2.2 Memory map and register addressing . 2

1.3 Embedded SRAM . 4
1.4 Overview of FLASH memory . 4
1.5 Boot configuration . 5

2 Embedded flash(FLASH) 6
2.1 Main features . 6
2.2 Functional description . 6

2.2.1 Structure . 6
2.2.2 Reading flash . 7
2.2.3 Programming and erasing flash . 8

2.3 Storage protection . 15
2.3.1 Write protection of main space . 15
2.3.2 Write protection of option bytes . 15

2.4 Flash interrupt . 15
2.5 Description of option bytes . 15
2.6 Description of Flash register . 17

2.6.1 Flash access control register(FLASH_ACR) . 18
2.6.2 Flash access control register(FLASH_KEYR) . 18
2.6.3 Flash OPTKEY register(FLASH_OPTKEYR) . 19
2.6.4 Flash status register(FLASH_SR) . 19
2.6.5 Flash control register(FLASH_CR) . 20
2.6.6 Flash address register(FLASH_AR) . 21
2.6.7 Option byte register(FLASH_OBR) . 22
2.6.8 Write protection register(FLASH_WRPR) . 23

3 Cyclic redundancy check calculation unit(CRC) 24
3.1 CRC introduction . 24
3.2 CRC main features . 24
3.3 CRC Functional description . 25
3.4 CRC register . 25

3.4.1 CRC data register(CRC_DR) . 25
3.4.2 CRC independent data register(CRC_IDR) . 26
3.4.3 CRC control register(CRC_CTRL) . 26

4 Power control (PWR) 27
4.1 Power supply . 27

4.1.1 Independent A/D converter supply and reference voltage 27
4.1.2 Voltage regulator . 28

4.2 Power supply supervisor . 28

1

4.2.1 Power on reset (POR)/power down reset (PDR) . 28
4.2.2 Programmable voltage detector (PVD) . 28

4.3 Low-power modes . 29
4.3.1 Slowing down system clocks . 31
4.3.2 Peripheral clock gating . 31
4.3.3 Sleep Mode . 31
4.3.4 Stop mode . 32
4.3.5 Standby mode . 33

4.4 Power control registers . 34
4.4.1 Power control registers(PWR_CR) . 35
4.4.2 Power control/status register(PWR_CSR) . 36

5 Reset and clock control (RCC) 38
5.1 Reset . 38

5.1.1 System reset . 38
5.1.2 Power reset . 38

5.2 Clocks . 39
5.2.1 HSE clock . 41
5.2.2 HSI clock . 42
5.2.3 LSI clock . 42
5.2.4 System clock (SYSCLK) selection . 43
5.2.5 Clock security system (CSS) . 43
5.2.6 Watchdog clock . 43
5.2.7 Clock-out capability . 43

5.3 RCC Register file and memory mapping description . 43
5.3.1 Clock control register(RCC_CR) . 44
5.3.2 Clock configuration register(RCC_CFGR) . 46
5.3.3 Clock interrupt register(RCC_CIR) . 48
5.3.4 APB2 peripheral reset register(RCC_APB2RSTR) . 50
5.3.5 APB1 peripheral reset register(RCC_APB1RSTR) . 51
5.3.6 AHB peripheral clock enable register(RCC_AHBENR) . 53
5.3.7 APB2 peripheral clock enable register(RCC_APB2ENR) 54
5.3.8 APB1 peripheral clock enable register (RCC_APB1ENR) 55
5.3.9 Control status register(RCC_CSR) . 56
5.3.10 AHB peripheral clock reset register(RCC_AHBRSTR) . 58
5.3.11 System configuration register(RCC_SYSCFG) . 59

6 General-purpose I/O(GPIO) 61
6.1 GPIO functional description . 61

6.1.1 General-purpose I/O(GPIO) . 62
6.1.2 Atomic bits set or reset . 63
6.1.3 External interrupt/wakeup lines . 63
6.1.4 Alternate functions . 63
6.1.5 Software remapping of I/O alternate functions . 64
6.1.6 GPIO locking mechanism . 64

2

6.1.7 Input configuration . 64
6.1.8 Output configuration . 65
6.1.9 Alternate functions configuration . 65
6.1.10 Analog configuration . 66
6.1.11 GPIO configurations for device peripherals . 67

6.2 Alternate function I/O and debug configuration (AFIO) . 69
6.2.1 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1 69
6.2.2 SWD alternate function remapping . 69

6.3 GPIO register description . 69
6.3.1 Port configuration low register(GPIOx_CRL)(x = A..D) . 70
6.3.2 Port configuration high register(GPIOx_CRH)(x = A..D) 71
6.3.3 Port input data register(GPIOx_IDR)(x = A..D) . 71
6.3.4 Port output data register(GPIOx_ODR)(x = A..D) . 72
6.3.5 Port set/reset register(GPIOx_BSRR)(x = A..D) . 72
6.3.6 Port bits reset register(GPIOx_BRR)(x = A..D) . 73
6.3.7 Port configuration lock register(GPIOx_LCKR)(x = A..D) 73
6.3.8 Port alternate-function register low(GPIOx_AFRL)(x = A..D) 74
6.3.9 Port alternate-function register high(GPIOx_AFRH)(x = A..D) 75

7 Interrupts and events(EXTI) 77
7.1 Nested Vectored Interrupt Controller . 77

7.1.1 SysTick calibration value register . 77
7.1.2 Interrupt and exception vectors . 77

7.2 External interrupt/event controller (EXTI) . 79
7.2.1 Main features . 79
7.2.2 Block diagram . 80
7.2.3 Wakeup event management . 80
7.2.4 Functional description . 80
7.2.5 External interrupt/event line mapping . 81

7.3 EXTI register description . 82
7.3.1 Interrupt Mask Register(EXTI_IMR) . 83
7.3.2 Event Mask Register(EXTI_EMR) . 83
7.3.3 Rising Trigger Selection Register(EXTI_RTSR) . 84
7.3.4 Falling Trigger Selection Register(EXTI_FTSR) . 85
7.3.5 Software Interrupt Event Register(EXTI_SWIER) . 86
7.3.6 Pending register(EXTI_PR) . 86

8 Direct memory access controller(DMA) 88
8.1 DMA introduction . 88
8.2 DMA main features . 88
8.3 Functional description . 89

8.3.1 DMA transactions . 89
8.3.2 DMA arbiter . 90
8.3.3 DMA channels . 90
8.3.4 Programmable data width, data alignment and endians . 91

3

8.3.5 Error management . 94
8.3.6 Interrupts . 94
8.3.7 DMA request mapping . 94

8.4 DMA register description . 96
8.4.1 DMA interrupt status register(DMA_ISR) . 96
8.4.2 DMA interrupt flag clear register(DMA_IFCR) . 97
8.4.3 DMA channel x configuration register(DMA_CCRx) (x = 1…5) 98
8.4.4 DMA channel x number of data register(DMA_CNDTRx) (x = 1…5) 100
8.4.5 DMA channel x peripheral address register(DMA_CPARx) (x = 1…5) 100
8.4.6 DMA channel x memory address register(DMA_CMARx) (x = 1…5) 101

9 Analog-to-digital converter(ADC) 102
9.1 ADC introduction . 102
9.2 ADC main features . 102
9.3 ADC functional description . 102

9.3.1 ADC on-off control . 103
9.3.2 Channel selection . 103

9.4 ADC operating mode . 104
9.4.1 Single conversion mode . 104
9.4.2 Single-cycle scan mode . 104
9.4.3 Continuous scan mode . 106
9.4.4 DMA request . 107

9.5 Data alignment . 107
9.5.1 Programmable resolution . 108
9.5.2 Programmable sample time . 108

9.6 Conversion on external trigger . 108
9.7 Temperature sensor . 108
9.8 Internal reference voltage . 109
9.9 Monitoring of AD conversion results in window comparator mode 109
9.10 ADC register description . 109

9.10.1 A/D data register(ADC_ADDATA) . 110
9.10.2 A/D configuration register(ADC_ADCFG) . 111
9.10.3 A/D control register(ADC_ADCR) . 112
9.10.4 A/D channel select register(ADC_ADCHS) . 115
9.10.5 A/D window compare register(ADC_ADCMPR) . 117
9.10.6 A/D status register(ADC_ADSTA) . 117
9.10.7 A/D data register(ADC_ADDR0 ∼ 12, 14 ∼ 15) . 118
9.10.8 A/D extended status register(ADC_ADSTA_EXT) . 119

10 Comparator(COMP) 121
10.1 COMP introduction . 121
10.2 Main features of comparator . 121
10.3 Functional description of comparator . 121

10.3.1 Introduction . 121
10.3.2 Clock . 122

4

10.3.3 Comparator switch control . 122
10.3.4 Comparator input and output . 122
10.3.5 Comparator channel selection . 122
10.3.6 Interrupt and wakeup . 123
10.3.7 Power consumption mode . 123
10.3.8 Comparator locking mechanism . 124
10.3.9 Latency . 124

10.4 Description of comparator register . 124
10.4.1 Comparator control status register(COMPx_CSR)(x=1) . 125
10.4.2 Comparator external reference voltage register(COMP_CRV) 127
10.4.3 Comparator polling register(COMPx_POLL)(x=1) . 128

11 Advanced-control timer(TIM1) 130
11.1 TIM1 introduction . 130
11.2 Main features . 130
11.3 Functional description . 131

11.3.1 Time-base unit . 131
11.3.2 Counter modes . 133
11.3.3 Repetition counter . 142
11.3.4 Clock selection . 143
11.3.5 Capture/compare channels . 147
11.3.6 Input capture mode . 149
11.3.7 PWM input mode . 150
11.3.8 Forced output mode . 151
11.3.9 Output compare mode . 152
11.3.10 PWM mode . 153
11.3.11 Complementary outputs and dead-time insertion . 156
11.3.12 Using the break function . 157
11.3.13 Clearing the OCxREF signal on an external event . 160
11.3.14 Six-step PWM generation . 161
11.3.15 One-pulse mode . 162
11.3.16 Encoder interface mode . 164
11.3.17 Timer input XOR function . 166
11.3.18 Interfacing with Hall sensors . 166
11.3.19 TIMx and external trigger synchronization . 168
11.3.20 Timer synchronization . 171
11.3.21 Debug mode . 172

11.4 Register description . 172
11.4.1 Control register 1(TIMx_CR1) . 172
11.4.2 Control register 2(TIMx_CR2) . 174
11.4.3 Slave mode control register(TIMx_SMCR) . 177
11.4.4 DMA/interrupt enable register (TIMX_DIER) . 181
11.4.5 Status register(TIMx_SR) . 183
11.4.6 Event generation register (TIMx_EGR) . 185

5

11.4.7 Capture/compare mode register 1 (TIMx_CCMR1) . 187
11.4.8 Capture/compare mode register 2(TIMx_CCMR2) . 192
11.4.9 Capture/compare enable register(TIMx_CCER) . 194
11.4.10 Counter(TIMx_CNT) . 198
11.4.11 Prescaler(TIMx_PSC) . 198
11.4.12 Auto-reload register(TIMx_ARR) . 198
11.4.13 Repetition counter register(TIMx_RCR) . 199
11.4.14 Capture/compare register 1(TIMx_CCR1) . 199
11.4.15 Capture/compare register2(TIMx_CCR2) . 200
11.4.16 Capture/compare register 3(TIMx_CCR3) . 200
11.4.17 Capture/compare register 4(TIMx_CCR4) . 201
11.4.18 Break and dead-time register(TIMx_BDTR) . 202
11.4.19 DMA control register(TIMx_DCR) . 205
11.4.20 DMA address for full transfer(TIMx_DMAR) . 206
11.4.21 Capture/compare mode register 3(TIMx_CCMR3) . 207
11.4.22 Capture/compare register 5(TIMx_CCR5) . 207

12 16-bit general-purpose timers (TIMx16 Bit) 209
12.1 TIMx introduction . 209
12.2 TIMx Main features . 209
12.3 TIMx Functional description . 210

12.3.1 Time-base unit . 210
12.3.2 Counter modes . 212
12.3.3 Clock selection . 221
12.3.4 Capture/compare channels . 225
12.3.5 Input capture mode . 227
12.3.6 PWM input mode . 228
12.3.7 Forced output mode . 229
12.3.8 Output compare mode . 229
12.3.9 PWM mode . 231
12.3.10 One-pulse mode . 234
12.3.11 Clearing the OCxREF signal on an external event . 235
12.3.12 Encoder interface mode . 236
12.3.13 Timer input XOR function . 239
12.3.14 Timers and external trigger synchronization . 239
12.3.15 Timer synchronization . 242
12.3.16 Debug mode . 247

12.4 TIMx register description . 248
12.4.1 Control register 1(TIMx_CR1) . 248
12.4.2 Control register 2(TIMx_CR2) . 250
12.4.3 Slave mode control register(TIMx_SMCR) . 252
12.4.4 DMA/interrupt enable register(TIMx_DIER) . 255
12.4.5 Status register(TIMx_SR) . 257
12.4.6 Event generation register (TIMx_EGR) . 258

6

12.4.7 Capture/compare mode register 1(TIMx_CCMR1) . 259
12.4.8 Capture/compare mode register 2(TIMx_CCMR2) . 264
12.4.9 Capture/compare enable register(TIMx_CCER) . 266
12.4.10 Counter(TIMx_CNT) . 268
12.4.11 Prescaler(TIMx_PSC) . 268
12.4.12 Auto-reload register(TIMx_ARR) . 268
12.4.13 Capture/compare register 1(TIMx_CCR1) . 269
12.4.14 Capture/compare register2(TIMx_CCR2) . 269
12.4.15 Capture/compare register 3(TIMx_CCR3) . 270
12.4.16 Capture/compare register 4(TIMx_CCR4) . 270
12.4.17 DMA control register(TIMx_DCR) . 271
12.4.18 DMA address for full transfer(TIMx_DMAR) . 272

13 32-bit general-purpose timers (TIMx32 Bit) 274
13.1 TIMx introduction . 274
13.2 TIMx Main features . 274
13.3 TIMx Functional description . 275

13.3.1 Time-base unit . 275
13.3.2 Counter modes . 277
13.3.3 Clock selection . 286
13.3.4 Capture/compare channels . 290
13.3.5 Input capture mode . 292
13.3.6 PWM input mode . 293
13.3.7 Forced output mode . 294
13.3.8 Output compare mode . 294
13.3.9 PWM mode . 296
13.3.10 One-pulse mode . 299
13.3.11 Clearing the OCxREF signal on an external event . 300
13.3.12 Encoder interface mode . 301
13.3.13 Timer input XOR function . 304
13.3.14 Timers and external trigger synchronization . 304
13.3.15 Timer synchronization . 307
13.3.16 Debug mode . 312

13.4 TIMx register description . 313
13.4.1 Control register 1(TIMx_CR1) . 313
13.4.2 Control register 2(TIMx_CR2) . 315
13.4.3 Slave mode control register(TIMx_SMCR) . 317
13.4.4 DMA/interrupt enable register(TIMx_DIER) . 320
13.4.5 Status register(TIMx_SR) . 322
13.4.6 Event generation register(TIMx_EGR) . 323
13.4.7 Capture/compare mode register 1(TIMx_CCMR1) . 324
13.4.8 Capture/compare mode register 2(TIMx_CCMR2) . 329
13.4.9 Capture/compare enable register(TIMx_CCER) . 331
13.4.10 Counter(TIMx_CNT) . 333

7

13.4.11 Prescaler(TIMx_PSC) . 333
13.4.12 Auto-reload register(TIMx_ARR) . 333
13.4.13 Capture/compare register 1(TIMx_CCR1) . 334
13.4.14 Capture/compare register2(TIMx_CCR2) . 335
13.4.15 Capture/compare register 3(TIMx_CCR3) . 335
13.4.16 Capture/compare register 4(TIMx_CCR4) . 336
13.4.17 DMA control register(TIMx_DCR) . 337
13.4.18 DMA address for full transfer(TIMx_DMAR) . 338

14 Basic timer(TIM14) 339
14.1 TIM14 introduction . 339
14.2 TIM14 Main features . 339
14.3 TIM14 Functional description . 340

14.3.1 Time-base unit . 340
14.3.2 Counter modes . 341
14.3.3 Repetition counter . 344
14.3.4 Clock source . 345
14.3.5 Capture/compare channels . 346
14.3.6 Input capture mode . 348
14.3.7 Forced output mode . 349
14.3.8 Output compare mode . 349
14.3.9 PWM mode . 350
14.3.10 Debug mode . 351

14.4 TIM14 register description . 351
14.4.1 Control register 1(TIM14_CR1) . 352
14.4.2 Interrupt enable register(TIM14_DIER) . 353
14.4.3 Status register(TIM14_SR) . 353
14.4.4 Event generation register(TIM14_EGR) . 354
14.4.5 Capture/compare mode register 1(TIM14_CCMR1) . 355
14.4.6 Capture/compare enable register(TIM14_CCER) . 359
14.4.7 Counter(TIM14_CNT) . 360
14.4.8 Prescaler(TIM14_PSC) . 360
14.4.9 Auto-reload register(TIM14_ARR) . 361
14.4.10 Repetition counter register(TIM14_RCR) . 361
14.4.11 Capture/compare register 1(TIM14_CCR1) . 362

15 Basic timer(TIM16/17) 363
15.1 TIM16/17 introduction . 363
15.2 Main features . 363
15.3 Functional description . 364

15.3.1 Time-base unit . 364
15.3.2 Counting unit . 366
15.3.3 Repetition counter . 369
15.3.4 Clock source . 370
15.3.5 Capture/compare channels . 371

8

15.3.6 Input capture mode . 373
15.3.7 Forced output mode . 374
15.3.8 Output compare mode . 375
15.3.9 PWM mode . 376
15.3.10 Complementary outputs and dead-time insertion . 377
15.3.11 Using the break function . 379
15.3.12 One-pulse mode . 381
15.3.13 Debug mode . 383

15.4 Register description . 383
15.4.1 TIM16/17 control register 1(TIM16/17_CR1) . 383
15.4.2 TIM16/17 control register 2(TIM16/17_CR2) . 385
15.4.3 TIM16/17 interrupt enable register (TIM16/17_DIER) . 386
15.4.4 TIM16/17 interrupt enable register(TIM16/17_SR) . 387
15.4.5 TIM16/17 event generation register 1(TIM16/17_EGR) . 388
15.4.6 TIM16/17 capture/compare mode register 1(TIM16/17_CCMR1) 390
15.4.7 TIM16/17 Capture/compare enable register(TIM16/17_CCER) 394
15.4.8 TIM16/17 counter(TIM16/17_CNT) . 396
15.4.9 TIM16/17 prescaler register(TIM16/17_PSC) . 397
15.4.10 TIM16/17 auto-reload register(TIM16/17_ARR) . 397
15.4.11 TIM16/17 repetition counter register(TIM16/17_RCR) . 397
15.4.12 TIM16/17 Capture/compare register 1(TIM16/17_CCR1) 398
15.4.13 TIM16/17 break and dead-time register(TIM16/17_BDTR) 398
15.4.14 TIM16/17 DMA DMA control register(TIM16/17_DCR) . 401
15.4.15 TIM16/17 address for full transfer(TIM16/17_DMAR) . 402

16 Independent watchdog(IWDG) 404
16.1 (IWDG introduction) . 404
16.2 IWDG main features . 404
16.3 Functional description . 404

16.3.1 Hardware watchdog . 405
16.3.2 Register access protection . 405
16.3.3 Debug mode . 406

16.4 IWDG register description . 406
16.4.1 Key register(IWDG_KR) . 406
16.4.2 Prescaler register(IWDG_PR) . 406
16.4.3 Reload register(IWDG_RLR) . 407
16.4.4 Status register(IWDG_SR) . 408
16.4.5 IWDG Control register(IWDG_CR) . 409

17 Window watchdog(WWDG) 410
17.1 WWDG introduction . 410
17.2 WWDG main features . 410
17.3 Functional description . 410
17.4 How to program the watchdog timeout . 412
17.5 Debug mode . 413

9

17.6 WWDG register description . 413
17.6.1 Control register(WWDG_CR) . 414
17.6.2 Configuration register(WWDG_CFGR) . 414
17.6.3 Status register(WWDG_SR) . 415

18 Serial peripheral interface(SPI) 416
18.1 SPI description . 416
18.2 Main features . 416
18.3 Functional description . 416

18.3.1 General . 416
18.3.2 SPI slave mode . 421
18.3.3 SPI master mode . 421
18.3.4 Status flags . 422
18.3.5 Baud rate setting . 423
18.3.6 SPI communication using DMA . 424

18.4 Register file and memory mapping description . 424
18.4.1 Transmit data register(SPI_TXREG) . 424
18.4.2 Receive data register(SPI_RXREG) . 425
18.4.3 Current status register(SPI_CSTAT) . 425
18.4.4 Interrupt status register(SPI_INTSTAT) . 426
18.4.5 Interrupt enable register(SPI_INTEN) . 428
18.4.6 Interrupt clear register . 429
18.4.7 Global control register(SPI_GCTL) . 430
18.4.8 General-purpose control register(SPI_CCTL) . 431
18.4.9 Baud rate generator(SPI_SPBRG) . 433
18.4.10 Receive data count register (SPI_RXDNR) . 433
18.4.11 Slave chip select register(SPI_NSSR) . 434
18.4.12 Data control register(SPI_EXTCTL) . 434

19 I2C interface (I2C) 436
19.1 I2C introduction . 436
19.2 I2C main features . 436
19.3 I2C protocol . 436

19.3.1 Start and Stop conditions . 436
19.3.2 Slave address protocol . 437
19.3.3 Transmission and reception protocols . 438
19.3.4 Transmitting buffer management and generation of Start, Stop, and repeated Start conditions440
19.3.5 Multiple-master arbitration . 442
19.3.6 Clock synchronization . 442

19.4 I2C operating mode . 443
19.4.1 Slave mode . 444
19.4.2 Main mode . 446
19.4.3 I2C abort transmission . 447

19.5 Communication using DMA . 448
19.6 I2C interrupt . 448

10

19.7 I2C register description . 449
19.7.1 I2C control register(I2C_CR) . 450
19.7.2 I2C destination address register(I2C_TAR) . 453
19.7.3 I2C slave address register(I2C_SAR) . 453
19.7.4 I2C data command register(I2C_DR) . 454
19.7.5 Standard mode I2C clock high counter register(I2C_SSHR) 454
19.7.6 Standard mode I2C clock low counter register(I2C_SSLR) 455
19.7.7 Fast mode I2C clock high counter register(I2C_FSHR) . 455
19.7.8 Fast mode I2C clock low counter register(I2C_FSLR) . 455
19.7.9 I2C interrupt status register(I2C_ISR) . 455
19.7.10 I2C interrupt mask register(I2C_IMR) . 456
19.7.11 I2C RAW interrupt register(I2C_RAWISR) . 456
19.7.12 I2C reception threshold(I2C_RXTLR) . 458
19.7.13 I2C transmission threshold(I2C_TXTLR) . 459
19.7.14 I2C combined and independent interrupt clear register(I2C_ICR) 459
19.7.15 I2C clear RX_UNDER interrupt register(I2C_RX_UNDER) 459
19.7.16 I2C clears RX_OVER interrupt register(I2C_RX_OVER) 460
19.7.17 I2C clear TX_OVER interrupt register(I2C_TX_OVER) . 460
19.7.18 I2C clear RD_REQ interrupt register(I2C_RD_REQ) . 460
19.7.19 I2C clear TX_ABRT interrupt register(I2C_TX_ABRT) . 461
19.7.20 I2C clear RX_DONE interrupt register(I2C_RX_DONE) 461
19.7.21 I2C clear ACTIVITY interrupt register (I2C_ACTIV) . 462
19.7.22 I2C clear STOP_DET interrupt register(I2C_STOP) . 462
19.7.23 I2C clear START_DET interrupt register(I2C_START) . 462
19.7.24 I2C clear GEN_CALL interrupt register(I2C_GC) . 463
19.7.25 I2C enable register(I2C_ENR) . 463
19.7.26 I2C status register(I2C_SR) . 464
19.7.27 I2C transmitter buffer level register(I2C_TXFLR) . 465
19.7.28 I2C receiver buffer level register(I2C_RXFLR) . 465
19.7.29 I2C SDA hold time register(I2C_HOLD) . 465
19.7.30 I2C DMA control register(I2C_DMA) . 466
19.7.31 I2C SDA setup time register(I2C_SETUP) . 466
19.7.32 I2C general call ACK register(I2C_GCR) . 466

20 Universal asynchronous receiver transmitter(UART) 468
20.1 UART introduction . 468
20.2 UART main features . 468
20.3 UART functional description . 469

20.3.1 UART character description . 470
20.3.2 Transmitter . 471
20.3.3 Receiver . 473
20.3.4 9-bit data communication . 474
20.3.5 Multiprocessor communication . 474
20.3.6 Single-line half-duplex communication . 475

11

20.3.7 smart card . 475
20.3.8 Fractional baud rate generator . 477
20.3.9 Sampling . 477
20.3.10 Parity control . 478
20.3.11 Hardware flow control . 478
20.3.12 Communication using DMA . 480

20.4 UART interrupt requests . 480
20.5 UART registers . 481

20.5.1 UART transmit data register(UART_TDR) . 481
20.5.2 UART receive data register(UART_RDR) . 482
20.5.3 UART current status register(UART_CSR) . 482
20.5.4 UART interrupt status register . 483
20.5.5 UART interrupt enable register(UART_IER) . 484
20.5.6 UART interrupt clear register(UART_ICR) . 485
20.5.7 UART global control register(UART_GCR) . 486
20.5.8 UART general control register(UART_CCR) . 487
20.5.9 UART baud rate register(UART_BRR) . 489
20.5.10 UART fractional baud rate register(UART_FRA) . 489
20.5.11 UART receive address register(UART_RXADDR) . 490
20.5.12 UART receive mask register(UART_RXMASK) . 490
20.5.13 UART SCR register(UART_SCR) . 491

21 Hardware division(HWDIV) 492
21.1 Hardware Division Introduction . 492
21.2 Main features of hardware division . 492
21.3 Hardware division function introduction . 492
21.4 Hardware Division Register description . 492

21.4.1 Dividend register(HWDIV_DVDR) . 493
21.4.2 Divisor register(HWDIV_DVSR) . 493
21.4.3 Quotient register(HWDIV_QUOTR) . 493
21.4.4 Remainder register(HWDIV_RMDR) . 494
21.4.5 HWDIV status register(HWDIV_SR) . 494
21.4.6 HWDIV control register(HWDIV_CR) . 495

22 System configuration controller (SYSCFG) 496
22.1 SYSCFG register description . 496

22.1.1 SYSCFG configuration register (SYSCFG_CFGR) . 496
22.1.2 External interrupt configuration register 1 (SYSCFG_EXTICR1) 498
22.1.3 External interrupt configuration register 2 (SYSCFG_EXTICR2) 499
22.1.4 External interrupt configuration register 3 (SYSCFG_EXTICR3) 499
22.1.5 External interrupt configuration register 4 (SYSCFG_EXTICR4) 500

23 Device electronic signature (Device) 501
23.1 Memory size registers . 501

23.1.1 Unique device ID register (96 bits) . 501
23.2 UID register description . 501

12

23.2.1 UID1 . 501
23.2.2 UID2 . 502
23.2.3 UID3 . 502
23.2.4 UID4 . 502

24 Debug support(DBG) 504
24.1 Overview . 504
24.2 Pinout and debug port pins . 505

24.2.1 SWD debug port pins . 505
24.2.2 Internal pull-up and pull-down on SWD pins . 505

24.3 ID codes and locking mechanism . 505
24.3.1 MCU device ID code . 505
24.3.2 Cortex JEDEC-106 ID code . 506

24.4 SW debug port . 506
24.4.1 SW protocol introduction . 506
24.4.2 SW protocol sequence . 506
24.4.3 SW-DP state machine (Reset, idle states, ID code) . 507
24.4.4 DP and AP read/write accesses . 508
24.4.5 SW-DP register . 508
24.4.6 SW-AP register . 509

24.5 MCU debug module (MCUDBG) . 509
24.5.1 Debugg support in low power mode . 509
24.5.2 Support timer, watchdog . 509
24.5.3 Debug MCU configuration register . 510

24.6 Description of DBG Register . 510
24.6.1 DBG Control Register(DBG_CR) . 510

25 Revision history 512

13

Figures

1 System architecture . 1
2 Programming Flow . 9
3 Page Erasing Process of Flash Register . 11
4 Whole Erasing Process of Flash Register . 12
5 Option Byte Programming Process . 13
6 Option Byte Erasing Process . 14
7 CRC Calculation Unit Block Diagram . 24
8 Power Supply Overview . 27
9 Power on Reset/Power Down Reset Waveform . 28
10 PVD Thresholds . 29
11 Reset Circuit . 39
12 Clock Tree . 40
13 Clock Sources . 41
14 Basic Structure of I/O Port bits . 62
15 Input Floating/Pull Up/Pull Down Configurations . 64
16 Output Configuration . 65
17 Alternate functions configuration . 66
18 High Impedance-analog Configuration . 67
19 External Interrupt/Event Controller Block Diagram . 80
20 External Interrupt/Event GPIO Mapping . 82
21 DMA Block Diagram . 89
22 Peripheral DMA Request Mapping . 95
23 ADC block diagram . 103
24 Timing Diagram of Single Conversion Mode . 104
25 Timing Diagram of Enabled Channel During Conversion in Single-cycle Scan Mode(channel di-

rection from low to high) . 105
26 Timing Diagram of Enabled Channel During Conversion in Single-cycle Scan Mode(channel di-

rection from high to low) . 105
27 Timing Diagram of Enabled Channel During Conversion in Continuous Scan Mode(channel direc-

tion from low to high) . 106
28 Timing Diagram of Enabled Channel During Conversion in Continuous Scan Mode(channel direc-

tion from high to low) . 107
29 Data Alignment Modes . 107
30 Comparator Block Diagram . 122
31 Comparator Latency . 124
32 Block Diagram of Advanced-control Timer . 131
33 Counter Timing Diagram with Prescaler Division Change from 1 to 2 132
34 Counter Timing Diagram with Prescaler Division Change from 1 to 4 133
35 Counter Timing Diagram, Internal Clock Divided by 1 . 134
36 Counter Timing Diagram, Internal Clock Divided by 2 . 134
37 Counter Timing Diagram, Internal Clock Divided by 4 . 134
38 Counter Timing Diagram, Internal Clock Divided by N . 135

14

39 Counter Timing Diagram, Update Event When ARPE = 0 (TiMx_ARR Not Preloaded) 135
40 Counter Timing Diagram, Update Event When ARPE = 1 (TiMx_ARR Preloaded) 136
41 Counter Timing Diagram, Internal Clock Divided by 1 . 137
42 Counter Timing Diagram, Internal Clock Divided by 2 . 137
43 Counter Timing Diagram, Internal Clock Divided by 4 . 137
44 Counter Timing Diagram, Internal Clock Divided by N . 138
45 Counter Timing Diagram, Update Event when Repetition Counter is Not Used 138
46 Counter Timing Diagram, Internal Clock Divided by 1, TIMx_ARR = 6 139
47 Counter Timing Diagram, Internal Clock Divided by 2 . 140
48 Counter Timing Diagram, Internal Clock Divided by 4, TIMx_ARR = 0×36 140
49 Counter Timing Diagram, Internal Clock Divided by N . 141
50 Counter Timing Diagram, Update Event with ARPE = 1(Counter Underflow) 141
51 Counter Timing Diagram, Update Event with ARPE = 1(Counter Overflow)) 142
52 Update Rate Examples Depending on Modes and TIMx_RCR Register Settings 143
53 Control Circuit in Normal Mode, Internal Clock Divided By 1 . 144
54 TI2 External Clock Connection Example . 144
55 Control Circuit in External Clock Mode 1 . 145
56 External Trigger Input Block . 146
57 Control Circuit in External Clock Mode 2 . 147
58 Capture/Compare Channel (Example: Channel 1 Input Stage) . 148
59 Capture/Compare Channel 1 Main Circuit . 148
60 Output stage of Capture/Compare Channel (Channels 1 to 3) . 149
61 Output stage of Capture/Compare Channel (Channel 4) . 149
62 PWM Input Mode Timing . 151
63 Output Compare Mode, Toggle on OC1 . 153
64 Edge-aligned PWM Waveforms (ARR = 8) . 154
65 Center-aligned PWM Waveforms (ARR = 8) . 155
66 Complementary Output with Dead-time Insertion . 156
67 Dead-time Waveforms with Delay Greater Than the Negative Pulse 157
68 Dead-time Waveforms with Delay Greater than the Positive Pulse 157
69 Output Behavior in Response to A Break . 160
70 Clearing TIMx OCxREF . 161
71 Six-step PWM, COM Example (OSSR = 1) . 162
72 Example of One Pulse Mode . 163
73 Example of Counter Operation in Encoder Mode . 165
74 Example of Encoder Interface Mode with Inverted IC1FP1 . 166
75 Example of Hall Sensor Interface . 168
76 Control Circuit in Reset Mode . 169
77 Control Circuit in Gated Mode . 170
78 Control Circuit in Trigger Mode . 170
79 Control Circuit in External Clock Mode 2 + Trigger Mode . 171
80 Block Diagram of general-purpose timer . 210
81 Counter Timing Diagram with Prescaler Division Change from 1 to 2 211
82 Counter Timing Diagram with Prescaler Division Change from 1 to 4 212

15

83 Counter Timing Diagram, Internal Clock Divided by 1 . 213
84 Counter Timing Diagram, Internal Clock Divided by 2 . 213
85 Counter Timing Diagram, Internal Clock Divided by 4 . 213
86 Counter Timing Diagram, Internal Clock Divided by N . 214
87 Counter Timing Diagram, Update Event When ARPE = 0 (TiMx_ARR Not Preloaded) 214
88 Counter Timing Diagram, Update Event When ARPE = 1 (TiMx_ARR Preloaded) 215
89 Counter Timing Diagram, Internal Clock Divided by 1 . 216
90 Counter Timing Diagram, Internal Clock Divided by 2 . 216
91 Counter Timing Diagram, Internal Clock Divided by 4 . 216
92 Counter Timing Diagram, Internal Clock Divided by N . 217
93 Counter Timing Diagram, Update Event when Repetition Counter is Not Used 217
94 Counter Timing Diagram, Internal Clock Divided by 1, TIMx_ARR = 6 218
95 Counter Timing Diagram, Internal Clock Divided by 2 . 219
96 Counter Timing Diagram, Internal Clock Divided by 4, TIMx_ARR = 0×36 219
97 Counter Timing Diagram, Internal Clock Divided by N . 220
98 Counter Timing Diagram, Update Event with ARPE = 1(Counter Underflow) 220
99 Counter Timing Diagram, Update Event with ARPE = 1(Counter Overflow)) 221
100 Control Circuit in Normal Mode, Internal Clock Divided By 1 . 222
101 TI2 External Clock Connection Example . 222
102 Control Circuit in External Clock Mode 1 . 223
103 External Trigger Input Block . 224
104 Control Circuit in External Clock Mode 2 . 225
105 Capture/Compare Channel (Example: Channel 1 Input Stage) . 226
106 Capture/Compare Channel 1 Main Circuit . 226
107 Output Stage of Capture/Compare Channel (Channel 1) . 227
108 Output Stage of Capture/Compare Channel (Channel 1) . 229
109 Output Compare Mode (Toggle OC1) . 231
110 Edge-aligned PWM Waveforms (ARR = 8) . 232
111 Center-aligned PWM Waveforms (ARR = 8) . 233
112 Example of One Pulse Mode . 234
113 Clearing TIMx OCxREF . 236
114 Example of Counter Operation in Encoder Mode . 238
115 Example of Encoder Interface Mode with Inverted Polarity IC1FP1 238
116 Control Circuit in Reset Mode . 240
117 Control Circuit in Gated Mode . 240
118 Control Circuit in Trigger Mode . 241
119 Control Circuit in External Clock Mode 2 + Trigger Mode . 242
120 Master/Slave Timer Example . 243
121 Gating Timer 2 with OC1REF of Timer 1 . 244
122 Gating Timer 2 with Enable of Timer 1 . 245
123 Triggering Timer 2 with Update of Timer 1 . 246
124 Triggering Timer 2 with Enable of Timer 1 . 246
125 Triggering Timer 1 and 2 with Timer 1 TI1 input . 247
126 Block Diagram of general-purpose timer . 275

16

127 Counter Timing Diagram with Prescaler Division Change from 1 to 2 276
128 Counter Timing Diagram with Prescaler Division Change from 1 to 4 277
129 Counter Timing Diagram, Internal Clock Divided by 1 . 278
130 Counter Timing Diagram, Internal Clock Divided by 2 . 278
131 Counter Timing Diagram, Internal Clock Divided by 4 . 278
132 Counter Timing Diagram, Internal Clock Divided by N . 279
133 Counter Timing Diagram, Update Event When ARPE = 0 (TiMx_ARR Not Preloaded) 279
134 Counter Timing Diagram, Update Event When ARPE = 1 (TiMx_ARR Preloaded) 280
135 Counter Timing Diagram, Internal Clock Divided by 1 . 281
136 Counter Timing Diagram, Internal Clock Divided by 2 . 281
137 Counter Timing Diagram, Internal Clock Divided by 4 . 281
138 Counter Timing Diagram, Internal Clock Divided by N . 282
139 Counter Timing Diagram, Update Event when Repetition Counter is Not Used 282
140 Counter Timing Diagram, Internal Clock Divided by 1, TIMx_ARR = 6 283
141 Counter Timing Diagram, Internal Clock Divided by 2 . 284
142 Counter Timing Diagram, Internal Clock Divided by 4, TIMx_ARR = 0x36 284
143 Counter Timing Diagram, Internal Clock Divided by N . 285
144 Counter Timing Diagram, Update Event with ARPE = 1(Counter Underflow) 285
145 Counter Timing Diagram, Update Event with ARPE = 1(Counter Overflow)) 286
146 Control Circuit in Normal Mode, Internal Clock Divided By 1 . 287
147 TI2 External Clock Connection Example . 287
148 Control Circuit in External Clock Mode 1 . 288
149 External Trigger Input Block . 289
150 Control Circuit in External Clock Mode 2 . 290
151 Capture/Compare Channel (Example: Channel 1 Input Stage) . 291
152 Capture/Compare Channel 1 Main Circuit . 291
153 Output Stage of Capture/Compare Channel (Channel 1) . 292
154 Output Stage of Capture/Compare Channel (Channel 1) . 294
155 Output Compare Mode (Toggle OC1) . 296
156 Edge-aligned PWM Waveforms (ARR = 8) . 297
157 Center-aligned PWM Waveforms (ARR = 8) . 298
158 Example of One Pulse Mode . 299
159 Clearing TIMx OCxREF . 301
160 Example of Counter Operation in Encoder Mode . 303
161 Example of Encoder Interface Mode with Inverted Polarity IC1FP1 303
162 Control Circuit in Reset Mode . 305
163 Control Circuit in Gated Mode . 305
164 Control Circuit in Trigger Mode . 306
165 Control Circuit in External Clock Mode 2 + Trigger Mode . 307
166 Master/Slave Timer Example . 308
167 Gating Timer 2 with OC1REF of Timer 1 . 309
168 Gating Timer 2 with Enable of Timer 1 . 310
169 Triggering Timer 2 with Update of Timer 1 . 311
170 Triggering Timer 2 with Enable of Timer 1 . 311

17

171 Triggering Timer 1 and 2 with Timer 1 TI1 input . 312
172 Block Diagram of basic timer . 340
173 Counter Timing Diagram with Prescaler Division Change from 1 to 2 341
174 Counter Timing Diagram with Prescaler Division Change from 1 to 4 341
175 Counter Timing Diagram, Internal Clock Divided by 1 . 342
176 Counter Timing Diagram, Internal Clock Divided by 2 . 343
177 Counter Timing Diagram, Internal Clock Divided by 4 . 343
178 Counter Timing Diagram, Internal Clock Divided by N . 343
179 Counter Timing Diagram, Update Event When ARPE=0 (TIM14_ARR Not Preloaded) 344
180 Counter Timing Diagram, Update Event When ARPE=1 (TIM14_ARR Preloaded) 344
181 Example of Update Rates in Different Modes and Different TIMx_PCR Register Settings 345
182 Control Circuit in Normal Mode, Internal Clock Divided By 1 . 346
183 Capture/Compare Channel (Example: Channel 1 Input Stage) . 346
184 Capture/Compare Channel 1 Main Circuit . 347
185 Output Stage of Capture/Compare Channel (Channel 1) . 347
186 Output Compare Mode, Toggle on OC1 . 350
187 Edge-aligned PWM Waveforms (ARR=8) . 351
188 Basic Timers TIM16 and TIM17 Block Diagram . 364
189 Counter Timing Diagram with Prescaler Division Change from 1 to 2 365
190 Counter Timing Diagram with Prescaler Division Change from 1 to 4 366
191 Counter Timing Diagram, Internal Clock Divided by 1 . 367
192 Counter Timing Diagram, Internal Clock Divided by 2 . 367
193 Counter Timing Diagram, Internal Clock Divided by 4 . 367
194 Counter Timing Diagram, Internal Clock Divided by N . 368
195 Counter Timing Diagram, Update Event When APRE=0 (TIMx_ARR Not Preloaded) 368
196 Counter Timing Diagram, Update Event When APRE=1 (TIMx_ARR Preloaded) 369
197 Example of Update Rates in Different Modes and Different TIMx_PCR Register Settings 370
198 Control Circuit in Normal Mode, Internal Clock Divided By 1 . 371
199 Capture/Compare Channel (Example: Channel 1 Input Stage) . 372
200 Capture/Compare Channel 1 Main Circuit . 372
201 Output Stage of Capture/Compare Channel (Channel 1) . 373
202 Output Compare Mode, Toggle on OC1 . 376
203 Edge-aligned PWM Waveforms (ARR=8) . 377
204 Complementary Output with Dead-time Insertion . 378
205 Dead-time Waveforms with Delay Greater Than the Negative Pulse 378
206 Dead-time Waveforms with Delay Greater Than the Positive Pulse 378
207 Output Behavior in Response to A Break . 381
208 Example of One Pulse Mode . 382
209 Independent Watchdog Block Diagram . 405
210 Watchdog Block Diagram . 411
211 Window Watchdog Timing Diagram . 413
212 SPI Block Diagram . 417
213 Single Master/Single Slave Application . 418
214 Data Clock Timing Diagram . 420

18

215 Start and Stop Conditions . 437
216 7-bit Address Format . 437
217 10-bit Address Format . 438
218 Master Transmitting Protocol . 439
219 Master Receiving Protocol . 439
220 Start Byte Transmission . 440
221 DR Register . 441
222 Master Transmitting - Null Tx FIFO . 441
223 Master Receiving - Null Tx FIFO . 441
224 Multiple-master Arbitration . 442
225 Clock Synchronization of Multiple Masters . 443
226 I2C Functional Block Diagram . 444
227 Flow Chart of I2C Interface Master . 447
228 Interrupt Mechanism . 449
229 UART Block Diagram . 470
230 UART Timing . 471
231 Status Bit Change During Transmission . 472
232 UART block diagram . 476
233 UART block diagram . 477
234 RX Pin Sampling Plan . 478
235 Hardware Flow Control Between Two UARTs . 479
236 RTS Flow Control . 479
237 CTS Flow Control . 480
238 Block Diagram of MM32 Series Level and CPU Level Debug Support 504

19

Table

1 Memory Map . 2
2 Boot Modes . 5
3 Flash Module Structure . 6
4 Flash Interrupt Request . 15
5 Option Byte Format . 16
6 Structure of Option Bytes . 16
7 Description of Option Bytes . 16
8 Overview of Flash Register . 18
9 CRC Register Overview . 25
10 Low-power Mode Summary . 31
11 Sleep-now . 32
12 Sleep-on-exit . 32
13 Stop Mode . 33
14 Standby Mode . 34
15 Overview of Power Control Registers . 34
16 Overview of RCC Registers . 44
17 Port bits Configuration Table . 62
18 Output MODE bits . 62
19 Advanced Timers TIM1 . 67
20 General-purpose timers TIM2/3/14/16/17 . 67
21 UART . 68
22 SPI . 68
23 I2C . 68
24 ADC . 68
25 Other I/Os . 68
26 Debug Interface Signals . 69
27 Overview of GPIO Registers . 69
28 Vectors for the Product Series . 77
29 EXTI Register Overview . 83
31 Programmable Data Width and Endian Behavior (When Bits PINC = MINC = 1) 91
32 DMA Interrupt Requests . 94
33 Summary of DMA Requests for Each Channel . 95
34 Summary of DMA Registers . 96
35 Summary of ADC Registers . 109
36 Summary of Compare Register . 124
37 Counting Direction Versus Encoder Signals . 165
38 Summary of TIM1 Register . 172
39 TIMx Internal Trigger Connection . 181
40 Output Control Bits for Complementary OCx and OCxN Channels with Break Feature 197
41 Counting Direction Versus Encoder Signals . 237
42 Summary of TIMx Register . 248
43 TIMx Internal Trigger Connection . 255

20

44 Output Control Bit for Standard OCx Channels . 267
45 Counting Direction Versus Encoder Signals . 302
46 Summary of TIMx Register . 313
47 TIMx Internal Trigger Connection . 320
48 Output Control Bit for Standard OCx Channels . 332
49 Summary of TIM14 Register . 351
50 Output Control Bit for Standard OCx Channels . 360
51 TIM16/17 Register Overview . 383
52 Output Control Bits for Complementary OCx and OCxN Channels with Break Feature 395
53 Min/max IWDG Timeout Period (in ms) at 40 kHz (LSI) . 405
54 Overview of IWDG Registers . 406
55 Overview of WWDG Registers . 414
56 SPI Status . 422
57 Baud Rate Formula . 423
58 Overview of SPI Register . 424
59 First Byte of I2C . 438
60 Set and Clear Interrupt Bits . 448
61 I2C Register Overview . 449
62 DISSLAVE (Bit 6) and MASTER (Bit 0) Configurations . 452
64 UART interrupt requests . 480
65 UART Register Overview . 481
66 Hardware Division Register Overview . 492
67 Summary of SYSCFG Register . 496
68 Memory Capacity Register Description Overview . 501
69 SWJ Debug Port Pins . 505
71 ID code . 506
72 Packet Request (8-bit) . 507
73 Packet Request (3-bit) . 507
74 Packet Request (33-bit) . 507
76 Summary of DBG Register . 510
77 Revision History . 512

21

UM_MM32SPIN05x_q_Ver1.19
MEMORY AND BUS ARCHITECTURE

1 Memory and bus architecture

Memory and bus architecture

1.1 System architecture

The main system consists of the following parts:

• Two drive units:
– CPU system bus(S-bus)
– Generic DMA

• Three passive units:
– Internal SRAM
– Internal flash memory
– AHB to APB bridges(APBx), connecting all AHB devices

They are interconnected through a multi-stage AHB architecture, as shown in Figure 1.

444076

CPU
System

DMA
DMA

Flash FlashAHB

SRAMAHB

A
H
B

1

2

(RCC)

GPIOA/B/C/D

APB2

APB1

PWR

I2C1

UART2

IWDG

WWDG

TIM

TIM

3

SPI2

2

ADC1

TIM1

TIM14

TIM16

TIM17

SYSCFG

COMP

DMA

SPI1

UART1
HWDIV

MCUDBG

Figure 1. System architecture

www.mm32mcu.com 1/513

UM_MM32SPIN05x_q_Ver1.19
MEMORY AND BUS ARCHITECTURE

System bus
The bus connects the system bus (peripheral bus) of the CPU core to the BusMatrix, which
manages the access between the core and DMA.

DMA bus
The bus connects the AHB master interface of DMA with the BusMatrix, which manages
the access of CPU and DMA to SRAM, flash memory and peripherals.

BusMatrix
The BusMatrix, composed of master module bus and slave module bus, manages the
access arbitration between the core system bus and the DMA bus.

AHB peripherals are connected on system bus through a BusMatrix to allow DMA access.

AHB2APB bridges - APB
The AHB-APB bridges provide the synchronous connections between the AHB and APB
bus. After each device reset, all peripheral clocks are disabled (except for the SRAM and
Flash). Before using a peripheral, you have to enable its clock in the RCC_AHBENR,
RCC_APB2ENR or RCC_APB1ENR register.

note:When a 16- or 8-bit access is performed on an APB register, the access is transformed into a

32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

1.2 Memory organization

1.2.1 Introduction
Program memory, data memory, registers and I/O ports are organized within the same
linear 4-Gbyte address space.

The bytes are coded in memory in Little Endian format. The lowest numbered byte in a
word is considered as the word’s least significant byte and the highest numbered byte the
most significant.

The addressable memory space is divided into 8 main blocks, each of 512 MB. All the
memory areas that are not allocated to on-chip memories and peripherals are considered
”Reserved”. Refer to the section 1.2.2 and Peripherals.

1.2.2 Memory map and register addressing
See thememorymap in Peripherals chapters.The following table gives the start addresses
of the embedded peripherals.

Table 1. Memory Map

Bus Addressing range Size Peripheral Remarks

Flash

0x0000 0000 - 0x0001 FFFF 128 KB

Main flash memory, system

memory or SRAM, depending on

BOOT configuration

0x0002 0000 - 0x07FF FFFF ∼ 128 MB Reserved

0x0800 0000 - 0x0800 7FFF 32 KB Main Flash memory

www.mm32mcu.com 2/513

UM_MM32SPIN05x_q_Ver1.19
MEMORY AND BUS ARCHITECTURE

Bus Addressing range Size Peripheral Remarks

0x0800 8000 - 0x1FFD FFFF ∼ 256 MB Reserved

0x1FFE 0000 - 0x1FFE 01FF 0.5 KB Reserved

0x1FFE 0200 - 0x1FFE 0FFF 3 KB Reserved

0x1FFE 1000 - 0x1FFE 1BFF 3 KB Reserved

0x1FFE 1C00 - 0x1FFF F3FF ∼ 256 MB Reserved

Flash

0x1FFF F400 - 0x1FFF F7FF 1 KB System memory

0x1FFF F800 - 0x1FFF F80F 16 B Option bytes

0x1FFF F810 - 0x1FFF FFFF ∼ 2 KB Reserved

SRAM
0x2000 0000 - 0x2000 0FFF 4 KB SRAM

0x2000 1000 - 0x2FFF FFFF ∼ 512 MB Reserved

APB1

0x4000 0000 - 0x4000 03FF 1 KB TIM2

0x4000 0400 - 0x4000 07FF 1 KB TIM3

0x4000 0800 - 0x4000 27FF 8 KB Reserved

0x4000 2800 - 0x4000 2BFF 1 KB Reserved

0x4000 2C00 - 0x4000 2FFF 1 KB WWDG

0x4000 3000 - 0x4000 33FF 1 KB IWDG

0x4000 3400 - 0x4000 37FF 1 KB Reserved

0x4000 3800 - 0x4000 3BFF 1 KB SPI2

0x4000 4000 - 0x4000 43FF 1 KB Reserved

0x4000 4400 - 0x4000 47FF 1 KB UART2

0x4000 4800 - 0x4000 4BFF 3 KB Reserved

0x4000 5400 - 0x4000 57FF 1 KB I2C1

0x4000 5800 - 0x4000 5BFF 1 KB Reserved

0x4000 5C00 - 0x4000 5FFF 1 KB Reserved

0x4000 6000 - 0x4000 63FF 1 KB Reserved

0x4000 6400 - 0x4000 67FF 1 KB Reserved

0x4000 6800 - 0x4000 6BFF 1 KB Reserved

0x4000 6C00 - 0x4000 6FFF 1 KB Reserved

0x4000 7000 - 0x4000 73FF 1 KB PWR

0x4000 7400 - 0x4000 FFFF 35 KB Reserved

APB2

0x4001 0000 - 0x4001 03FF 1 KB SYSCFG

0x4001 0400 - 0x4001 07FF 1 KB EXTI

0x4001 0800 - 0x4001 23FF 7 KB Reserved

0x4001 2400 - 0x4001 27FF 1 KB ADC1

0x4001 2800 - 0x4001 2BFF 1 KB Reserved

0x4001 2C00 - 0x4001 2FFF 1 KB TIM1

0x4001 3000 - 0x4001 33FF 1 KB SPI1

0x4001 3400 - 0x4001 37FF 1 KB DBGMCU

0x4001 3800 - 0x4001 3BFF 1 KB UART1

0x4001 3C00 - 0x4001 3FFF 1 KB COMP

0x4001 4000 - 0x4001 43FF 1 KB TIM14

www.mm32mcu.com 3/513

UM_MM32SPIN05x_q_Ver1.19
MEMORY AND BUS ARCHITECTURE

Bus Addressing range Size Peripheral Remarks

0x4001 4400 - 0x4001 47FF 1 KB TIM16

0x4001 4800 - 0x4001 4BFF 1 KB TIM17

0x4001 4C00 - 0x4001 7FFF 13 KB Reserved

AHB
0x4002 0000 - 0x4002 03FF 1 KB DMA

0x4002 0400 - 0x4002 0FFF 3 KB Reserved

AHB

0x4002 1000 - 0x4002 13FF 1 KB RCC

0x4002 1400 - 0x4002 1FFF 3 KB Reserved

0x4002 2000 - 0x4002 23FF 1 KB Flash Interface

0x4002 2400 - 0x4002 5FFF 15 KB Reserved

0x4002 6000 - 0x4002 63FF 1 KB Reserved

0x4002 6400 - 0x4002 FFFF 39 KB Reserved

0x4003 0000 - 0x4003 03FF 1 KB HWDIV

0x4003 0400 - 0x47FF FFFF ∼ 128 MB Reserved

0x4800 0000 - 0x4800 03FF 1 KB GPIOA

0x4800 0400 - 0x4800 07FF 1 KB GPIOB

0x4800 0800 - 0x4800 0BFF 1 KB GPIOC

0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD

0x4800 1000 - 0x5FFF FFFF ∼ 384 MB Reserved

1.3 Embedded SRAM

It features up to 2 K bytes of static SRAM.

It features up to 4K bytes of static SRAM.

It can be accessed as bytes, half-words (16 bits) or full words (32 bits). The SRAM start
address is 0x2000 0000.

• SRAM up to 2K bytes on the data bus. Can be used by the CPU or DMA with the fastest
system clock and without any waiting to access.

1.4 Overview of FLASH memory

The flash memory includes two different storage areas:

• The main block includes the program data area and the user data area (if necessary)
• The information block includes four parts:

– Option bytes - Containing hardware and user storage protection configuration
options.

– Systemmemory - Containing boot loader code. See Section ”Embedded Flash
Memory”.

The flash memory interface, based on AHB protocol, executes instructions and accesses
data. With the prefetch buffer function, it accelerates the code execution speed of CPU.

www.mm32mcu.com 4/513

UM_MM32SPIN05x_q_Ver1.19
MEMORY AND BUS ARCHITECTURE

1.5 Boot configuration

3 different boot modes can be selected through BOOT0 pins and nBOOT1 bit, as shown
in the following table.

Table 2. Boot Modes

Boot mode selection Boot mode
Aliasing

nBOOT1 BOOT0

x 0 Main flash memory
Main flash memory is selected as

boot space

0 1 System memory
System memory is selected as boot

space

1 1 Embedded SRAM
Embedded SRAM is selected as

boot space

The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset.
It is up to the user to set the BOOT1 and BOOT0 pins after Reset to select the required
boot mode.

The BOOT pins are also re-sampled when waking up from Standby mode. Consequently,
they must be kept in the required Boot mode configuration in Standby mode.

After this startup delay has elapsed, the CPU fetches the top-of-stack value from address
0x00000000, then starts code execution from the boot memory starting from 0x00000004.

Depending on the selected boot mode, main Flash memory, system memory or SRAM is
accessible as follows:

• Boot from main Flash memory: the main Flash memory is aliased in the boot memory
space (0x0000 0000), but still accessible from its original memory space (0x0800 0000).
In other words, the Flash memory contents can be accessed starting from address
0x0000 0000 or 0x0800 0000.

• Boot from system memory: the system memory is aliased in the boot memory space
(0x0000 0000), but still accessible from its original memory space (0x1FFF F400).

• Boot from the embedded SRAM: SRAM is aliased in the boot memory space (0x0000
0000), but still accessible from its original memory space (0x2000 0000).

Embedded boot loader
The embedded boot loader is located in the System memory, programmed by the manu-
facturer during production. It is used to reprogram the Flash memory with UART1.

www.mm32mcu.com 5/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

2 Embedded flash(FLASH)

Embedded flash(FLASH)

2.1 Main features
• Up to 32K bytes of flash memory

The flash memory interface features:

• Data interface with prefetch buffer (2x64-bit)
• Option byte Loader
• Flash program/erase operation
• Read / write protection
• Low power mode

2.2 Functional description

2.2.1 Structure
The flash space consists of 64-bit memory cells, in which both code and data can be
saved. The main block is divided into 32 pages (1 K bytes per page) or 8 sectors (4 K
bytes per sector), and the write protection is set in sectors (see related content of ”Storage
Protection”).

Table 3. Flash Module Structure

Module Name Address Size(bytes)

Main memory

Page 0 0x0800 0000 - 0x0800 03FF 1K

Page 1 0x0800 0400 - 0x0800 07FF 1K

Page 2 0x0800 0800 - 0x0800 0BFF 1K

Page 3 0x0800 0C00 - 0x0800 0FFF 1K

… … …

… … …

Page 28 0x0800 7000 - 0x0800 73FF 1K

Page 29 0x0800 7400 - 0x0800 77FF 1K

Page 30 0x0800 7800 - 0x0800 7BFF 1K

Page 31 0x0800 7C00 - 0x0800 7FFF 1K

Information block

Guard bytes 0x1FFE 0000 - 0x1FFE 01FF 0.5K

Secrecy space 0x1FFE 1000 - 0x1FFE 1BFF 3K

System memory 0x1FFF F400 - 0x1FFF F7FF 1K

Option bytes 0x1FFF F800 - 0x1FFF F80F 16

www.mm32mcu.com 6/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Module Name Address Size(bytes)

Flash memory interface

registers

FLASH_ACR 0x4002 2000 - 0x4002 2003 4

FLASH_KEYR 0x4002 2004 - 0x4002 2007 4

FLASH_OPTKEYR 0x4002 2008 - 0x4002 200B 4

FLASH_SR 0x4002 200C - 0x4002 200F 4

FLASH_CR 0x4002 2010 - 0x4002 2013 4

FLASH_AR 0x4002 2014 - 0x4002 2017 4

Reserved 0x4002 2018 - 0x4002 201B 4

FLASH_OBR 0x4002 201C - 0x4002 201F 4

FLASH_WRPR 0x4002 2020 - 0x4002 2023 4

2.2.2 Reading flash
Embedded flash modules, like common storage space, can be directly addressed and ac-
cessed. The operation of reading flash module shall undergo a special judgment process.

Both instruction fetch and data fetch are performed through AHB bus and can be executed
in the manner specified by the option in the flash access control register (FLASH_ACR):

• Instruction fetch: CPU running speed can be increased after the prefetch buffer is en-
abled

• Latency: number of wait states for a correct read operation

Instruction fetch
Instructions are fetched by CPU through AHB. With the prefetch module, the instruction
fetch efficiency is improved.

Prefetch buffer
Prefetch buffer (2x64-bit): It is automatically opened after reset. Since the size of each
buffer (64-bit) is the same as the bandwidth of the flash, the contents of the entire buffer
can be updated only by reading flash memory once. Due to the existence of the prefetch
buffer, the CPU can run at a higher dominant frequency. In each time, the CPU fetches a
word up to 32 bits; the next instruction is waiting in the buffer while one instruction is being
fetched.

Prefetch controller
The prefetch controller will timely access the flash according to the available space in the
prefetch buffer. In case of at least one available space in the prefetch buffer, the prefetch
controller will initiate a read request. After reset, the prefetch buffer is opened by default,
and can only be enabled/disabled if SYSCLK is lower than 24 MHz and the AHB clock
has not undergone any frequency division (SYSCLK must be equal to HCLK). Usually,
prefetch buffer has already determines its on/off state during the initialization process. At
this time, MCU is running under the 8 MHz oscillator.

Note: When the prescaler of AHB clock is not equal to 1, the prefetch buffer shall initiate the access

latency.

www.mm32mcu.com 7/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Access latency
In order to ensure the correct flash reading, the speed ratio of prefetch controller shall
be specified in LATENCY 2: 0 in the flash access control register, and it is equal to the
number of latent periods to be inserted between each flash accessing to the next access.
After reset, this value defaults to zero, namely, there is no latent period to be inserted.

2.2.3 Programming and erasing flash
The embedded flash supports online programming and in-application programming.

ICP refers to rewriting flash online through SWD and burning the user code into the MCU.
ICP provides a simple and efficient method, not requiring chip clamping during its writing.

Unlike ICP, IAP (in-application programming) enables downloading programs or data through
any communication interface (I/Os, USB, UART, I2C, SPI, etc.) supported by MCU. IAP
allows users to rewrite applications while running them, provided that some applications
must be burned in advance by ICP/ISP.

The burn-in and erase operations can be completed within the whole operating voltage
range of the product, and they are achieved with the following 7 registers:

• Key register (FLASH_KEYR)
• Option-byte key register (FLASH_OPRKEYR)
• Flash control register (FLASH_CR)
• Flash status register (FLASH_SR)
• Flash address register (FLASH_AR)
• Option byte register (FLASH_OBR)
• Write protection register (FLASH_WRPR)

As long as the CPU does not access the Flash space, the ongoing Flash programming will
not hinder the operation of the CPU. That is to say, in the process of programming/erasing
Flash, any access to Flash will disable the bus and it will not resume until the program-
ming/erasing operation is completed, which means that instruction fetch and data access
cannot be performed in case of Flash programming/erasing.

In the process of programming/erasing Flash space, the internal oscillator (HSI) must be
on.

Unlocking Flash space
After reset, Flash memory is protected by default, preventing accidental erasing. The
FLASH_CR is not allowed to be rewritten and the access to the FLASH_CR will not be
authorized unless a series of unlocking operations for the FLASH_KEYR are performed.
These operations include the following 2 write operations:

• Write key 1 = 0x45670123
• Write key 2 = 0xCDEF89AB

Any wrong sequence will lock FLASH_CR until the next reset.

In case of invalid keyword, a bus error will cause a hardware error interrupt; in case of
KEY1 error, it will immediately interrupt, while a correct KEY1 will also lead to an interrupt

www.mm32mcu.com 8/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

when KEY2 error occurs.

Main flash programming
The 16-bit main flash can be programmed at a time. When PG bit in FLASH_CR is 1,
writing a half words (16 bits) corresponding to the address is a programming operation. If
you try to write another length instead of half words, the operation will cause a hardware
error interrupt.

170199

Read LOCK bit in

FLASH_CR

LOCK bit in FLASH_CR=1

Write PG bit in FLASH_CR to 1

Perform half-word write at the

desired address

BSY bit in FLASH_SR=1

Check the programmed value by

reading the programmed address

Perform unlock sequence
Yes

No

Yes

Figure 2. Programming Flow

The Flash memory interface will pre-read and judge whether the bytes behind those to be
programmed are all 1s. If not, the programming operation will be automatically cancelled
and an error warning will be prompted on the PGERR bit of the FLASH_SR.

If the write protection bit in FLASH_WRPR, corresponding to the address to be programmed,
is valid, the programming will be disabled, and an error warning will be also generated. In

www.mm32mcu.com 9/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

addition, a prompt will be given at the EOP bit in FLASH_SR after the programming.

The programming process in the standard mode of the main Flash memory is as follows:

• Check BSY bit in FLASH_SR, to confirm that the previous operation has ended
• Set PG bit in FLASH_CR
• Write data to the target address in half words
• Wait for BSY in FLASH_SR to return to zero
• Read data for validation

Note: these registers cannot be written when the BSY bit in FLASH_SR is 1.

Erasing Flash memory
Flash memory can be erased by pages or whole pieces.

Page erasing
The specific procedures are as follows:

• Check BSY bit in FLASH_SR, to confirm that the previous operation has ended
• Set the PER bit in the FLASH_CR to 1
• Write the FLASH_AR, to select the page to be erased
• Set the STRT bit in the FLASH_CR to 1
• Wait for BSY in FLASH_SR to return to zero
• Read the erased pages for validation

www.mm32mcu.com 10/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

227522

Read LOCK bit in

FLASH_CR

LOCK bit in FLASH_CR = 1

Write PER bit in FLASH_CR

Write into FAR an address
within the page to erase

Write STRT bit in
FLASH_CR to 1

BSY bit in FLASH_SR = 1

Check the page is erased by

reading all the addresses

in the page

Preform unlock sequence
Yes

Yes

No

Figure 3. Page Erasing Process of Flash Register

Whole erasing
The entire Flash user area can be erased at one time by using the whole erasing com-
mand, and the information block will not be affected by this command. The specific steps
are as follows:

• Check BSY bit in FLASH_SR, to confirm that the previous operation has ended
• Set the MER bit in the FLASH_CR to 1
• Set the STRT bit in the FLASH_CR to 1
• Wait for BSY bit to return to zero
• Read and validate all pages

www.mm32mcu.com 11/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

079384

Read LOCK bit in
FLASH_CR

Write MER bit in
FLASH_CR to 1

Write STRT bit in
FLASH_CR to 1

Check the erase operation by
reading all the addresses in the

user memory

LOCK bit in FLASH_CR=1 Perform unlock sequence

BSY bit in FLASH_SR=1

Yes

Yes

No

Figure 4. Whole Erasing Process of Flash Register

Option bytes programming
The programming of option bytes is different from that for the conventional user address,
including 2 write protections and 1 hardware configuration. After the Flash access restric-
tion is lifted, the FLASH_OPTKEYR needs to be written with keywords. After that, the
OPTWRE bit in the FLASH_CR will be set to ’1’, then the OPTPG bit in the FLASH_CR
can be set first, and then the target address can be written in half words. Similarly, it will au-
tomatically check if the option byte is 1. If not, the relevant operation will be cancelled and
an error will be prompted at the WRPRTERR bit in FLASH_SR. After the programming, a
prompt will be given at the EOP bit of FLASH_SR.

The option byte is 16-bit data, the valid data is the lower-8-bit, and the upper 8 bits are the
inverse of the lower 8 bits. In the programming process, the hardware will automatically
set the upper 8 bits to the inverse code of the lower 8 bits, to ensure that the write value
of the option byte is always correct. The steps are as follows:

• Check BSY bit in FLASH_SR, to confirm that the previous operation has ended
• Unlock OPTWRE bit in FLASH_CR

www.mm32mcu.com 12/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

• Set the OPTPG bit in the FLASH_CR to 1
• Write data (half word) to the target address
• Wait for BSY bit to return to zero
• Read and validate that a whole erasing will be automatically triggered when the pro-
tection option byte is changed from the protected state to the unprotected state. If the
user only wants to rewrite other bytes, the whole erasing will not be activated. This
mechanism is used to protect the Flash.

864155

LOCK bit in FLASH_CR=1

Unlock flash option

sequence

Write OPTPG bit in

FLASH_CR to 1

Perform half-word write at

the desired address

BSY bit in FLASH_SR=1

Check the programmed value by

reading the programmed address

Yes

No

Yes

No

Perform unlock

flash sequence

Read LOCK bit in

FLASH_CR

Figure 5. Option Byte Programming Process

Erasing process
The erasing process of option bytes is as follows:

• Check BSY bit in FLASH_SR, to confirm that the previous operation has ended
• Unlock OPTWRE bit in FLASH_CR

www.mm32mcu.com 13/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

• Set OPTER bit in FLASH_CR to 1
• Set the STRT bit in the FLASH_CR to 1
• Wait for BSY bit to return to zero
• Read and validate

806825

LOCK bit in FLASH_CR=1

Unlock flash option

sequence

Write flash option byte block

base address to FLASH_ACR

Write OPTER bit in

FLASH_CR to 1

Write STRT bit in

FLASH_CR to 1

BSY bit in FLASH_SR=1

Check the flash option erase

operation by reading all the

addresses in the flash

option memory

Perform unlock

flash sequence

Read LOCK bit in

FLASH_CR

Yes

Yes

No

No

Figure 6. Option Byte Erasing Process

www.mm32mcu.com 14/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

2.3 Storage protection

It is used to prevent the codes in the Flash area of the user area from being read by
untrusted codes, and to prevent accidental erasure of the Flash in case of running-out.
The minimum unit of write protection is one sector (4 pages).

2.3.1 Write protection of main space
The write protection is controlled by one sector (4 pages), to configure the WRP bit in the
option byte, and the subsequent system reset will load the new option byte, to enable the
protection. If an attempt is made to write or erase a protected sector, the WRPRTERR
flag bit in FLASH_SR will be set.

Unclocking
It is applicable to the startup program realized and programmed by the user:

• Erase the entire option byte area by using the OPTER bit of the flash control register
(FLASH_CR);

• Reset the system and reload option bytes (including new WRP bytes), to unlock the
write protection.

With this method, unlock the write protection of the entire main flash module, excepting
Pages 0-3 which are still protected.

2.3.2 Write protection of option bytes
By default, the option byte block is always readable and write protected. To write (pro-
gramming/erasing) an option byte block, write the correct key sequence in the OPTKEYR
(the same as the locking operation), then enable the write operation to the option byte
block. Note that the OPTWRE bit in the FLASH_CR indicates the write permission, and
disable the write operation by clearing this bit.

2.4 Flash interrupt
Table 4. Flash Interrupt Request

Interrupt event Event flag Enable control bit

End of operation EOP EOPIE

Write protection error WRPRTERR ERRIE

Programming error PGERR ERRIE

2.5 Description of option bytes

Option bytes are configured by the user according to the application requirements, for
example, a hardware-based watchdog or a software-based watchdog can be selected.

Each 32-bit word in the option byte is classified into the following formats:

www.mm32mcu.com 15/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Table 5. Option Byte Format

Bits 31 ∼ 24 Bits 23 ∼ 16 Bits 15 ∼ 8 Bits 7 ∼ 0

Inversion of option

byte 1
Option byte 1

Inversion of option

byte 0
Option byte 0

Note: The inversed code is automatically achieved by hardware, and cannot be written through the

software.

The organization of option bytes in the option byte block is as shown in the following table.

Option bytes can be read from the memory addresses listed in the following table or from
the option byte register (FLASH_OBR).

Note: The newly-written option byte (user’s or read/write-protected) will not take effect until the

system is reset.

Table 6. Structure of Option Bytes

Address [31: 24] [23: 16] [15: 8] [7: 0]

0x1FFF F800 nUSER USER

0x1FFF F804 nData1 Data1 nData0 Data0

0x1FFF F808 nWRP1 WRP1 nWRP0 WRP0

0x1FFF F80C nWRP3 WRP3 nWRP2 WRP2

Table 7. Description of Option Bytes

Memory address Option bytes

0x1FFF F800

Bit[31: 24] nUSER

Bit[23: 16] USER: user option byte (saved in FLASH_OBR[9: 2]). It is used to configure the

following functions:

Select watchdog event: hardware or software

Note: Only use Bits [20] and [18: 16], and do not use Bits [23: 21] and [19].

Bit 20: nBOOT1

Bit 18: nRST_STDBY

0: Reset when entering standby mode

1: Do no reset when entering standby mode

Bit 17: nRST_STOP

0: Reset when entering STOP mode

1: Do not reset when entering STOP mode

Bit 16: WDG_SW

0: Hardware watchdog

1: Software watchdog

www.mm32mcu.com 16/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Memory address Option bytes

0x1FFF F804

Datax: 2-byte user data

This address can be programmed through the programming methods for option bytes.

Bits [31: 24]: nData1

Bits [23: 16]: Data1(saved in FLASH_OBR[25: 18])

Bits [15: 8]: nData0

Bits [7: 0]: Data0 (saved in FLASH_OBR[17: 10])

0x1FFF F808

WRPx: Flash write protection for option bytes

Bits [31: 24]: nWRP1

Bits [23: 16]: WRP1(saved in FLASH_WRPR[15: 8])

Bits [15: 8]: nWRP0

Bits [7: 0]: WRP0(saved in FLASH_WRPR[7: 0])

0x1FFF F80C

WRPx: Flash write protection for option bytes

Bits [31: 24]: nWRP3

Bits [23: 16]: WRP3(saved in FLASH_WRPR[31: 24])

Bits [15: 8]: nWRP2

Bits [7: 0]: WRP2(saved in FLASH_WRPR[23: 16])

Each bit in the option byte WRPx is used to protect 4 memory pages in the main memory:

0: Write protection is enabled

1: Write protection is disabled

Four user option bytes are used to protect the main memory of 128 K bytes.

WRP0: write protection on Pages 0 ∼ 31

WRP1: write protection on Pages 32 ∼ 63

WRP2: write protection on Pages 64 ∼ 95

WRP3: write protection on Pages 96 ∼ 127

After each system reset, the option byte loader (OBL) reads the data of the information
block and saves it in the option byte register (FLASH-OBR); each select bit has its inverse
code bit in the information block. When the select bit is loaded, the inverse code bit is used
to validate whether the select bit is correct. In case of any difference, an option byte error
flag (OPTERR) will be generated. When an option byte error occurs, the corresponding
option byte is set to 0xFF. When the option byte and its inverse code are 0xFF (erased
state), the above verification function is disabled.

All the select bits (excluding their inversed code bits) are used to configure the microcon-
troller, and the option byte register is read by CPU.

2.6 Description of Flash register

www.mm32mcu.com 17/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Table 8. Overview of Flash Register

Offset Acronym Register Name Reset Section

0x00 FLASH_ACR Flash access control register 0x00000018 section 2.6.1

0x04 FLASH_KEYR FPEC key register 0xXXXXXXXX section 2.6.2

0x08 FLASH_OPTKEYR Flash OPTKEY register 0xXXXXXXXX section 2.6.3

0x0C FLASH_SR Flash status register 0x00000000 section 2.6.4

0x10 FLASH_CR Flash control register 0x00000080 section 2.6.5

0x14 FLASH_AR Flash address register 0x00000000 section 2.6.6

0x1C FLASH_OBR Option byte register 0x03FFFC1C section 2.6.7

0x20 FLASH_WRPR Write protection register 0xFFFFFFFF section 2.6.8

2.6.1 Flash access control register(FLASH_ACR)
Address offset: 0x00

Reset value: 0x0000 0018

171819202122232425 162728293031 26

123456789 01112131415 10

HLFCYA

rw rw

Reserved

LATENCYPRFTBEReserved

rwrwrw

Bit Field Type Reset Description

31 : 5 Reserved Reserved, always read as 0.
4 PRFTBE rw 0x01 Prefetch buffer enable

0: Prefetch buffer is disabled
1: Prefetch buffer is enabled

3 HLFCYA rw 0x01 Flash half cycle access enable
0: Half cycle is disabled
1: Half cycle is enabled

2 : 0 LATENCY rw 0x00 Latency
These bits represent the ratio of SYSCLK (system clock)
period to Flash access time.
000: Zero wait state, if 0 < SYSCLK≤ 24 MHz
001: One wait state, if 24 MHz < SYSCLK ≤ 48 MHz
010: Two wait state, if 48 MHz < SYSCLK ≤ 72 MHz

2.6.2 Flash access control register(FLASH_KEYR)
Address offest: 0x04

Reset value: 0xXXXX XXXX

www.mm32mcu.com 18/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

171819202122232425 162728293031 26

123456789 01112131415 10

w

FKEYR

FKEYR

wwwwwww wwwwwww w

wwwwwwww wwwwwww w

Bit Field Type Reset Description

31 : 0 FKEYR w 0xXXXX
XXXX

FPEC(Flash key)
These bits are used to enter the unlock key of FPEC.

Note: All these bits are written only and 0 is returned when being read.

2.6.3 Flash OPTKEY register(FLASH_OPTKEYR)
Address offset: 0x08

Reset value: 0xXXXX XXXX

171819202122232425 162728293031 26

123456789 01112131415 10

w

OPTKEYR

OPTKEYR

wwwwwww wwwwwww w

wwwwwwww wwwwwww w

Bit Field Type Reset Description

31 : 0 OPTKEYR w 0xXXXX
XXXX

Option byte key
These bits are used to enter the key of the option byte, to
disable OPTWRE.

Note: All these bits are written only and 0 is returned when being read.

2.6.4 Flash status register(FLASH_SR)
Address offset: 0x0C

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

PGERR

r

Reserved

WRPRTE
RR

Reserved BSYRes.Res.EOP

rc_w1 rc_w1 rc_w1

www.mm32mcu.com 19/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Bit Field Type Reset Description

31 : 6 Reserved Reserved, always read as 0.
5 EOP rc_w1 0x00 End of operation

When the flash operation (programming/erasing) is com-
pleted, the hardware sets this bit to ’1’, and eliminate this
state by writing ’1’.
Note: EOP status will be set for every successful programming

or erasing.

4 WRPRTERR rc_w1 0x00 Write protection error
When the flash address for write protection is pro-
grammed, the hardware sets this bit to ’1’, and eliminate
this state by writing ’1’.

3 Reserved Reserved, always read as 0.
2 PGERR rc_w1 0x00 Programming error

Attempting to program an address that is not ’0xFFFF’,
the hardware sets this bit to ’1’, and eliminate this state by
writing ’1’.
Note: The STRT bit in the FLASH_CR shall be cleared before

the programming.

1 Reserved Reserved, always read as 0.
0 BSY r 0x00 Busy

This bit indicates that the flash operation is in progress.
This bit is set to ’1’ when the flash operation begins and
written to ’0’ at the end of operation or in case of an error.

2.6.5 Flash control register(FLASH_CR)
Address offset: 0x10

Reset value: 0x0000 0080

171819202122232425 162728293031 26

123456789 01112131415 10

MER

rw

Reserved

OPTPG PGPERRes.OPTER

rw rw rw

STRTLOCKRes.OPTWREERRIERes.EOPIEReserved

rwrwrwrw rw rc_w0

Bit Field Type Reset Description

31 : 13 Reserved Reserved, always read as 0.
12 EOPIE rw 0x00 End of operation interrupt enable

This bit leads to an interrupt when the EOP bit in the
FLASH_SR register changes to ’1’.
0: Interrupt is disabled
1: Interrupt is enabled

www.mm32mcu.com 20/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Bit Field Type Reset Description

11 Reserved Reserved, always read as 0.
10 ERRIE rw 0x00 Error interrupt enable

This bit enables an interrupt in case of an FPEC error
(when PGERR/WRPRTERR in the Flash-SR is set to ’1’).
0: Interrupt is disabled
1: Interrupt is enabled

9 OPTWRE rc_w0 0x00 Option byte write enable
When this bit is ’1’, the option byte is allowed to be pro-
grammed. This bit is set to ’1’ when the correct key se-
quence is written in the FLASH_OPTKEYR.
This bit can be cleared by writing 0 through the software.

8 Reserved Reserved, always read as 0.
7 LOCK rw 0x01 Lock

Only ’1’ can be written. When this bit is ’1’, FPEC and
FLASH_CR are locked. After detecting the correct unlock-
ing sequence, the hardware automatically clears and sets
this bit to ’0’.
After an unsuccessful unlock operation, this bit cannot be
changed again until the next system reset.

6 STRT rw 0x00 Start
When this bit is ’1’, an erasing operation will be enabled.
This bit can only be set to ’1’ by software and cleared au-
tomatically when BSY changes to ’1’.

5 OPTER rw 0x00 Option byte erase
Option bytes are erased.

4 OPTPG rw 0x00 Option byte programming
Option bytes are programmed

3 Reserved Reserved, always read as 0.
2 MER rw 0x00 Mass erase

Select to erase all user pages.
1 PER rw 0x00 Page erase

Select to erase pages.
0 PG rw 0x00 Programming

Select to program.

2.6.6 Flash address register(FLASH_AR)
Address offset: 0x014

Reset value: 0x0000 0000

www.mm32mcu.com 21/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

171819202122232425 162728293031 26

123456789 01112131415 10

w

FAR

FAR

wwwwwww wwwwwww w

wwwwwwww wwwwwww w

Bit Field Type Reset Description

31 : 0 FAR w 0x0000
0000

Flash Address
Select the address to be programmed before program-
ming, and the page to be erased when erasing.
Note: it is not allowed to write the register when the BSY bit in

FLASH_SR is 1.

Change to current/last used address from hardware. During the page erasing, modify the
register, to specify the page to be erased.

2.6.7 Option byte register(FLASH_OBR)
Address offset: 0x1C

Reset value: 0x03FF FC1C

171819202122232425 162728293031 26

123456789 01112131415 10

rrrrrrrrr r

r rrrrr r

Data1

OPTERR

Reserved

Reserved

Data0

Data0 Res.
WDG
_SW

nRST_
STOP

nRST_
STDBY

rrr

nBOOT1 Res.

r

Bit Field Type Reset Description

31 : 26 Reserved Reserved, always read as 0.
25 : 18 Data1 r 0xFF Data1
17 : 10 Data0 r 0xFF Data0
9 : 7 Reserved Reserved, always read as 0.
6 nBOOT1 r 0x00 nBOOT1
5 Reserved Reserved, always read as 0.
4 nRST_STDBY r 0x01 Reset event when entering standby mode

0: Reset when entering standby mode
1: Do no reset when entering standby mode

3 nRST_STOP r 0x01 Reset event when entering stop mode
0: Reset when entering STOP mode
1: Do not reset when entering STOP mode

www.mm32mcu.com 22/513

UM_MM32SPIN05x_q_Ver1.19
EMBEDDED FLASH(FLASH)

Bit Field Type Reset Description

2 WDG_SW r 0x01 Select watchdog event
0: Hardware watchdog
1: Software watchdog

1 Reserved Reserved, always read as 0.
0 OPTERR r 0x00 Option byte error

When this bit is ’1’, it means that the option byte does not
match its inverse code.
Note: This bit is read-only.

The reset value of this register is related to the value written in the option byte, and the
reset value of the OPTERR bit is related to the result of comparing the option byte with its
inverse code when the option bytes are loaded.

2.6.8 Write protection register(FLASH_WRPR)
Address offset: 0x20

Reset value: 0xFFFF FFFF

171819202122232425 162728293031 26

123456789 01112131415 10

r

WRP

WRP

rrrrrrr rrrrrrr r

rrrrrrrr rrrrrrr r

Bit Field Type Reset Description

31 : 0 WRP r 0xFFFF
FFFF

Write protect
This register contains write protection option bytes loaded
by OBL.
0: The write protection is enabled
1: The write protection is disabled
Note: These bits are read-only.

www.mm32mcu.com 23/513

UM_MM32SPIN05x_q_Ver1.19
CYCLIC REDUNDANCY CHECK CALCULATION UNIT(CRC)

3 Cyclic redundancy check calcula-

tion unit(CRC)
Cyclic redundancy check calculation unit(CRC)

3.1 CRC introduction

The CRC (cyclic redundancy check) calculation unit is used to get a 32-bit CRC result
from a fixed generator polynomial. Among other applications, CRC-based techniques are
used to verify data transmission or storage integrity. In the scope of the EN/IEC60335-1
standard, they offer a means of verifying the Flash memory integrity. The CRC calculation
unit helps compute a signature of the software during runtime, which is compared with a
reference signature generated at link time and then stored in a given memory space.

3.2 CRC main features
• Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7
X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10+X8 + X7 + X5+ X4 + X2+ X +1

• Single input/output 32-bit data register
• CRC computation completed in 4 AHB clock cycles (HCLK)
• General-purpose 8-bit register (can be used for temporary storage)

The CRC block diagram is shown in the following figure

027571

AHB Bus

Data Register (Output)

CRC Calculation(Polynomial: 0x4C11DB7）

Data Register (Input)

Figure 7. CRC Calculation Unit Block Diagram

www.mm32mcu.com 24/513

UM_MM32SPIN05x_q_Ver1.19
CYCLIC REDUNDANCY CHECK CALCULATION UNIT(CRC)

3.3 CRC Functional description

The CRC calculation unit mainly consists of a single 32-bit data register, which:

• is used as an input register to enter new data in the CRC calculator (when writing into
the register)

• holds the result of the previous CRC calculation (when reading the register)

Each write operation into the data register creates a combination of the previous CRC
value and the new one (CRC computation is done on the whole 32-bit data word, and not
byte per byte).

The write operation is stalled until the end of the CRC computation, thus allowing back-to-
back write accesses or consecutive write and read accesses.

The CRC calculator can be reset to 0xFFFF FFFF with the RESET control bit in the
CRC_CR register. This operation does not affect the contents of the CRC_IDR register.

3.4 CRC register

The CRC calculation unit contains two data registers and a control register.

Table 9. CRC Register Overview

Offset Acronym Register Name Reset Section

0x00 CRC_DR CRC data register 0xFFFFFFFF section 3.4.1

0x04 CRC_IDR CRC independent data register 0x00000000 section 3.4.2

0x08 CRC_CTRL CRC control register 0x00000000 section 3.4.3

3.4.1 CRC data register(CRC_DR)
Address offset: 0x00

Reset value: 0xFFFF FFFF

15 1234567891011121314 0

31 1718192021222324252627282930 16

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

DR

DR

Bit Field Type Reset Description

31 : 0 DR rw 0xFFFF
FFFF

DR: Data register bits
Used as an input register when writing new data into the
CRC calculator.
The CRC results are returned when being read.

www.mm32mcu.com 25/513

UM_MM32SPIN05x_q_Ver1.19
CYCLIC REDUNDANCY CHECK CALCULATION UNIT(CRC)

3.4.2 CRC independent data register(CRC_IDR)
Address offset: 0x04

Reset value: 0x0000 0000

Reserved

Reserved

IDR

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 123456789 01112131415 10

rwrwrwrwrwrwrw rw

Bit Field Type Reset Description

31 : 8 Reserved Always read as 0.
7 : 0 IDR rw 0x00 IDR: General-purpose 8-bit data register bits

Can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by
the RESET bit in the CRC_CTRL register.

Note: This register is not involved in the CRC calculation and enables storing any data.

3.4.3 CRC control register(CRC_CTRL)
Address offset: 0x08

Reset value: 0x0000 0000

Reserved

Reserved RESET

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 123456789 01112131415 10

 w

Bit Field Type Reset Description

31 : 1 Reserved Always read as 0.
0 RESET w 0x00 RESET: CRC reset

Sets the data register to 0xFFFF FFFF.
This bit can only be set, it is automatically cleared by hard-
ware.

www.mm32mcu.com 26/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

4 Power control (PWR)

Power control(PWR)

4.1 Power supply

The chip requires a 2.0-to-5.5 V operating voltage supply (VDD). An embedded regulator
is used to supply the internal 1.5 V power.

264088

A/D converter

Temp. sensor

Reset block

VDDA domain

Standby circuitry
(Wakeup logic,

IWDG)

Voltage Regulartor

VDD domain

Core

Memories

digital

peripherals

1.5V domain

(VSSA) VREF-

(from 2.4 V up to VDDA) VREF+

(VDD) VDDA

(VSS) VSSA

VDD

VSS

I/O Ring

Figure 8. Power Supply Overview

Note: VDDA and VSSA must be connected to VDD and VSS.

4.1.1 Independent A/D converter supply and reference voltage
To improve conversion accuracy, the ADC has an independent power supply which can
be separately filtered and shielded from noise on the PCB.

• The ADC supply input is available on a VDDA pin
• An isolated supply ground connection is provided on pin VSSA

When available (according to package), pin VREF− must be tied to VSSA.

www.mm32mcu.com 27/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

4.1.2 Voltage regulator
The voltage regulator is always enabled after Reset. It works in three different modes
depending on the application modes.

• In Run mode, the regulator supplies full power to the 1.5 V domain (core, memories and
digital peripherals).

• In Stopmode, the regulator supplies low-power to the 1.5 V domain, preserving contents
of registers and SRAM.

• In Standby Mode, the regulator is powered off. The contents of the registers and SRAM
are lost.

4.2 Power supply supervisor

4.2.1 Power on reset (POR)/power down reset (PDR)
The device has an integrated POR/PDR circuitry that allows proper operation starting
from/down to 1.5 V.

The device remains in ResetmodewhenVDD/VDDA is below a specified threshold, VPOR/VPDR,
without the need for an external reset circuit. For more details concerning the power
on/power down reset threshold, refer to the electrical characteristics of the datasheet.

086030

VDD/VDDA

POR

PDR

Reset

90 mV

hysteresis

Temporiza!on

tRSTTEMPO

Figure 9. Power on Reset/Power Down Reset Waveform

4.2.2 Programmable voltage detector (PVD)
The PVD can be used to monitor the VDD power supply by comparing it to a threshold
selected by the PLS bits in the Power control register (PWR_CR).

www.mm32mcu.com 28/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the Power control/status register (PWR_CSR), to indicate
if VDD is higher or lower than the PVD threshold. This event is internally connected to
the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The
PVD output interrupt can be generated when VDD drops below the PVD threshold and/or
when VDD rises above the PVD threshold depending on EXTI line16 rising/falling edge
configuration. As an example, the service routine could perform emergency shutdown
tasks.

586945

VDD/VDDA

PVD threshold

PVD output

100 mV

hysteresis

Figure 10. PVD Thresholds

4.3 Low-power modes

By default, the microcontroller is in Run mode after a system or a power Reset. Several
low-power modes are available to save power when the CPU does not need to be kept
running, for example, when waiting for an external event. It is up to the user to select
the mode that gives the best compromise between low-power consumption, short startup
time and available wakeup sources.

The device features three low-power modes:

• Sleep mode (CPU clock off, all peripherals including CPU peripherals like NVIC, Sy-
sTick, etc. are kept running)

• Stop mode (all clocks are stopped, and contents of register and SRAM are retained)
• Standbymode (1.5V domain is powered off, and the contents of the registers and SRAM
are lost except)

In addition, the power consumption in Run mode can be reduced by one of the following

www.mm32mcu.com 29/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

means:

• Slowing down the system clocks
• Gating the clocks to the APB and AHB peripherals when they are unused.

www.mm32mcu.com 30/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

Table 10. Low-power Mode Summary

Mode Entry Wakeup
Effect on 1.5V

domain clocks

Effect on VDD

domain clocks

Voltage

regulator

Sleep (Sleep

now or

Sleep-on-exit)

WFI (Wait for

Interrupt)
Any interrupt

CPU clock OFF,

no effect on
None ONWFE (Wait for

Event)
Wakeup event

other clocks or

ADC clock

Stop

PDDS bits +

SLEEPDEEP bit

+ WFI or WFE

Any EXTI line

(configured in the

EXTI registers)
All 1.5V domain

clocks OFF

HSI and HSE

oscillators OFF

ON

Standby

PDDS bit +

SLEEPDEEP bit

+ WFI or WFE

WKUP pin rising

edge, external

reset in NRST

pin, and IWDG

reset

OFF

4.3.1 Slowing down system clocks
In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be
reduced by programming the prescaler registers. These prescalers can also be used to
slow down peripherals before entering Sleep mode.

For more details refer to Section ”Clock Configuration Register (RCC_CFGR)

4.3.2 Peripheral clock gating
In Run mode, the HCLK and PCLKx for individual peripherals and memories can be
stopped at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the AHB peripheral clock enable register (RCC_AHBENR),
APB1 peripheral clock enable register (RCC_APB1ENR) and APB2 peripheral clock en-
able register (RCC_APB2ENR).

4.3.3 Sleep Mode

Entering Sleep mode
The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for
Event) instructions. Two options are available to select the Sleep mode entry mechanism,
depending on the SLEEPONEXIT bit in the system control register of CPU:

• Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

• Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR (interrupt service routine).

www.mm32mcu.com 31/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

In the Sleep mode, all I/O pins keep the same state as in the Run mode.

Refer to Table 11 and Table 12 for details on how to enter Sleep mode.

Table 11. Sleep-now

Sleep-now mode Description

Entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

- SLEEPDEEP = 0

- SLEEPONEXIT = 0

Refer to the CPU System Control register

Mode exit
If WFI was used for entry: Interrupt: Refer to Section ”Interrupt and Exception Vectors”

If WFE was used for entry: Wakeup event: Refer to Section ”Wakeup Event Management”

Wakeup latency None

Table 12. Sleep-on-exit

Sleep-on-exit mode Description

Description

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

- SLEEPDEEP = 0

- SLEEPONEXIT = 1

Refer to the CPU System Control register

Mode exit
If WFE was used for entry:Interrupt or clear Bit 1 of CPU control register

If WFE was used for entry: Wakeup event: Refer to Section ”Wakeup Event Management”

Wakeup latency None

4.3.4 Stop mode
The Stop mode is based on the CPU deepsleep mode combined with peripheral clock
gating. And the voltage regulator can be configured in normal mode.In Stop mode, all
clocks in the 1.5 V domain are stopped, the HSI and the HSE oscillators are disabled.
SRAM and register contents are preserved.

In the Stop mode, all I/O pins keep the same state as in the Run mode.

Entering Stop mode
Refer to Table 13 for details on how to enter the Stop mode.

In Stop mode, the following features can be selected by programming individual control
bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option.

• Internal oscillator (LSI): this is configured by the LSION bit in the Control/status register
(RCC_CSR).

The ADC can also consume power in the Stop mode, unless they are disabled before
entering it. To disable them, the ADON bit in the ADC_CR2 register shall be written to 0.

www.mm32mcu.com 32/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

In addition, other GPIOs not used shall be configured with analog input, to prevent current
consumption.

Exiting Stop mode
Refer to Table 13 for details on how to exit the Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI oscillator is
selected as system clock, with the frequency of HSI frequency divided by 6.

When the voltage regulator operates in normal-power mode, an additional startup delay
is incurred when waking up from Stop mode.

Table 13. Stop Mode

Stop Mode Description

Entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

- Set SLEEPDEEP bit in CPU System Control register

- Clear PDDS bit in Power Control register (PWR_CR)

Note: To enter Stop mode, all EXTI Line pending bits (in Pending register (EXTI_PR)),

all peripheral interrupt pending bits must be reset. Otherwise, the Stop mode entry

procedure is ignored and program execution continues.

must be reset

WFI (Wait for Interrupt) is executed in case of:

Any EXTI Line configured in Interrupt mode (the corresponding EXTI Interrupt

vector must be enabled in the NVIC).

Refer to Section ”Interrupt and Exception Vectors”.

If WFE (Wait for Event) is executed in case of:

Any EXTI Line configured in event mode. Refer to Section ”Wakeup Event Management”.

Wakeup latency HSI wakeup time

4.3.5 Standby mode
The Standby mode allows to achieve the lowest power consumption. It is based on the
CPU deepsleep mode, with the voltage regulator disabled. The 1.5 V domain is conse-
quently powered off. The PLL, the HSI oscillator and the HSE oscillator are also switched
off. SRAM and register contents are lost.

Entering Standby mode
Refer to Table 14 for details on how to enter the Standby mode.

In Standbymode, the following features can be selected by programming individual control
bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option.

• Internal oscillator (LSI): this is configured by the LSION bit in the Control/status register
(RCC_CSR).

www.mm32mcu.com 33/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

Exiting Standby mode
The microcontroller exits the Standby mode when an external reset (NRST pin), an IWDG
reset, a rising edge on the WKUP pin or the rising edge of an RTC alarm occurs. All
registers are reset after wakeup from Standby except for Power control/status register
(PWR_CSR).

After waking up from Standby mode, program execution restarts in the same way as after
a Reset (boot pins sampling, vector reset is fetched, etc.). The SBF status flag in the
Power control/status register (PWR_CSR) indicates that the core exits from the Standby
mode.

Refer to Table 14 for details on how to exit the Standby mode.

Table 14. Standby Mode

Standby Mode Description

Entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

- Set SLEEPDEEP bit in CPU System Control register

- Set PDDS bit in Power Control register (PWR_CR)

- Clear WUF bit in Power Control/Status register (PWR_CSR)

Exit WKUP pin rising edge, external reset in NRST pin, and IWDG reset

Wakeup latency Activating power regulator in the reset stage.

I/O states in Standby mode
In Standby mode, all I/O pins are high impedance except:

• Reset pin (still available)
• TAMPER pin if configured for tamper or calibration out
• WKUP pin, if enabled

Debug mode
By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the CPU core is no
longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software
can be debugged even when using the low-power modes extensively. For more details,
refer to Section ”Debug Support for Low-power Modes”.

4.4 Power control registers

Table 15. Overview of Power Control Registers

Offset Acronym Register Name Reset Section

0x00 PWR_CR Power control register 0x00000000 section 4.4.1

0x04 PWR_CSR Power control/status register 0x00000000 section 4.4.2

www.mm32mcu.com 34/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

4.4.1 Power control registers(PWR_CR)
Address offset: 0x00

Reset value: 0x0000 0000(reset by wakeup from Standby mode)

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrw

Reserved

Reserved PLS PVDE CSBF CWUF PDDSReserved Res.

Bit Field Type Reset Description

31 : 13 Reserved always read as 0.
12 : 9 PLS rw 0x00 PVD level selection

These bits are used to select the voltage threshold de-
tected by the Power Voltage Detector
0000: 1.8V 0100: 3.0V 1000: 4.2V
0001: 2.1V 0101: 3.3V 1001: 4.5V
0010: 2.4V 0110: 3.6V 1010: 4.8V
0011: 2.7V 0111: 3.9V Other:reserved
Note: Refer to the electrical characteristics of the
datasheet for more details.

8:5 Reserved always read as 0.
4 PVDE rw 0x00 Power voltage detector enable

1: PVD enabled
0: PVD disabled

3 CSBF rw 0x00 Clear standby flag
Always read as 0
1: Clear the SBF Standby Flag (write).
0: No effect

2 CWUF rw 0x00 Clear wakeup flag
Always read as 0
1: Clear the WUF Wakeup Flag after 2 System clock cy-
cles (write)
0: No effect

1 PDDS rw 0x00 Power down deepsleep
1: Enter Standby mode when the CPU enters Deepsleep.
0: Enter Stop mode when the CPU enters Deepsleep.

0 Reserved always read as 0.

www.mm32mcu.com 35/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

4.4.2 Power control/status register(PWR_CSR)
Address offset: 0x04

Reset value: 0x0000 0000(not reset by wakeup from Standby mode)

Additional APB cycles are needed to read this register versus a standard APB read.

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrw rw

EWUP PVDO SBF WUF

Reserved

Reserved Reserved

Bit Field Type Reset Description

31 : 9 Reserved always read as 0.
8 EWUP rw 0x00 Enable WKUP pin

1: WKUP pin is used for wakeup from Standby mode
and forced in input pull down configuration (rising edge
on WKUP pin wakes up the system from Standby mode).
0: WKUP pin is used for general purpose I/O. An event on
the WKUP pin does not wakeup CPU from Standby mode.
Note: This bit is reset by a system reset.

7:3 Reserved always read as 0.
2 PVDO rw 0x00 PVD output

It is valid only if PVD is enabled by the PVDE bit.
1: VDD/VDDA is lower than the PVD threshold selected with
the PLS bits.
0: VDD/VDDA is higher than the PVD threshold selected
with the PLS bits.
Note: The PVD is stopped by Standby mode. For this reason,

this bit is equal to 0 after Standby or reset until the PVDE bit is

set.

1 SBF rw 0x00 Standby flag
This bit is set by hardware and cleared only by a POR/PDR
(power on reset/power down reset) or by setting the CSBF
bit in the Power control register (PWR_CR).
1: System has been in Standby mode
0: System has not been in Standby mode

www.mm32mcu.com 36/513

UM_MM32SPIN05x_q_Ver1.19
POWER CONTROL (PWR)

Bit Field Type Reset Description

0 WUF rw 0x00 Wakeup flag
This bit is set by hardware and cleared only by a POR/PDR
(power on reset/power down reset) or by setting the CWUF
bit in the Power control register (PWR_CR).
1: A wakeup event was received from the WKUP pin
0: No wakeup event occurred
Note: An additional wakeup event is detected if the WKUP pin

is enabled (by setting the EWUP bit) when the WKUP pin level

is already high.

www.mm32mcu.com 37/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

5 Reset and clock control (RCC)

Reset and clock control (RCC)

5.1 Reset

There are two types of reset, defined as system reset and power reset.

5.1.1 System reset
A system reset sets all registers to their reset values except the reset flags in the clock
controller CSR register.

A system reset is generated when one of the following events occurs:

1. A low level on the NRST pin (external reset)
2. Window watchdog end of count condition (WWDG reset)
3. Independent watchdog end of count condition (IWDG reset
4. A software reset (SW reset)

The reset source can be identified by checking the reset flags in the Control/Status register
(RCC_CSR).

Software reset
The SYSRESETREQ bit in CPU Application Interrupt and Reset Control Register must be
Set to ”1” to force a software reset.

5.1.2 Power reset
A power reset is generated when one of the following events occurs:

1. Power-on/power-down reset (POR/PDR reset)
2. When exiting Standby mode

A power reset sets all registers to their reset values.

These sources in Figure 11 act on the NRST pin and it is always kept low during Reset.
The RESET service routine vector is fixed at address 0x0000_0004.

www.mm32mcu.com 38/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

112391

))

VDD / VDDA

External

Reset

NRST PAD

RPU

Pulse

Generator

~ 20 µS

System Reset

WWDG Reset

IWDG Reset
Power Reset

Software Reset

Standby Reset

Figure 11. Reset Circuit

5.2 Clocks

Four different clock sources can be used to drive the system clock (SYSCLK):

• HSI oscillator clock divided by 2
• HSI oscillator clock
• HSE oscillator clock
• LSI clock

The devices have the following two secondary clock sources:

• 40 kHz low speed internal RC (LSI RC), which drives the independent watchdog.

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

www.mm32mcu.com 39/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

187360

HSI
48/72MHz

/ 6

HSI / 6

AHB

Prescaler

/1,2..512
HSE OSC

2 - 24 MHz

LSI

40kHz

CSS

HSE

SYSCLK

SW

LSI IWDGCLK

to Independent

Watchdog (IWDG)

HSI/4

HSE

SYSCLK

MCO

OSC _ IN

OSC _ OUT

Main

Clock Output

APB1

Prescaler

/1,2,4,8,16

/4

If (APB1 Prescaler=1) x 1

else x 2

APB2

Prescaler

/1,2,4,8,16

If (APB2 Prescaler=1) x 1

else x 2

ADC

Prescaler

/2,3...17

Clock
Enable (3 bits)

HCLK
to AHB bus, core
memory and DMA

to Cortex System !mer

FCLK Cortex
Free running clock

Peripheral Clock
Enable (10 bits)

Peripheral Clock
Enable (2 bits)

Peripheral Clock
Enable (5bits)

Peripheral Clock
Enable (4 bit)

PCLK1

to APB1
peripherals

to TIM2,3

TIMXCLK

PCLK2

to APB2
peripherals

to TIM14,16,17

TIMXCLK

ADCCLK

to ADC

Legend:

HSE = high-speed external clock signal

HSI = high-speed internal clock signal

LSI = low-speed internal clock signal

MCO

HSI

LSICLK

LSI

HSI

Peripheral Clock
Enable

to TIM1

TIM.ADVIf (APB2 Prescaler!=1)

 APB x 2

else if (AHB Prescaler!=1)

 AHB x 2

else

 AHB CLK

Figure 12. Clock Tree

Several prescaler factors allow the configuration of the frequency of AHB, the high-speed
APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the
AHB, APB1 and the APB2 domains is 72MHzMHz.

The RCC feeds the CPUSystem Timer (SysTick) external clock with the AHB clock divided
by 8. This clock can be used or AHB clock used as SysTick through the SysTick Control
and by configuring Status Register. The ADC clock is generated by dividing the high-
speed APB2 clock.

The timer clock frequencies are automatically fixed by hardware. There are two cases:

www.mm32mcu.com 40/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

1. If the APB prescaler factor is 1, the timer clock frequencies are Set to the same fre-
quency as that of the APB domain to which the timers are connected.

2. Otherwise, they are Set to twice (×2) the frequency of the APB domain to which the
timers are connected.

FCLK is the free running clock.

5.2.1 HSE clock
The high speed external clock signal (HSE) can be generated from two possible clock
sources:

• HSE external crystal/ceramic resonator
• HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

985606

(HiZ)

Hardware configuratiion

External clock

Crystal /Ceramic

resonators

Load capacitors

External source

CL1 CL2

OSC_ IN

OSC_OUT

OSC_OUT

Figure 13. Clock Sources

External clock source (HSE bypass)
In this mode, an external clock source must be provided. It can have a frequency of up to
24 MHz. You can select this mode by setting the HSEBYP and HSEON bits in the Clock
control register (RCC_CR). The external clock signal (square, sinus or triangle) with 50%

www.mm32mcu.com 41/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

dutycycle has to drive the OSC_IN pin while the OSC_OUT pin should be left hi-Z.

External crystal/ceramic resonator (HSE crystal)
The external oscillator has the advantage of producing a very accurate rate on the main
clock. The associated hardware configuration is shown in Figure 13. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag in the Clock control register (RCC_CR) indicates if the high-speed
external oscillator is stable or not. At startup, the clock is not released until this bit is Set
to ’1’ by hardware. An interrupt can be generated if enabled in the Clock interrupt register
(RCC_CIR).

The HSE Crystal can be switched on and off using the HSEON bit in the Clock control
register (RCC_CR).

5.2.2 HSI clock
The HSI clock signal is generated from an internal HSI Oscillator The HSI oscillator has
the advantage of providing a clock source at low cost (no external components). It also
has a faster startup time than the HSE crystal oscillator, however, even with calibration
the frequency is less accurate.

Calibration
The oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1%(25◦C). After reset,
the factory calibration value is loaded in the HSICAL bits in the Clock control register
(RCC_CR).

The HSIRDY flag in the Clock control register (RCC_CR) indicates if the HSI RC is stable
or not. At startup, the HSI RC output clock is not released until this bit is Set to ’1’ by
hardware. The HSI RC can be switched on and off using the HSION bit in the Clock
control register (RCC_CR).

The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section section 5.2.5。

5.2.3 LSI clock
The LSI RC acts as an low-power clock source that can be kept running in Stop and
Standby mode for the independent watchdog (IWDG) and Auto-wakeup unit (AWU). The
clock frequency is around 40 kHz (between 30 kHz and 60 kHz). For more details, refer
to the electrical characteristics section of the datasheets.

The LSI RC can be switched on and off using the LSION bit in the Control/status register
(RCC_CSR). The LSIRDY flag in the Control/status register (RCC_CSR) indicates if the
low-speed internal oscillator is stable or not. At startup, the clock is not released until this
bit is Set to ’1’ by hardware. An LSI interrupt request can be generated if enabled in the
Clock interrupt register (RCC_CIR).

www.mm32mcu.com 42/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

5.2.4 System clock (SYSCLK) selection
After a system reset, the HSI oscillator is selected as system clock. A switch from one
clock source to another occurs only if the target clock source is ready. The switch will
occur only when the clock source is ready. Status bits in the Clock configuration register
(RCC_CFGR). indicate which clock(s) is (are) ready and which clock is currently used as
system clock.

5.2.5 Clock security system (CSS)
Clock Security System can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE clock, the HSE oscillator is automatically disabled, a
clock failure event is sent to the break input of the advanced-control timers (TIM1) and an
interrupt is generated to inform the software about the failure (Clock Security SystemInter-
rupt CSSI), allowing the software to perform rescue operations. The CSSI is linked to the
CPU NMI (Non-Maskable Interrupt) exception vector.

Note: Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and an NMI

is automatically generated. The NMI will be executed indefinitely unless the CSS interrupt pending

bit is cleared. As a consequence, in the NMI ISR user must clear the CSS interrupt by setting the

CSSC bit in the Clock interrupt register (RCC_CIR).

If the HSE oscillator is used directly or indirectly as the system clock, a detected failure
causes a switch of the system clock to the HSI oscillator and the disabling of the HSE
oscillator.

5.2.6 Watchdog clock
If the Independent watchdog (IWDG) is started by either hardware option or software
access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator
stabilization, the clock is provided to the IWDG.

5.2.7 Clock-out capability
The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin.

The registers of the corresponding GPIO port shall be configured with functions.One of
clock signals can be selected as the MCO clock.

• SYSCLK
• HSI/4
• HSE
• LSI

– The selection is controlled by the MCO [2:0] bits of the Clock configuration
register (RCC_CFGR).

5.3 RCC Register file and memory mapping description

www.mm32mcu.com 43/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Table 16. Overview of RCC Registers

Offset Acronym Register Name Reset Section

0x00 RCC_CR Clock control register 0x0000FF01 section 5.3.1

0x04 RCC_CFGR Clock configuration register 0x00000000 section 5.3.2

0x08 RCC_CIR Clock interrupt register 0x00000000 section 5.3.3

0x0C RCC_APB2RSTR APB2 peripheral reset register 0x00000000 section 5.3.4

0x10 RCC_APB1RSTR APB1 peripheral reset register 0x00000000 section 5.3.5

0x14 RCC_AHBENR AHB peripheral clock enable register 0x00000014 section 5.3.6

0x18 RCC_APB2ENR APB2 peripheral clock enable register 0x00000000 section 5.3.7

0x1C RCC_APB1ENR APB1 peripheral clock enable register 0x00000000 section 5.3.8

0x24 RCC_CSR Control status register 0x0C000000 section 5.3.9

0x28 RCC_AHBRSTR AHB peripheral clock reset register 0x00000000 section 5.3.10

0x40 RCC_SYSCFG System configuration register 0x00001400 section 5.3.11

5.3.1 Clock control register(RCC_CR)
Address offset: 0x00

Reset value: 0x0000 FF01

Access: no wait state, word, half-word and byte access

CSSON HSERDYHSEBYP HSEON

HSICAL HSIRDYHSION

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 123456789 01112131415 10

 r r r r r rw rw r rw rw rw rw rw

 rrwrwrw rw

HSI_72

M_EN

 r r rw rw

Reserved

 rw

Res.HSICALSEL

 w w w w w

Bit Field Type Reset Description

31 : 21 Reserved Always read as 0.
20 HSI_72M_EN rw 0x00 HSI_72M_EN: Internal high speed clock output selection

0: Internal high-speed clock output 48MHZ clock
1: Internal high-speed clock output 72MHZ clock
Default is 0

19 CSSON rw 0x00 CSSON: Clock security system enable
Set to ’1’ or cleared by software to enable the clock detec-
tor .
0: Clock detector OFF
1: Clock detector ON if the external oscillator is ready

www.mm32mcu.com 44/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

18 HSEBYP rw 0x00 HSEBYP: External high-speed clock bypass
Set to ’1’ or cleared by software to bypass the oscillator
with an external clock.
The HSEBYP bit can be written only if the external oscilla-
tor is disabled.
0: external oscillator not bypassed
1: external oscillator bypassed with external clock

17 HSERDY r 0x00 HSERDY: External high-speed clock ready flag
Set to ’1’ by hardware to indicate that the external clock is
stable.
0: External clock not ready
1: External clock ready

16 HSEON rw 0x00 HSEON: External high-speed clock enable
Set to ’1’ or cleared by software.
Cleared by hardware to stop the external clock when en-
tering Stop or Standby mode.
This bit cannot be reset if the external clock is used directly
or indirectly as the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON

15: 8 HSICAL rw 0xFF HSICAL: Internal high-speed clock calibration
These bits are initialized automatically at startup.For fac-
tory calibration values, the user can write other calibration
values, but the readout is always the factory calibration
value. If HSICALSEL = 0x1F, the value written can recali-
brate the HSI frequency, otherwise the write will only have
no effect.

7: 3 HSICALSEL w 0x00 HSICALSEL：The initial value of the internal high-speed
clock calibration value is 0, and it is still read as 0 after
writing 1F.
1F: Select the value of the register HSICAL
Other: Select factory calibration value

2 Reserved Always read as 0.
1 HSIRDY r 0x00 HSIRDY: Internal high-speed clock ready flag

A ’1’ is set by hardware to indicate that the internal clock
has stabilized. After the HSION bit is cleared, this bit re-
quires six internal clock cycles to be cleared.
0: Internal clock is not ready
1: Internal clock ready

www.mm32mcu.com 45/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

0 HSION rw 0x01 HSION: Internal high-speed clock enable
Set to ’1’ or cleared by software.
Set to ’1’ by hardware to force the internal 8 MHz RC oscil-
lator ON when leaving Stop or Standby mode or in case of
failure of the external oscillator used as system clock. This
bit cannot be reset if the internal 8 MHz RC is used directly
or indirectly as system clock or is selected to become the
system clock.
0: internal high speed clock disabled
1: internal high speed clock enabled

5.3.2 Clock configuration register(RCC_CFGR)
Address offset：0x04

Reset value：0x0000 0000

Access: no wait state, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

Reserved

Reserved

ReservedMCO

PPRE2 HPRE SWSPPRE1 SW

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 1234567891112131415 10

rw r rrwrwrwrwrwrwrwrwrwrw rw

rwrwrw

Bit Field Type Reset Description

31 : 27 Reserved Always read as 0.
26 : 24 MCO rw 0x00 MCO: Microcontroller clock output

Set to ’1’ or cleared by software.
00x: No clock;
010: LSI clock selected;
011：Reserved
100: System clock (SYSCLK) selected;
101：HSI clock divided by 4 selected；
110: HSE clock selected;
111：Reserved
Note:

1. This clock output may have some truncated cycles at startup

or during MCO clock source switching.

2. When the System Clock is selected to output to the MCO pin,

make sure that this clock does not exceed 50MHz (themaximum

I/O speed).

www.mm32mcu.com 46/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

23：14 Reserved Always read as 0.
13: 11 PPRE2 rw 0x00 PPRE2: APB high-speed prescaler(APB2)

Set to ’1’ and cleared by software to control the prescaler
factor of the APB high-speed clock (PCLK2).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

10: 8 PPRE1 rw 0x00 PPRE1: APB low-speed prescaler(APB1)
Set to ’1’ and cleared by software to control the prescaler
factor of the APB1 low-speed clock (PCLK1).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

7: 4 HPRE rw 0x00 HPRE: AHB Prescaler
Set to ’1’ and cleared by software to control the prescaler
factor of the AHB clock.
0xxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512
Note:

1. The prefetch buffer must be kept on when using a prescaler

factor greater than 1 on theAHB clock. Refer to Section ”Reading

the Flash Memory” for more details.

3: 2 SWS r 0x00 SWS: System clock switch status
Set to ’1’ and cleared by hardware to indicate which clock
source is used as system clock.
00: HSI oscillator divided by 6 and used as system clock
01: HSE oscillator used as system clock
10: HSI used as system clock
11: LSI used as system clock

www.mm32mcu.com 47/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

1: 0 SW rw 0x00 SW: System clock switch
Set to ’1’ and cleared by software to select SYSCLK
source.
Set by hardware to force HSI selection when leaving Stop
and Standby mode or in case of failure of the HSE oscilla-
tor used directly or indirectly as system clock.
00: HSI oscillator divided by 6 and used as system clock
01: HSE oscillator selected as system clock
10：HSI is used as the system clock and is forced to 1
11: LSI used as system clock

5.3.3 Clock interrupt register(RCC_CIR)
Address offset：0x08

Reset value：0x0000 0000

Access: no wait state, word, half-word and byte access.

Reserved CSSC Reserved
HSE

 RDYC

HSI

RDYC

LSI

RDYC

Reserved HSE

RDYIE

HSI

RDYIE

LSI

RDYIE
CSSF Reserved HSE

 RDYF

HSI

RDYF

LSI

RDYF

rc_w1rc_w1rc_w1 rc_w1

 r r rrwrwrw r

171819202122232425 162728293031 26

123456789 01112131415 10

Res.

Res. Res.

Bit Field Type Reset Description

31 : 24 Reserved Always read as 0.
23 CSSC rc_w1 0x00 CSSC: Clock security system interrupt clear

This bit is set to ’1’ by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag

22 : 20 Reserved Always read as 0.
19 HSERDYC rc_w1 0x00 HSERDYC: HSE ready interrupt clear

This bit is set to ’1’ by software to clear the HSERDYF flag.
0: No effect
1: HSERDYF cleared

18 HSIRDYC rc_w1 0x00 HSIRDYC: HSI ready interrupt clear
This bit is set to ’1’ by software, to clear the HSIRDYF flag.
0: No effect
1: HSIRDYF cleared

17 Reserved Always read as 0.

www.mm32mcu.com 48/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

16 LSIRDYC rc_w1 0x00 LSIRDYC: LSI ready interrupt clear
This bit is set to ’1’ by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared

15: 12 Reserved Always read as 0.
11 HSERDYIE rw 0x00 HSERDYIE: HSE ready interrupt enable

Set to ’1’ and cleared by software to enable/disable inter-
rupt caused by the external oscillator stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

10 HSIRDYIE rw 0x00 HSIRDYIE: HSI ready interrupt enable
Set to ’1’ and cleared by software to enable/disable inter-
rupt caused by the internal 8 MHz RC oscillator stabiliza-
tion.
0: HSI ready interrupt disabled
1: HSI ready interrupt enabled

9 Reserved Always read as 0.
8 LSIRDYIE rw 0x00 LSIRDYIE: LSI ready interrupt enable

Set to ’1’ and cleared by software to enable/disable inter-
rupt caused by the internal 40 kHz RC oscillator stabiliza-
tion.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled

7 CSSF r 0x00 CSSF: Clock security system interrupt flag
Set to ’1’ by hardware when a failure is detected in the
external oscillator. Cleared by software through setting the
CSSC bit to ’1’.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure

6: 4 Reserved Always read as 0.
3 HSERDYF r 0x00 HSERDYF: HSE ready interrupt flag

Set to ’1’ by hardware when External High Speed clock
becomes stable and HSERDYDIE is set to ’1’.
Cleared by software setting the HSERDYC bit.
0：No clock ready interrupt caused by the external oscilla-
tor
1: Clock ready interrupt caused by the external oscillator

www.mm32mcu.com 49/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

2 HSIRDYF r 0x00 HSIRDYF: HSI ready interrupt flag
Set to ’1’ by hardware when the Internal High Speed clock
becomes stable and HSIRDYDIE is set.
Cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the internal RC os-
cillator
1: Clock ready interrupt caused by the internal RC oscilla-
tor

1 Reserved Always read as 0.
0 LSIRDYF r 0x00 LSIRDYF: LSI ready interrupt flag

Set to ’1’ by hardware when the internal low speed clock
becomes stable and LSIRDYDIE is set.
Cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the internal RC 40
kHz oscillator
1: Clock ready interrupt caused by the internal RC 40 kHz
oscillator

5.3.4 APB2 peripheral reset register(RCC_APB2RSTR)
Address offset：0x0C

Reset value：0x0000 0000

Access: no wait state, word, half-word and byte access

ReservedCOMP

Reserved

SYSCFGADC1TIM1 Res.

ReservedDBGMCU TIM17 TIM16 TIM14

Res. SPI1UART1

rw rw rw

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 123456789 01112131415 10

rwrw rw

rwrwrw rw

Bit Field Type Reset Description

31: 23 Reserved Always read as 0.
22 DBGMCU rw 0x00 DBGMCU：DBGMCU reset
21: 19 Reserved Always read as 0.
18 TIM17 rw 0x00 TIM17：TIM17 timer reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset TIM17 timer

17 TIM16 rw 0x00 TIM16: TIM16 timer reset
Set to ’1’ or cleared by software.
0: No effect
1: Reset TIM16 timer

www.mm32mcu.com 50/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

16 TIM14 rw 0x00 TIM14: TIM14 timer reset
Set to ’1’ or cleared by software.
0: No effect
1: Reset TIM14 timer

15 COMP rw 0x00 COMPRST: Comparator reset
Set to ’1’ or cleared by software.
0: No effect
1: Reset comparator interface

14 UART1 rw 0x00 UART1: UART1 reset
Set to ’1’ or cleared by software.
0: No effect
1：Reset UART1

13 Reserved Always read as 0.
12 SPI1 rw 0x00 SPI1: SPI1 reset

Set to ’1’ or cleared by software.
0: No effect
1：Reset SPI1

11 TIM1 rw 0x00 TIM1: TIM1 timer reset
Set to ’1’ or cleared by software.
0: No effect
1: Reset TIM1 timer

10 Reserved Always read as 0.
9 ADC1 rw 0x00 ADC1: ADC1 interface reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset ADC1 interface

8: 1 Reserved Always read as 0.
0 SYSCFG rw 0x00 SYSCFG: System Configuration register reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset SYSCFG

5.3.5 APB1 peripheral reset register(RCC_APB1RSTR)
Address offset：0x10

Reset value：0x0000 0000

Access: no wait state, word, half-word and byte access

www.mm32mcu.com 51/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

rwrwrw

rwrwrw rw

PWR ReservedI2C1 Res.

Res. Reserved Reserved TIM3 TIM2WWDGSPI2

ReservedReserved UART2

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31 : 29 Reserved Always read as 0.
28 PWR rw 0x00 PWR: Power interface reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset power interface

27 : 22 Reserved Always read as 0.
21 I2C1 rw 0x00 I2C1: I2C1 reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset I2C1

20 : 18 Reserved Always read as 0.
17 UART2 rw 0x00 UART2: UART2 reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset UART2

16 : 15 Reserved Always read as 0.
14 SPI2 rw 0x00 SPI2: SPI2 reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset SPI2

13 : 12 Reserved Always read as 0.
11 WWDG rw 0x00 WWDG: Window watchdog reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset window watchdog

10 : 2 Reserved Always read as 0.
1 TIM3 rw 0x00 TIM3: Timer3 reset

Set to ’1’ or cleared by software.
0: No effect
1: Reset TIM3 timer

0 TIM2 rw 0x00 TIM2: Timer2 reset
Set to ’1’ or cleared by software.
0: No effect
1: Reset TIM2 timer　

www.mm32mcu.com 52/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

5.3.6 AHB peripheral clock enable register(RCC_AHBENR)
Address offset：0x14

Reset value：0x0000 0014

Access: no wait state, word, half-word and byte access

Reserved

DMARes.SRAMRes.FLASHReserved

Res.GPIOAGPIOBGPIOCGPIODReserved

CRC

HWDIV

Res.

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 123456789 01112131415 10

rwrw rw

rw rw rw rwrw

rw

Bit Field Type Reset Description

31 : 27 Reserved Always read as 0.
26 HWDIV rw 0x00 HWDIV: HWDIV clock enable

Set to ’1’ or cleared by software.
0：HWDIV clock disabled
1：HWDIV clock enabled

25 : 21 Reserved Always read as 0.
20 GPIOD rw 0x00 GPIOD: GPIOD clock enable

0: GPIOD clock disabled
1: GPIOD clock enabled

19 GPIOC rw 0x00 GPIOC: GPIOC clock enable
0: GPIOC clock disabled
1: GPIOC clock enabled

18 GPIOB rw 0x00 GPIOB: GPIOB clock enable
0: GPIOB clock disabled
1: GPIOB clock enabled

17 GPIOA rw 0x00 GPIOA: GPIOA clock enable
0: GPIOA clock disabled
1: GPIOA clock enabled

16 : 7 Reserved Always read as 0.
6 CRC rw 0x00 CRC: CRC clock enable

Set to ’1’ or cleared by software.
0: CRC clock disabled
1: CRC clock enabled

5 Reserved Always read as 0.
4 FLASH rw 0x01 FLASH: FLASH clock enable

0：FLASH clock disabled
1：FLASH clock enabled

3 Reserved Always read as 0.

www.mm32mcu.com 53/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

2 SRAM rw 0x01 SRAM: SRAM interface clock enable
Set to ’1’ or clear by software, to enable/disable the SRAM
clock in Sleep mode.
0: SRAM clock disabled in Sleep mode.
1: SRAM clock enabled in Sleep mode.

1 Reserved Always read as 0.
0 DMA rw 0x00 DMA: DMA clock enable

Set to ’1’ or cleared by software.
0：DMA clock disabled
1：DMA clock enabled

5.3.7 APB2 peripheral clock enable register(RCC_APB2ENR)
Address offset：0x18

Reset value：0x0000 0000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registervalues may not be read by

software.

ReservedCOMP Res.

Reserved

SYSCFGSPI1UART1 ADC1TIM1 Res.

ReservedDBGMCU TIM17 TIM16 TIM14

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 123456789 01112131415 10

rwrwrwrw rw

rwrwrw rw

rw

Bit Field Type Reset Description

31: 23 Reserved Always read as 0.
22 DBGMCU rw 0x00 DBGMCU: DBGMCU enable
21: 19 Reserved Always read as 0.
18 TIM17 rw 0x00 TIM17: TIM17 timer enable

Set to ’1’ or cleared by software.
0: TIM17 clock disabled
1: TIM17 clock enabled

17 TIM16 rw 0x00 TIM16: TIM16 timer enable
Set to ’1’ or cleared by software.
0: TIM16 clock disabled
1: TIM16 clock enabled

16 TIM14 rw 0x00 TIM14: TIM14 timer enable
Set to ’1’ or cleared by software.
0: TIM14 clock disabled
1: TIM14 clock enabled

www.mm32mcu.com 54/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

15 COMP rw 0x00 COMP: Comparator enable
Set to ’1’ or cleared by software.
0: Compartator interface clock disabled
1: Compartator interface clock enabled

14 UART1 rw 0x00 UART1: UART1 clock enable
Set to ’1’ or cleared by software.
0：UART1 clock disabled
1：UART1 clock enabled

13 Reserved Always read as 0.
12 SPI1 rw 0x00 SPI1: SPI1 clock enable

Set to ’1’ or cleared by software.
0：SPI1 clock disabled
1：SPI1 clock enabled

11 TIM1 rw 0x00 TIM1: TIM1 Timer clock enable
Set to ’1’ or cleared by software.
0: TIM1 clock disabled
1: TIM1 clock enabled

10 Reserved Always read as 0.
9 ADC1 rw 0x00 ADC1: ADC1 interface clock enable

Set to ’1’ or cleared by software.
0: ADC1 interface clock disabled
1: ADC1 interface clock enabled

8: 1 Reserved Always read as 0.
0 SYSCFG rw 0x00 SYSCFGEN: System configuration register enable

Set to ’1’ or cleared by software.
0: System configuration register clock disabled
1: System configuration register clock enabled

5.3.8 APB1 peripheral clock enable register (RCC_APB1ENR)
Address offset：0x1C

Reset value：0x0000 0000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registervalues may not be read by

software and the returned value is always 0x0.

PWR Res.

Res.

rwrwrw

rwrwrw rw

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

Reserved

Reserved

I2C1 UART2

TIM2TIM3WWDGSPI2

Reserved Reserved

www.mm32mcu.com 55/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

31 : 29 Reserved Always read as 0.
28 PWR rw 0x00 PWR: Power interface clock enable

Set to ’1’ or cleared by software.
0: Power interface clock disabled
1: Power interface clock enabled

27: 22 Reserved Always read as 0.
21 I2C1 rw 0x00 I2C1: I2C1 clock enable

Set to ’1’ or cleared by software.
0：I2C1 clock disabled
1：I2C1 clock enabled

20：18 Reserved Always read as 0.
17 UART2 rw 0x00 UART2: UART2 clock enable

Set to ’1’ or cleared by software.
0：UART2 clock disabled
1：UART2 clock enabled

16：15 Reserved Always read as 0.
14 SPI2 rw 0x00 SPI2: SPI2 clock enable

Set to ’1’ or cleared by software.
0：SPI2 clock disabled
1：SPI2 clock enabled

13：12 Reserved Always read as 0.
11 WWDG rw 0x00 WWDG: Window watchdog clock enable

Set to ’1’ or cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

10：2 Reserved Always read as 0.
1 TIM3 rw 0x00 TIM3: TIM3 clock enable

Set to ’1’ or cleared by software.
0: TIM3 clock disabled
1: TIM3 clock enabled

0 TIM2 rw 0x00 TIM2: TIM2 clock enable
Set to ’1’ or cleared by software.
0: TIM2 clock disabled
1: TIM2 clock enabled

5.3.9 Control status register(RCC_CSR)
Address offset：0x24

Reset value：0xXC00 0000

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Wait states are inserted in case of successive accesses to this register.

Reset by system Reset, except reset flags by power Reset only.

www.mm32mcu.com 56/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

SFT

RSTF

WWDG

RSTF

Reserved

Reserved

LSIRDY

IWDG

RSTF

LSION

PIN

RSTF

POR

RSTF

LPWR

RSTF

123456789 01112131415 10

171819202122232425 162728293031 26

 r r r r r

 r rw

 r

Bit Field Type Reset Description

31 LPWRRSTF r 0x0x LPWRRSTF: Low power reset flag
Set by hardware when a Low-power management reset
occurs.
Cleared by writing to the RMVF bit.
0: No Low-power management reset occurred
1: Low-power management reset occurred

30 WWDGRSTF r 0x0x WDGRSTF: Window watchdog reset flag
Set to ’1’ by hardware when a window watchdog reset oc-
curs.
Cleared by writing to the RMVF bit.
0: No window watchdog reset occurred
1: Window watchdog reset occurred

29 IWDGRSTF r 0x0x IWDGRSTF: Independent watchdog reset flag
Set to ’1’ by hardware when an independent watchdog re-
set from VDD domain occurs.
Cleared by writing to the RMVF bit.
0: No watchdog reset occurred
1: Watchdog reset occurred

28 SFTRSTF r 0x0x SFTRSTF: Software reset flag
Set to ’1’ by hardware when a software reset occurs.
Cleared by writing to the RMVF bit.
Cleared by writing to the RMVF bit.
0: No software reset occurred
1: Software reset occurred

27 PORRSTF r 0x01 PORRSTF: POR/PDR reset flag
Set to ’1’ by hardware when a POR/PDR reset occurs.
Cleared by writing to the RMVF bit.
0: No POR/PDR reset occurred
1: POR/PDR reset occurred

www.mm32mcu.com 57/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

26 PINRSTF r 0x01 PINRSTF: PIN reset flag
Set to ’1’ by hardware when a reset from the NRST pin
occurs.
Cleared by writing to the RMVF bit.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred

25 : 2 Reserved Always read as 0.
1 LSIRDY r 0x00 LSIRDY: Internal low-speed oscillator ready

Set to ’1’ and cleared by software to indicate when the
internal RC 40 kHz oscillator is ready.
After the LSION bit is cleared, LSIRDY goes low after 3
internal RC 40 kHz oscillator clock cycles.
0: Internal RC 40 kHz oscillator not ready
1: Internal RC 40 kHz oscillator ready

0 LSION rw 0x00 LSION: Internal low-speed oscillator enable
Set to ’1’ or cleared by software.
0: Internal RC 40 kHz oscillator disabled
1: Internal RC 40 kHz oscillator enabled

5.3.10 AHB peripheral clock reset register(RCC_AHBRSTR)
Address offset：0x28

Reset value：0x0000 0000

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

HWDIV GPIOBGPIOC GPIOA

171819202122232425 162728293031 26 171819202122232425 162728293031 26

123456789 01112131415 10 123456789 01112131415 10

rwrw rwrw

Reserved

Reserved GPIOD Res.Reserved

rw

Bit Field Type Reset Description

30: 27 Reserved Always read as 0.
26 HWDIV rw 0x00 HWDIV: HWDIV reset

Set to ’1’ or cleared by software.
1：No effect
0：Reset HWDIV

25: 21 Reserved Always read as 0.
20 GPIOD rw 0x00 GPIOD: GPIOD reset

Set to ’1’ or cleared by software.
0: No effect
1：Reset GPIOD

www.mm32mcu.com 58/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

19 GPIOC rw 0x00 GPIOC: GPIOC reset
Set to ’1’ or cleared by software.
0: No effect
1：Reset GPIOC

18 GPIOB rw 0x00 GPIOB: GPIOB reset
Set to ’1’ or cleared by software.
0: No effect
1：Reset GPIOB

17 GPIOA rw 0x00 GPIOA：GPIOA reset
Set to ’1’ or cleared by software.
0: No effect
1：Reset GPIOA

16: 0 Reserved Always read as 0.

5.3.11 System configuration register(RCC_SYSCFG)
Address offset：0x40

Reset value：0x0000 1400

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Reset by system Reset, except reset flags by power Reset only.

171819202122232425 162728293031 26

123456789 01112131415 10

rwrwrwrwrwrw

Bit Field Type Reset Description

31: 15 Reserved Always read as 0.
14 OSC_LPFEN rw 0x00 OSC_LPFEN: External crystal low-pass filter enable

0: Disable
1: Enable

13 Reserved Always read as 0.

www.mm32mcu.com 59/513

UM_MM32SPIN05x_q_Ver1.19
RESET AND CLOCK CONTROL (RCC)

Bit Field Type Reset Description

12: 11 OSC_ITRIM rw 0x01 OSC_ITRIM: External crystal drive current calibration
value
If the crystal oscillator is abnormal, adjust the drive current
to match the crystal oscillator
00：2mA
01：4mA
10：6mA
11：8mA

10: 8 OSC_RTRIM rw 0x04 OSC_RTRIM: External crystal feedback resistance cali-
bration value
If the crystal oscillator is abnormal, adjust the drive current
to match the crystal oscillator
000：100KΩ
001：200KΩ
010：500KΩ
011：700KΩ
100：1MΩ
101：2MΩ
110：4MΩ
111：8MΩ

7: 0 Reserved Always read as 0.

www.mm32mcu.com 60/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

6 General-purpose I/O(GPIO)

General-purpose I/O(GPIO)

6.1 GPIO functional description

Each of the general-purpose I/O ports has two 32-bit configuration registers (GPIOx_CRL,
GPIOx_CRH), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset
register (GPIOx_BSRR), a 16-bit reset register (GPIOx_BRR),a 32-bit locking register
(GPIOx_LCKR) and two alternate-function select registers (GPIOx_AFRH) and (GPIOx_A-
FRL).

Each port bits of the General Purpose IO (GPIO) Ports, can be individually configured by
software in several modes:

• Input floating
• Input pull-up
• Input pull-down
• Analog Input
• Output open-drain
• Output push-pull
• Alternate function push-pull
• Alternate function open-drain

Each I/O port bits is freely programmable, however, the I/O port registers have to be
accessed as 32-bit words (half-word or byte accesses are not allowed).

The purpose of theGPIOx_BSRRandGPIOx_BRR registers is to allow atomic read/modify
accesses to any of the GPIO registers. In this way, there is no risk that an IRQ occurs
between the read and the modify access.

The following figure shows the basic structure of an I/O port bits.

www.mm32mcu.com 61/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

146870

VDD

P-MOS

VSS

VSS

VDD

VDD

VSS

/

b
it

 s
e

t/
re

se
t

re
g

is
te

rs

O
u

tp
u

t
d

a
ta

 r
e

g
is

te
r In

p
u

t
d

a
ta

 r
e

g
is

te
rs

N-MOS

I/ O

Analog Input

Alternate Function Input

on off

/on off

/on off

Output

control

To on-chip

peripherals

Read

Write

Read/Write

Alternate Function output

Push-pull, open-drain

 or disabled
From on-chip

peripherals

Output driver

Input driver

Schmitt trigger
Protection

 diode

Protection

 diode

Pin

Figure 14. Basic Structure of I/O Port bits

Table 17. Port bits Configuration Table

Configuration mode CNF1 CNF0 MODE1 MODE0 PxODR register

General purpose output
Push-Pull

0
0

01

0 or 1

Open-Drain 1 0 or 1

Alternate function output
Push-Pull

1
0 Not used

Open-Drain 1 Not used

Input

Analog input
0

0

00

Not used

Input floating 1 Not used

Input pull-down
1 0

0

Input pull-up 1

Table 18. Output MODE bits

MODE[1: 0] Meaning

00 Reserved

01 Output

6.1.1 General-purpose I/O(GPIO)
During and just after reset, the alternate functions are not active and the I/O ports are
configured in Input Floating mode (CNFx[1: 0] = 01, MODEx[1: 0] = 00).

The SWD pins are in input PU/PD after reset:

www.mm32mcu.com 62/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

• PA14: SWCLK in PD
• PA13: SWDIO in PU

When configured as output, the value written to the Output Data Register (GPIOx_ODR)
is output to the I/O pin. It is possible to use the output driver in Push-Pull mode or Open-
Drain mode (only the N-MOS is activated when outputting 0).

The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every
AHB clock cycle.

All GPIO pins have an internal weak pull-up and weak pull-down that can be activated or
not when configured as input.

6.1.2 Atomic bits set or reset
There is no need for the software to disable interrupts when programming theGPIOx_ODR
at bits level:

it is possible to modify only one or several bits in a single AHB write access.

This is achieved by programming to ’1’ the bits Set/Reset Register (GPIOx_BSRR, or
for reset only GPIOx_BRR) to select the bits to modify. The unselected bits will not be
modified.

6.1.3 External interrupt/wakeup lines
All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode. For more information on external interrupts, refer to 7.2 External
interrupt/event controller (EXTI).

6.1.4 Alternate functions
It is necessary to program the Port bits Configuration Register before using a default al-
ternate function.

• For alternate function inputs, the port must be configured in Input mode (floating, pullup
or pull-down) and the input pin must be driven externally.

Note: It is also possible to emulate the AFI input pin by software by programming the GPIO con-

troller. In this case, the port should be configured in Alternate Function Output mode. And obviously,

the corresponding port should not be driven externally as it will be driven by the software using the

GPIO controller.

• For alternate function outputs, the port must be configured in Alternate Function Output
mode (Push-Pull or Open-Drain).

• For bidirectional Alternate Functions, the port bits must be configured in Alternate Func-
tion Output mode (Push-Pull or Open-Drain). In this case the input driver is configured
in input floating mode.

If a port bits is configured as Alternate Function Output, this disconnects the output register
and connects the pin to the output signal of an on-chip peripheral. If software configures
a GPIO pin as Alternate Function Output, but peripheral is not activated, its output is not
specified.

www.mm32mcu.com 63/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

6.1.5 Software remapping of I/O alternate functions
To optimize the number of peripheral I/O functions for different device packages, it is pos-
sible to remap some alternate functions to some other pins. This is achieved by software,
by programming the corresponding registers (refer to AFR registers).

In that case, the alternate functions are no longer mapped to their original assignations.

6.1.6 GPIO locking mechanism
The locking mechanism allows the IO configuration to be frozen. When the LOCK se-
quence has been applied on a port bits, it is no longer possible to modify the value of the
port bits until the next reset.

6.1.7 Input configuration
When the I/O Port is programmed as Input:

• The Output Buffer is disabled
• The Schmitt Trigger Input is activated
• The weak pull-up and pull-down resistors are activated or not depending on input con-
figuration (pull-up, pull-down or floating);

• The data present on the I/O pin is sampled into the Input Data Register every AHB clock
cycle

• A read access to the Input Data Register obtains the I/O State

The following figure shows the Input Configuration of the I/O Port bits:

250155

VDD

VSS

VDD

VSS

I/O

Protection

 diode

Protection

 diode

Pin

/on off

/on off
on

Schmitt trigger

Input driver

Output driver

Read

Write

Read/Write

b
it

 s
e

t/
re

se
t

re
g

is
te

rs

O
u

tp
u

t
d

a
ta

 r
e

g
is

te
r In

p
u

t
d

a
ta

 r
e

g
is

te
rs

Figure 15. Input Floating/Pull Up/Pull Down Configurations

www.mm32mcu.com 64/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

6.1.8 Output configuration
When the I/O Port is programmed as Output:

• The Output Buffer is enabled
– Open drain mode: ’0’ on the output register activates N-MOS, and ’1’ on the
output register places the port in a high-impedance state (P-MOS is never
activated)

– Push-pull mode: ’0’ on the output register activates N-MOS, and ’1’ on the
output register activates P-MOS

• The Schmitt Trigger Input is activated.
• The weak pull-up and pull-down resistors are disabled.
• The data present on the I/O pin is sampled into the Input Data Register every AHB clock
cycle

• A read access to the Input Data Register gets the I/O state in open drain mode
• A read access to the Output Data register gets the last written value in Push-Pull mode

The following figure shows the Output configuration of the I/O Port bits:

989530

P-MOS

VSS

VDD

VDD

VSS

on

N-MOS

I/OPin

Protection

 diode

Protection

 diode

Push-pull, open-drain

Output

control

Schmitt trigger

Input driver

Output driver

Read

Write

Read/Write

b
it

 s
e

t/
re

se
t

re
g

is
te

rs

O
u

tp
u

t
d

a
ta

 r
e

g
is

te
r In

p
u

t
d

a
ta

 r
e

g
is

te
rs

Figure 16. Output Configuration

6.1.9 Alternate functions configuration
When the I/O Port is programmed as Alternate Function:

• The Output Buffer is turned on in Open Drain or Push-Pull configuration
• The Output Buffer is driven by the signal coming from the peripheral (alternate function
output)

• The Schmitt Trigger Input is activated
• The weak pull-up and pull-down resistors are disabled.

www.mm32mcu.com 65/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

• The data present on the I/O pin is sampled into the Input Data Register every AHB clock
cycle

• A read access to the Input Data Register gets the I/O state in open drain mode
• A read access to the Output Data register gets the last written value in Push-Pull mode

The following figure shows the Alternate Function Configuration of the I/O Port bits. Also,
refer to AFIO registers for further information.

A set of Alternate Function I/O registers allow the user to remap some alternate functions
to different pins.

240425

P-MOS

VSS

VDD

VDD

VSS

N-MOS

I/ O

To on-chip

peripherals

Alternate Function Input

on

Schmitt trigger

Input driver

Output driver

In
p

u
t

d
a

ta
 r

e
g

is
te

rs

Read

Write

Read/Write

From on-chip

peripherals Alternate Function output

Output

control

Push-pull/open-drain

O
u

tp
u

t
d

a
ta

 r
e

g
is

te
r

b
it

 s
e

t/
re

se
t

re
g

is
te

rs

Protection

 diode

Protection

 diode

Pin

Figure 17. Alternate functions configuration

6.1.10 Analog configuration
When the I/O Port is programmed as Analog configuration:

• The Output Buffer is disabled.
• The Schmitt Trigger Input is de-activated providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt Trigger is forced to a constant value ’0’.

• The weak pull-up and pull-down resistors are disabled.
• Read access to the Input Data Register gets the value ’0’.

The following figure shows the high impedance-analog configuration of the I/O Port bits.

www.mm32mcu.com 66/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

272001

VDD

VSS

I/O

0

To on-chip

peripherals

Analog Input

off

Schmitt trigger

Input driver

Output driver

From on-chip

peripherals

Read/Write

Read

Write

b
it

 s
e

t/
re

se
t

re
g

is
te

rs

O
u

tp
u

t
d

a
ta

 r
e

g
is

te
r In

p
u

t
d

a
ta

 r
e

g
is

te
rs

Protection

 diode

Protection

 diode

Pin

Figure 18. High Impedance-analog Configuration

6.1.11 GPIO configurations for device peripherals
The following tables give the GPIO configurations of the device peripherals:

Table 19. Advanced Timers TIM1

TIM1 pin configuration GPIO configuration

TIM1_CHx
Input capture channel x Input floating

Output compare channel x Alternate function push-pull

TIM1_CHxN Complementary output channel x Alternate function push-pull

TIM1_BKIN Break input Input floating

TIM1_ETR External trigger timer input Input floating

Table 20. General-purpose timers TIM2/3/14/16/17

TIM2/3/14/16/17

pin
configuration GPIO configuration

TIM2/3/14/

16/17_CHx

Input capture channel x Input floating

Output compare channel x Alternate function push-pull

TIM2/3_ETR External trigger timer inputx Input floating

www.mm32mcu.com 67/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

Table 21. UART

UART pin configuration GPIO configuration

UARTx_TX Serial-port sending Alternate function push-pull

UARTx_RX Serial-port receiving Input floating/Input pull-up

UARTx_RTS Hardware flow control Alternate function push-pull

UARTx_CTS Hardware flow control Input floating/Input pull-up

Table 22. SPI

SPI pin configuration GPIO configuration

SPIx_SCK
Master Alternate function push-pull

Slave Input floating

SPIx_MOSI

Full duplex/Master Alternate function push-pull

Full duplex/Slave Input floating/Input pull-up

Simplex bidirectional data

wire/Master
Alternate function push-pull

Simplex bidirectional data

wire/Slave
Not used. Can be used as GPIO

SPIx_MISO

Full duplex/Master Input floating/Input pull-up

Full duplex/Slave Alternate function push-pull

Simplex bidirectional data

wire/Master
Not used. Can be used as GPIO

Simplex bidirectional data

wire/Slave
Alternate function push-pull

SPIx_NSS

Hardware master/Slave
Input floating/Input pull-up/Input

pull-down

Hardware master /NSS output

enabled
Alternate function push-pull

Software Not used. Can be used as GPIO

Table 23. I2C

I2C pin configuration GPIO configuration

I2Cx_SCL I2C clock Alternate function open drain

I2Cx_SDA I2C data Alternate function open drain

Table 24. ADC

ADC pin GPIO configuration

ADC Analog input

Table 25. Other I/Os

www.mm32mcu.com 68/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

pin configuration GPIO configuration

MCO Clock output Alternate function push-pull

EXTI input lines External input interrupts
Input floating/Input pull-up/ input

pull-down

6.2 Alternate function I/O and debug configuration (AFIO)

To optimize the number of peripherals, it is possible to remap some alternate functions
to some other pins. This is achieved by software, by programming the alternate function
register (AFR). In this case, the alternate functions are no longer mapped to their original
assignations.

6.2.1 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1
The external oscillator pin OSC_IN/OSC_OUT can be used as the PD0/PD1 of GPIO by
disabling the internal high-speed clock and setting the alternate function register (AFR).

Note: The external interrupt/event function is not remapped.

6.2.2 SWD alternate function remapping
The debug interface signals are mapped on the GPIO ports as shown in the following
table.

Table 26. Debug Interface Signals

Alternate

functions
GPIO port

SWDIO PA13

SWCLK PA14

To optimize the number of free GPIOs during debugging, this mapping can be config-
ured by setting the AF remap and alternate function register, so as to change the above-
mentioned remapping configuration.

6.3 GPIO register description

Table 27. Overview of GPIO Registers

Offset Acronym Register Name Reset Section

0x00 GPIOx_CRL Port configuration low register 0x44444444 section 6.3.1

0x04 GPIOx_CRH Port configuration high register 0x44444444 section 6.3.2

0x08 GPIOx_IDR Port input data register 0x0000XXXX section 6.3.3

0x0C GPIOx_ODR Port output data register 0x00000000 section 6.3.4

0x10 GPIOx_BSRR Port set/reset register 0x00000000 section 6.3.5

www.mm32mcu.com 69/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

Offset Acronym Register Name Reset Section

0x14 GPIOx_BRR Port bits reset register 0x00000000 section 6.3.6

0x18 GPIOx_LCKR Port configuration lock register 0x00000000 section 6.3.7

0x20 GPIOx_AFRL Port alternate-function register low 0x00000000 section 6.3.8

0x24 GPIOx_AFRH Port alternate-function register high 0x00000000 section 6.3.9

6.3.1 Port configuration low register(GPIOx_CRL)(x = A..D)
Offset address: 0x00

Reset value:0x4444 4444

rwrwrwrwrwrwrw rw

rwrwrwrwrwrwrw rw

 CNF7 CNF5 CNF6 CNF4

 CNF3 CNF2 CNF1 CNF0

 MODE7 MODE5 MODE6 MODE4

 MODE3 MODE1 MODE2 MODE0

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31: 30
27: 26
23: 22
19: 18
15: 14
11: 10
7: 6
3: 2

CNFy rw 0x01 Port x configuration bits(0…7)
These bits are written by software to configure the corre-
sponding I/O port. Refer to Table 17 : Port pin configura-
tion
In input mode (MODE = 00):
00: Analog mode
01: Floating input
10: Input with pull-up / pull-down
11: Reserved
In output mode (MODE > 00):
00: General-purpose output push-pull
01: General-purpose output Open-drain
10: Alternate functionsoutput push-pull
11: Alternate functionsoutput Open-drain

29: 28
25: 24
21: 20
17: 16
13: 12
9: 8
5: 4
1: 0

MODEy rw 0x00 Port x mode bits(y = 0…7)
These bits are written by software to configure the corre-
sponding I/O port. Refer to Table 17 : Port pin configura-
tion
00: Input mode (reset state)
01: Output mode
10: Reserved
11: Reserved

www.mm32mcu.com 70/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

6.3.2 Port configuration high register(GPIOx_CRH)(x = A..D)
Offset address: 0x04

Reset value: 0x4444 4444

rwrwrwrwrwrwrw rw

rwrwrwrwrwrwrw rw

 CNF15 CNF13 CNF14 CNF12

 CNF11 CNF10 CNF9 CNF8

 MODE15 MODE13 MODE14 MODE12

 MODE11 MODE9 MODE10 MODE8

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31: 30
27: 26
23: 22
19: 18
15: 14
11: 10
7: 6
3: 2

CNFy rw 0x01 Port x configuration bits(8…15)
These bits are written by software to configure the corre-
sponding I/O port. Refer to Table 17 : Port pin configura-
tion
In input mode (MODE = 00):
00: Analog mode
01: Floating input
10: Input with pull-up / pull-down
11: Reserved
In output mode (MODE[1: 0] > 00):
00: General-purpose output push-pull
01: General-purpose output Open-drain
10: Alternate functionsoutput push-pull
11: Alternate functionsoutput Open-drain

29: 28
25: 24
21: 20
17: 16
13: 12
9: 8
5: 4
1: 0

MODEy rw 0x00 Port x mode bits(y = 8…15)
These bits are written by software to configure the corre-
sponding I/O port. Refer to Table 17 : Port pin configura-
tion
00: Input mode (reset state)
01: Output mode
10: Reserved
11: Reserved

6.3.3 Port input data register(GPIOx_IDR)(x = A..D)
Offset address: 0x08

Reset value: 0x0000 XXXX

www.mm32mcu.com 71/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

 IDR

Reserved

r

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31: 16 Reserved Always read as 0.
15: 0 IDRy r 0xXXXX Port input data(y = 0..15)

These bits are read only and can be accessed in Word
(16 bits) mode only. They contain the input value of the
corresponding I/O port.

6.3.4 Port output data register(GPIOx_ODR)(x = A..D)
Offset address: 0x0C

Reset value: 0x0000 0000

 ODR

Reserved

rw

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31: 16 Reserved Always read as 0.
15: 0 ODRy rw 0x0000 Port output data(y = 0..15)

These bits can be read and written by software and can
be accessed in Word (16 bits) mode only.
Note: For GPIOx_BSRR (x = A-E), the ODR bits can be individ-

ually set and cleared.

6.3.5 Port set/reset register(GPIOx_BSRR)(x = A..D)
Offset address: 0x10

Reset value: 0x0000 0000

www.mm32mcu.com 72/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

BR15 BR14 BR11BR12BR13 BR10 BR9 BR1BR2BR3BR4BR5BR6BR7BR8 BR0

BS15 BS14 BS11BS12BS13 BS10 BS9 BS1BS2BS3BS4BS5BS6BS7BS8 BS0

171819202122232425 162728293031 26

123456789 01112131415 10

w wwwwwwwwwwwwww w

w wwwwwwwwwwwwww w

Bit Field Type Reset Description

31: 16 BRy w 0x0000 Port x Reset bit y (y =0-15)
These bits are write-only and can be accessed inWord (16
bits) mode only.
0: No action on the corresponding ODRy bit
1: Reset the corresponding ODRy bit

15: 0 BSy w 0x0000 Port x Set bit y (y =0-15)
These bits are write-only and can be accessed inWord (16
bits) mode only.
0: No action on the corresponding ODRy bit
1: Set the corresponding ODRy bit to ’1’

6.3.6 Port bits reset register(GPIOx_BRR)(x = A..D)
Offset address: 0x14

Reset value: 0x0000 0000

 BR

Reserved

w

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31: 16 Reserved Always read as 0
15: 0 BRy w 0x0000 Port x Reset bit y (y =0-15)

These bits are write-only and can be accessed inWord (16
bits) mode only.
0: No action on the corresponding ODRy bit
1: Reset the corresponding ODRy bit

6.3.7 Port configuration lock register(GPIOx_LCKR)(x = A..D)
This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the

www.mm32mcu.com 73/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit it is no longer possible to modify the value
of the port bit until the next reset. Each lock bit freezes the corresponding 4 bits of the
control register (CRL, CRH).

Address offset: 0x18

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

 LCK

LCKKReserved

rw

rw

Bit Field Type Reset Description

31: 17 Reserved Always read as 0
16 LCKK rw 0x00 Lock key

This bit can be read anytime. It can only be modified using
the Lock Key Writing Sequence.
0: Port configuration ock key not active
1: Port configuration ock key active, GPIOx_LCKR regis-
ter is locked until the next reset.
LOCK key writing sequence:
Write 1->Write 0->Write 1->Read 0->Read 1
The last read is optional but confirms that the lock is active.
Note: During the LOCK Key Writing sequence, the value of

LCK[15:0] must not change. Any error in the lock sequence will

abort the lock.

15: 0 LCKy rw 0x00 Port x Lock bits y(y = 0…15)
These bits are read and written but can only be written
when the LCKK bit is 0.
0: Port configuration not locked
1: Port configuration locked

6.3.8 Port alternate-function register low(GPIOx_AFRL)(x = A..D)
Offset address: 0x20

Reset value: 0x0000 0000

www.mm32mcu.com 74/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

rwrwrwrw

rwrwrwrw

 AFR3 AFR2 AFR1 AFR0

 AFR4 AFR5 AFR6 AFR7

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31: 0 AFRy rw 0x0000
0000

Port x alternate-function Select bit y (y =0-7)
These bits can be written by software to configuration IOAl-
ternate functions.
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

6.3.9 Port alternate-function register high(GPIOx_AFRH)(x = A..D)
Offset address: 0x24

Reset value: 0x0000 0000

rwrwrwrw

rwrwrwrw

 AFR11 AFR10 AFR9 AFR8

 AFR12 AFR13 AFR14 AFR15

171819202122232425 162728293031 26

123456789 01112131415 10

www.mm32mcu.com 75/513

UM_MM32SPIN05x_q_Ver1.19
GENERAL-PURPOSE I/O(GPIO)

Bit Field Type Reset Description

31: 0 AFRy rw 0x0000
0000

Port x alternate-function Select bit y (y =8-15)
These bits can be written by software to configuration IOAl-
ternate functions.
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

www.mm32mcu.com 76/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

7 Interrupts and events(EXTI)

Interrupts and events(EXTI)

7.1 Nested Vectored Interrupt Controller

Features

• Interrupts can be masked (except NMI)
• 16 programmable priority levels (4 bits of interrupt priority are used)
• Low-latency exception and interrupt handling
• Power management control
• Implementation of System Control Registers

The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more informa-
tion on exceptions and NVIC programming, refer to CPU programming manual.

7.1.1 SysTick calibration value register
The SysTick calibration value is set to 9000, which gives a reference time base of 1 ms
with the SysTick clock set to 3 MHz (HCLK/8, HCLK = 24 MHz).

7.1.2 Interrupt and exception vectors
The following tables are the vector tables for the product series.

Table 28. Vectors for the Product Series

Position Priority
Type of

priority
Acronym Description Address

- - - Reserved 0x0000_0000

-3 Fixed Reset Reset 0x0000_0004

-2 Fixed NMI
Non maskable interrupt.

The RCC Clock Security System

(CSS) is linked to the NMI vector.

0x0000_0008

-1 Fixed HardFault All class of fault 0x0000_000C

0 Settable MemManage Memory management 0x0000_0010

1 Settable BusFault
Pre-fetch fault, memory access

fault
0x0000_0014

www.mm32mcu.com 77/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

Position Priority
Type of

priority
Acronym Description Address

2 Settable UsageFault
Undefined instruction or illegal

state
0x0000_0018

- - - Reserved

0x0000_001C

∼

0x0000_002B

3 Settable SVCall
System service call via SWI

instruction
0x0000_002C

4 Settable DebugMonitor Debug Monitor 0x0000_0030

- - - Reserved 0x0000_0034

5 Settable PendSV
Pendable request for system

service
0x0000_0038

6 Settable SysTick System tick timer 0x0000_003C

0 7 Settable WWDG/IWDG Watchdog interrupt 0x0000_0040

1 8 Settable PVD
PVD through EXTI 16 Line

detection interrupt
0x0000_0044

2 9 - - Reserved 0x0000_0048

3 10 Settable Flash Flash global interrupt 0x0000_004C

4 11 Settable RCC RCC global interrupt 0x0000_0050

5 12 Settable EXTI0_1 EXTI line [1:0] interrupt 0x0000_0054

6 13 Settable EXTI2_3 EXTI line [3:2] interrupt 0x0000_0058

7 14 Settable EXTI4_15 EXTI line [15:4] interrupt 0x0000_005C

8 15 Settable HWDIV HWDIV global interrupt 0x0000_0060

9 16 Settable DMA1 Channel 1 DMA1 Channel 1 global interrupt 0x0000_0064

10 17 Settable DMA1 Channel 2_3
DMA1 Channel 2_3 global

interrupt
0x0000_0068

11 18 Settable DMA1 Channel 4_5
DMA1 Channel 4_5 global

interrupt
0x0000_006C

12 19 Settable ADC_COMP
ADC and COMP interrupt

(EXTI19)
0x0000_0070

13 20 Settable TIM1_BRK_UP_TRG_COM
TIM1 Break, Update, Trigger

and Commutation interrupt
0x0000_0074

14 21 Settable TIM1_CC
TIM1 Capture and Compare

interrupt
0x0000_0078

15 22 Settable TIM2 TIM2 global interrupt 0x0000_007C

16 23 Settable TIM3 TIM3 global interrupt 0x0000_0080

17 - - - Reserved 0x0000_0084

18 - - - Reserved 0x0000_0088

19 26 Settable TIM14 TIM14 global interrupt 0x0000_008C

20 - - - Reserved 0x0000_0090

www.mm32mcu.com 78/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

Position Priority
Type of

priority
Acronym Description Address

21 28 Settable TIM16 TIM16 global interrupt 0x0000_0094

22 29 Settable TIM17 TIM17 global interrupt 0x0000_0098

23 30 Settable I2C1 I2C1 global interrupt 0x0000_009C

24 - - - Reserved 0x0000_00A0

25 32 Settable SPI1 SPI1 global interrupt 0x0000_00A4

26 33 Settable SPI2 SPI2 global interrupt 0x0000_00A8

27 34 Settable UART1 UART1 global interrupt 0x0000_00AC

28 35 Settable UART2 UART2 global interrupt 0x0000_00B0

29 - - - Reserved 0x0000_00B4

30 - - - Reserved 0x0000_00B8

31 - - - Reserved 0x0000_00BC

7.2 External interrupt/event controller (EXTI)

The external interrupt/event controller, consisting of edge detectors, is used for manag-
ing external and internal asynchronous events/interrupts, and for corresponding event
requests sent to the CPU/ interrupt controller, and a wake-up request transmitted to the
power manager.

The event/interrupt requests can be generated by the edge detector. Each input line can
be independently configured to select the type (pulse or pending) and the corresponding
trigger event (rising or falling or both). Each line can also be masked independently. A
pending register maintains the status line of the interrupt requests.

7.2.1 Main features
The main features of EXTI controller are as follows:

• Independent trigger and mask on each interrupt/event line
• Dedicated status bit for each interrupt line
• Generation of software event/interrupt requests
• Detection of external signal with pulse width lower than APB2 clock period. Refer to the
electrical characteristics section of the datasheet for details on this parameter.

www.mm32mcu.com 79/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

7.2.2 Block diagram

677630

AMBA APB bus

Peripheral interface

Interrupt
mask

register

Rending
request
register

Software
interrupt

event
register

Rising
trigger

selection
register

Falling
trigger

selection
register

Event
mask

register

Edge detect
circuit

Input
Line

Pulse
generator

To NVIC Interrupt
Controller

PCLK 2

Figure 19. External Interrupt/Event Controller Block Diagram

7.2.3 Wakeup event management
The device(WFE) is able to handle external or internal events (WFE). The wakeup event
can be generated either by:

• Enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the CPU’s Control register.
When the CPU resumes from WFE, the peripheral interrupt pending bit and the periph-
eral NVIC IRQ channel pending bit (in the NVIC interrupt clear pending register) have
to be cleared.

• Or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section ”Functional Description”.

7.2.4 Functional description
To generate an interrupt, an interrupt line should be configured and enabled. This is done
by programming the two trigger registers with the desired edge detection and by enabling
the interrupt request by writing a‘1’to the corresponding bit in the interrupt mask regis-
ter. When the selected edge occurs on the external interrupt line, an interrupt request is

www.mm32mcu.com 80/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

generated. The pending bit corresponding to the interrupt line is also set. This request is
reset by writing a‘1’in the pending register.

To generate an event, an event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a‘1’to the corresponding bit in the event mask register. When
the selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set.

An interrupt/event request can also be generated by software by writing a ‘1’in the
software interrupt/event register.

Hardware interrupt selection
To configure the several lines as interrupt sources, use the following procedure:

• Configure the mask bits of the Interrupt lines (EXTI_IMR)
• Configure the Trigger Selection bits of the Interrupt lines (EXTI_RTSR and EXTI_FTSR)
• Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
External Interrupt Controller (EXTI) so that an interrupt coming from one of the lines can
be correctly acknowledged.

Hardware event selection
To configure the several lines as event sources, use the following procedure:

• Configure the mask bits of the Event lines (EXTI_EMR)
• Configure the Trigger Selection bits of the Event lines (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection
The several lines can be configured as software interrupt/event lines. The following is the
procedure to generate a software interrupt.

• Configure the mask bits of the Interrupt/Event lines (EXTI_IMR, EXTI_EMR)
• Set the required bit of the software interrupt register (EXTI_SWIER)

7.2.5 External interrupt/event line mapping
The GPIOs are connected to the 16 external interrupt/event lines in the following manner:

www.mm32mcu.com 81/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

268009

EXTI0

EXTI0[3:0] bits in SYSCFG_EXTICR1 register

EXTI13

EXTI13[3:0] bits in SYSCFG_EXTICR4 register

EXTI3

EXTI3[3:0] bits in SYSCFG_EXTICR1 register

EXTI4

EXTI4[3:0] bits in SYSCFG_EXTICR2 register

EXTI15

EXTI15[3:0] bits in SYSCFG_EXTICR4 register

PA0

PB0

PC0

PD0

PA3

PB3

PC3

PD3

PA4

PB4

PC4

PD4

PA13

PB13

PC13

PD13

PA15

PB15

PC15

PD15

Figure 20. External Interrupt/Event GPIO Mapping

Note: GPIO corresponding to the above figure may differ due to actual chip package, and the actual

package shall prevail.

The other EXTI lines are connected as follows:

• EXTI line 16 is connected to the PVD output
• EXTI line 19 is connected to Comparator 1 output
• EXTI line 24 is connected to IWDG interrupt

7.3 EXTI register description

www.mm32mcu.com 82/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

Table 29. EXTI Register Overview

Offset Acronym Register Name Reset Section

0x00 EXTI_IMR Interrupt Mask Register 0x00000000 section 7.3.1

0x04 EXTI_EMR Event Mask Register 0x00000000 section 7.3.2

0x08 EXTI_RTSR Rising Trigger Selection Register 0x00000000 section 7.3.3

0x0C EXTI_FTSR Falling Trigger Selection Register 0x00000000 section 7.3.4

0x10 EXTI_SWIER Software Interrupt Event Register 0x00000000 section 7.3.5

0x14 EXTI_PR Pending Register 0x00000000 section 7.3.6

7.3.1 Interrupt Mask Register(EXTI_IMR)
Offset address: 0x00

Reset value: 0x0000 0000

15 1234567891011121314 0

31 1718192021222324252627282930 16

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rw

IMR16Reserved

IMR15 IMR14 IMR13 IMR12 IMR11 IMR10 IMR9 IMR8 IMR7 IMR6 IMR5 IMR4 IMR3 IMR2 IMR1 IMR0

IMR19IMR24

rw

Reserved Reserved

Bit Field Type Reset Description

31 : 25 Reserved Always read as 0.
24 IMRx rw 0x00 Interrupt Mask on line x

1 = Interrupt request from Line x is not masked
0 = Interrupt request from Line x is masked

23 : 20 Reserved Always read as 0.
19 IMRx rw 0x00 Interrupt Mask on line x

1 = Interrupt request from Line x is not masked
0 = Interrupt request from Line x is masked

18 : 17 Reserved Always read as 0.
16 : 0 IMRx rw 0x00 Interrupt Mask on line x

1 = Interrupt request from Line x is not masked
0 = Interrupt request from Line x is masked

7.3.2 Event Mask Register(EXTI_EMR)
Offset address: 0x04

Reset value: 0x0000 0000

www.mm32mcu.com 83/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

15 1234567891011121314 0

31 1718192021222324252627282930 16

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rw

EMR16Reserved

EMR15 EMR14 EMR13 EMR12 EMR11 EMR10 EMR9 EMR8 EMR7 EMR6 EMR5 EMR4 EMR3 EMR2 EMR1 EMR0

EMR19EMR24 Reserved

rw

Reserved

Bit Field Type Reset Description

31 : 25 Reserved Always read as 0.
24 EMRx rw 0x00 Event Mask on line x

1 = Event request from Line x is not masked
0 = Event request from Line x is masked

23 : 20 Reserved Always read as 0.
19 EMRx rw 0x00 Event Mask on line x

1 = Event request from Line x is not masked
0 = Event request from Line x is masked

18 : 17 Reserved Always read as 0.
16 : 0 EMRx rw 0x00 Event Mask on line x

1 = Event request from Line x is not masked
0 = Event request from Line x is masked

7.3.3 Rising Trigger Selection Register(EXTI_RTSR)
Offset address: 0x08

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rw

TR16Reserved

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

TR19

rw

TR24 Reserved Reserved

Bit Field Type Reset Description

31 : 25 Reserved Always read as 0.
24 TRx rw 0x00 Rising trigger event configuration bit of line x

1 =Rising trigger enabled (for Event and Interrupt) for input
line
0 = Rising trigger disabled (for Event and Interrupt) for in-
put line

23 : 20 Reserved Always read as 0.

www.mm32mcu.com 84/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

Bit Field Type Reset Description

19 TRx rw 0x00 Rising trigger event configuration bit of line x
1 =Rising trigger enabled (for Event and Interrupt) for input
line
0 = Rising trigger disabled (for Event and Interrupt) for in-
put line

18 : 17 Reserved Always read as 0.
16 : 0 TRx rw 0x00 Rising trigger event configuration bit of line x

1 =Rising trigger enabled (for Event and Interrupt) for input
line
0 = Rising trigger disabled (for Event and Interrupt) for in-
put line

7.3.4 Falling Trigger Selection Register(EXTI_FTSR)
Offset address: 0x0C

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rw

TR16Reserved

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

TR19

rw

TR24 Reserved Reserved

Bit Field Type Reset Description

31 : 25 Reserved Always read as 0.
24 TRx rw 0x00 Falling trigger event configuration bit of line x

1 = Falling trigger enabled (for Event and Interrupt) for in-
put line
0 = Falling trigger disabled (for Event and Interrupt) for
input line

23 : 20 Reserved Always read as 0.
19 TRx rw 0x00 Falling trigger event configuration bit of line x

1 = Falling trigger enabled (for Event and Interrupt) for in-
put line
0 = Falling trigger disabled (for Event and Interrupt) for
input line

18 : 17 Reserved Always read as 0.
16 : 0 TRx rw 0x00 Falling trigger event configuration bit of line x

1 = Falling trigger enabled (for Event and Interrupt) for in-
put line
0 = Falling trigger disabled (for Event and Interrupt) for
input line

www.mm32mcu.com 85/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

7.3.5 Software Interrupt Event Register(EXTI_SWIER)
Offset address: 0x10

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rw

SWIER16Reserved

SWIER15 SWIER14 SWIER13 SWIER12 SWIER11 SWIER10 SWIER9 SWIER8 SWIER7 SWIER6 SWIER5 SWIER4 SWIER3 SWIER2 SWIER1 SWIER0

SWIER19

rw

SWIER24 Reserved Reserved

Bit Field Type Reset Description

31 : 25 Reserved Always read as 0.
24 SWIERx rw 0x00 Software interrupt on line x

If the interrupt is enabled on this line in EXTI_INTMASK
and EXTI_EVNTMASK, write ’1’ to this bit when it is set to
’0’, so as to set the corresponding pending bit in EXTI_PR,
and to generate an interrupt request.
Note: This bit is cleared by clearing the corresponding bit of

EXTI_PEND (by writing a ’1’ into the bit)

23 : 20 Reserved Always read as 0.
19 SWIERx rw 0x00 Software interrupt on line x

If the interrupt is enabled on this line in EXTI_INTMASK
and EXTI_EVNTMASK, write ’1’ to this bit when it is set to
’0’, so as to set the corresponding pending bit in EXTI_PR,
and to generate an interrupt request.
Note: This bit is cleared by clearing the corresponding bit of

EXTI_PEND (by writing a ’1’ into the bit)

18 : 17 Reserved Always read as 0.
16 : 0 SWIERx rw 0x00 Software interrupt on line x

If the interrupt is enabled on this line in EXTI_INTMASK
and EXTI_EVNTMASK, write ’1’ to this bit when it is set to
’0’, so as to set the corresponding pending bit in EXTI_PR,
and to generate an interrupt request.
Note: This bit is cleared by clearing the corresponding bit of

EXTI_PEND (by writing a ’1’ into the bit)

7.3.6 Pending register(EXTI_PR)
Offset address: 0x14

Reset value: 0x0000 0000

www.mm32mcu.com 86/513

UM_MM32SPIN05x_q_Ver1.19
INTERRUPTS AND EVENTS(EXTI)

171819202122232425 162728293031 26

123456789 01112131415 10

rc_w1 rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1rc_w1 rc_w1

rc_w1

PR16Reserved

PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

PR19

rc_w1

PR24 Reserved Reserved

rc_w1

Bit Field Type Reset Description

31 : 25 Reserved Always read as 0.
24 PRx rc_w1 0x00 Pending bit

1 = selected trigger request occurred
0 = No trigger request occurred
This bit is set to ’1’ when the selected edge event arrives
on the external interrupt line. This bit is cleared by writing a
‘1’into the bit or by changing the polarity of edge detection.

23 : 20 Reserved Always read as 0.
19 PRx rc_w1 0x00 Pending bit

1 = selected trigger request occurred
0 = No trigger request occurred
This bit is set to ’1’ when the selected edge event arrives
on the external interrupt line. This bit is cleared by writing a
‘1’into the bit or by changing the polarity of edge detection.

18 : 17 Reserved Always read as 0.
16 : 0 PRx rc_w1 0x00 Pending bit

1 = selected trigger request occurred
0 = No trigger request occurred
This bit is set to ’1’ when the selected edge event arrives
on the external interrupt line. This bit is cleared by writing a
‘1’into the bit or by changing the polarity of edge detection.

www.mm32mcu.com 87/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

8 Direct memory access con-

troller(DMA)
Direct memory access controller(DMA)

8.1 DMA introduction

Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by
DMA without any CPU actions. This keeps CPU resources free for other operations.

The DMA controller has 5 channels, each dedicated tomanagingmemory access requests
from several peripherals.

8.2 DMA main features
• 5 independently configurable channels.
• Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.

• Priorities between requests from 5 channels are software-programmable (4 levels con-
sisting of very high, high, medium, low) or hardware in case of equality (request 0 has
priority over request 1, etc.)

• Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.

• Support for circular buffer management.
• 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically or together in a single interrupt request for each channel

• Memory-to-memory transfer
• Peripheral-to-memory and memory-to-peripheral transfers
• Access to Flash, SRAM, SRAM peripherals, APB1, APB2 and AHB peripherals as
source and destination

• Programmable number of data to be transferred: up to 65536.

The block diagram is shown in the following figure:

www.mm32mcu.com 88/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

628500

Cortex-M0

DMA

Ch.1

Ch.2

up to

Ch.5

Arbiter

AHB Slave

System

DMA

Flash

SRAM

GPIOA

GPIOB GPIOC GPIOD

I2C1

TIM3

TIM2
UART1
SPI1

ADC1

TIM1

TIM16

TIM17

APB

UART2

Reset & clock

control (RCC)

DMA Request

Bridge

Flash interface

B
u

s
 m

a
tr

ix

Figure 21. DMA Block Diagram

8.3 Functional description
The DMA controller performs direct memory transfer by sharing the system bus with the
CPU. The DMA request may stop the CPU access to the system bus for some bus cycles,
when the CPU and DMA are targeting the same destination (RAM or peripheral). The bus
arbiter implements round-robin scheduling, thus ensuring at least half of the system bus
bandwidth (both to memory and peripheral) for the CPU.

8.3.1 DMA transactions
After an event, the peripheral sends a request signal to the DMA Controller. The DMA
controller serves the request depending on the channel priorities. As soon as the DMA
Controller accesses the peripheral, an Acknowledge is sent to the peripheral by the DMA
Controller. The peripheral releases its request as soon as it gets the Acknowledge from the
DMAController. Once the request is deasserted by the peripheral, and the DMAController
release the Acknowledge. If there are more requests, the peripheral can initiate the next
transaction.

In summary, each DMA transfer consists of three operations:

1. The loading of data from the peripheral data register or a location in memory addressed
through DMA_CMARx register.

2. The storage of the data loaded to the peripheral data register or a location in memory
addressed through DMA_CMARx register.

3. The post-decrementing of the DMA_CNDTRx register, which contains the number of
transactions that have still to be performed.

www.mm32mcu.com 89/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

8.3.2 DMA arbiter
The arbiter manages the channel requests based on their priority and launches the pe-
ripheral/memory access sequences. The priorities are managed in two stages:

• Software: each channel priority can be configured in the DMA_CCRx register. There
are four levels:
– Very high priority
– High priority
– Medium priority
– Low priority

• Hardware: if 2 requests have the same software priority level, the channel with the
lowest number will get priority versus the channel with the highest number. For example,
channel 2 gets priority over channel 4.

8.3.3 DMA channels
Each channel can handle DMA transfer between a peripheral register located at a fixed
address and a memory address. The amount of data to be transferred (up to 65535) is
programmable. The register which contains the amount of data items to be transferred is
decremented after each transaction.

Programmable data sizes
Transfer data sizes of the peripheral and memory are fully programmable through the
PSIZE and MSIZE bits in the DMA_CCRx register.

Pointer incrementation
Peripheral and memory pointers can optionally be automatically post-incremented after
each transfer depending on the PINC and MINC bits in the DMA_CCRx register. If the
incremented mode is enabled, the address of the next transfer will be the address of the
previous one incremented by 1, 2 or 4 depending on the chosen data size. The first
transfer address is the one programmed in the DMA_CPARx/DMA_CMARx registers. If
the channel is configured in noncircular mode, no DMA request is served after the last
transfer (that is once the number of data items to be transferred has reached zero).

Channel configuration procedure
The following sequence should be followed to configure a DMA channel x (where x is the
channel number):

1. Set the peripheral register address in the DMA_CPARx register. The data will be
moved from/ to this address to/ from thememory after the transfer request of peripheral
data.

2. Set the memory address in the DMA_CMARx register. The data will be written to or
read from this memory after the transfer request of peripheral data.

3. Configure the total number of data to be transferred in the DMA_CNDTRx register.
After each data transmission, this value will be decremented.

4. Configure the channel priority using the PL [1:0] bits in the DMA_CCRx register.
5. Configure data transfer direction, circular mode, peripheral & memory incremented

www.mm32mcu.com 90/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

mode, peripheral & memory data size, and interrupt after half and/or full transfer in the
DMA_CCRx register.

6. Activate the channel by setting the ENABLE bit in the DMA_CCRx register. As soon as
the channel is enabled, it can serve any DMA request from the peripheral connected
on the channel.

Once half of the bytes are transferred, the half-transfer flag (HTIF) is set and an interrupt is
generated if the Half-Transfer Interrupt Enable bit (HTIE) is set. At the end of the transfer,
the Transfer Complete Flag (TCIF) is set to ’1’ and an interrupt is generated if the Transfer
Complete Interrupt Enable bit (TCIE) is set.

Circular mode
Circular mode is available to handle circular buffers and continuous data flows (e.g. ADC
scan mode). This feature can be enabled using the CIRC bit in the DMA_CCRx register.
When circular mode is activated, the number of data to be transferred is automatically
reloaded with the initial value programmed during the channel configuration phase, and
the DMA requests continue to be served.

Memory-to-memory mode
The DMA channels can also work without being triggered by a request from a peripheral.
This mode is called Memory to Memory mode. If the MEM2MEM bit in the DMA_CCRx
register is set, then the channel initiates transfers as soon as it is enabled by software
by setting the Enable bit (EN) in the DMA_CCRx register. The transfer stops once the
DMA_CNDTRx register reaches zero. Memory to Memory mode may not be used at the
same time as Circular mode.

8.3.4 Programmable data width, data alignment and endians
When PSIZE and MSIZE are not equal, the DMA performs some data alignments as de-
scribed in the following table.

Table 31. Programmable Data Width and Endian Behavior (When Bits PINC = MINC = 1)

Source

port

width

Destination

port width

Number of data

items to be

transferred

(NDT)

Source content

(address / data)
Transfer operations

Destination content

(address / data)

8 8 4 0x0/B0

0x1/B1

0x2/B2

0x3/B3

1: read B0[7: 0] @ 0x0,

write B0[7: 0] @ 0x0

2: read B1[7: 0] @ 0x1,

write B1[7: 0] @ 0x1

3: read B2[7: 0] @ 0x2,

write B2[7: 0] @ 0x2

4: read B3[7: 0] @ 0x3,

write B3[7: 0] @ 0x3

0x0/B0

0x1/B1

0x2/B2

0x3/B3

www.mm32mcu.com 91/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

Source

port

width

Destination

port width

Number of data

items to be

transferred

(NDT)

Source content

(address / data)
Transfer operations

Destination content

(address / data)

8 16 4 0x0/B0

0x1/B1

0x2/B2

0x3/B3

1: read B0[7: 0] @ 0x0,

write 00B0[15: 0] @ 0x0

2: read B1[7: 0] @ 0x1,

write 00B1[15: 0] @ 0x2

3: read B2[7: 0] @ 0x2,

write 00B2[15: 0] @ 0x4

4: read B3[7: 0] @ 0x3,

write 00B3[15: 0] @ 0x6

0x0/00B0

0x2/00B1

0x4/00B2

0x6/00B3

8 32 4 0x0/B0

0x1/B1

0x2/B2

0x3/B3

1: read B0[7: 0] @ 0x0,

write 000000B0[31: 0] @ 0x0

2: read B1[7: 0] @ 0x1,

write 000000B1[31: 0] @ 0x4

3: read B2[7: 0] @ 0x2,

write 000000B2[31: 0] @ 0x8

4: read B3[7: 0] @ 0x3,

write 000000B3[31: 0] @ 0xC

0x0/000000B0

0x4/000000B1

0x8/000000B2

0xC/000000B3

16 8 4 0x0/B1B0

0x2/B3B2

0x4/B5B4

0x6/B7B6

1: read B1B0[15: 0] @ 0x0,

write B0[7: 0] @ 0x0

2: read B3B2[15: 0] @ 0x2,

write B2[7: 0] @ 0x1

3: read B5B4[15: 0] @ 0x4,

write B4[7: 0] @ 0x2

4: read B7B6[15: 0] @ 0x6,

write B6[7: 0] @ 0x3

0x0/B0

0x1/B2

0x2/B4

0x3/B6

16 16 4 0x0/B1B0

0x2/B3B2

0x4/B5B4

0x6/B7B6

1: read B1B0[15: 0] @ 0x0,

write B1B0[15: 0] @ 0x0

2: read B3B2[15: 0] @ 0x2,

write B3B2[15: 0] @ 0x2

3: read B5B4[15: 0] @ 0x4,

write B5B4[15: 0] @ 0x4

4: read B7B6[15: 0] @ 0x6,

write B7B6[15: 0] @ 0x6

0x0/B1B0

0x2/B3B2

0x4/B5B4

0x6/B7B6

www.mm32mcu.com 92/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

Source

port

width

Destination

port width

Number of data

items to be

transferred

(NDT)

Source content

(address / data)
Transfer operations

Destination content

(address / data)

16 32 4 0x0/B1B0

0x2/B3B2

0x4/B5B4

0x6/B7B6

1: read B1B0[15: 0] @ 0x0,

write 0000B1B0[31: 0] @ 0x0

2: read B3B2[15: 0] @ 0x2,

write 0000B3B2[31: 0] @ 0x4

3: read B5B4[15: 0] @ 0x4,

write 0000B5B4[31: 0] @ 0x8

4: read B7B6[15: 0] @ 0x6,

write 0000B7B6[31: 0] @ 0xC

0x0/0000B1B0

0x4/0000B3B2

0x8/0000B5B4

0xC/0000B7B6

32 8 4 0x0/B3B2B1B0

0x4/B7B6B5B4

0x8/BBBAB9B8

0xC/BFBEBDBC

1: read B3B2B1B0[31: 0] @ 0x0,

write B0[7: 0] @ 0x0

2: read B7B6B5B4[31: 0] @ 0x4,

write B4[7: 0] @ 0x1

3: read BBBAB9B8[31: 0] @ 0x8,

write B8[7: 0] @ 0x2

4: read BFBEBDBC[31: 0] @ 0xC,

write BC[7: 0] @ 0x3

0x0/B0

0x1/B4

0x2/B8

0x3/BC

32 16 4 0x0/B3B2B1B0

0x4/B7B6B5B4

0x8/BBBAB9B8

0xC/BFBEBDBC

1: read B3B2B1B0[31: 0] @ 0x0,

write B1B0[15: 0] @ 0x0

2: read B7B6B5B4[31: 0] @ 0x4,

write B5B4[15: 0] @ 0x2

3: read BBBAB9B8[31: 0] @ 0x8,

write B8B8[15: 0] @ 0x4

4: read BFBEBDBC[31: 0] @ 0xC,

write BDBC[15: 0] @ 0x6

0x0/B1B0

0x2/B5B4

0x4/B9B8

0x6/BDBC

32 32 4 0x0/B3B2B1B0

0x4/B7B6B5B4

0x8/BBBAB9B8

0xC/BFBEBDBC

1: read B3B2B1B0[31: 0] @ 0x0,

write B3B2B1B0[31: 0] @ 0x0

2: read B7B6B5B4[31: 0] @ 0x4,

write B7B6B5B4[31: 0] @ 0x4

3: read BBBAB9B8[31: 0] @ 0x8,

write BBBAB8B8[31: 0] @ 0x8

4: read BFBEBDBC[31: 0] @ 0xC,

write BFBEBDBC[31: 0] @ 0xC

0x0/B3B2B1B0

0x4/B7B6B5B4

0x8/BBBAB9B8

0xC/BFBEBDBC

Addressing an AHB peripheral that does not support byte or
halfword write operations
When the DMA initiates an AHB byte or halfword write operation, the data are duplicated

www.mm32mcu.com 93/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

on the unused lanes of the HWDATA[31:0] bus. So when the used AHB slave peripheral
does not support byte or halfword write operations (when HSIZE is not used by the periph-
eral) and does not generate any error, the DMA writes the 32 HWDATA bits as shown in
the two examples below:

• To write the halfword“0xABCD”, the DMA sets the HWDATA bus to“0xABCDABCD”
with HSIZE = HalfWord

• To write the byte“0xAB”, the DMA sets the HWDATA bus to“0xABABABAB”with
HSIZE = Byte‘0xABABABAB’.

Assuming that the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take
the HSIZE data into account, it will transform any AHB byte or halfword operation into a
32-bit APB operation in the following manner:

• an AHB byte write operation of the data“0xB0”to 0x0 (or to 0x1, 0x2 or 0x3) will be
converted to an APB word write operation of the data“0xB0B0B0B0”to 0x0.

• an AHB halfword write operation of the data“0xB1B0”to 0x0 (or to 0x2) will be con-
verted to an APB word write operation of the data“0xB1B0B1B0”to 0x0.

For instance, to write the APB backup registers (16-bit registers aligned to a 32-bit address
boundary), the memory source size (MSIZE) must be configured to “16-bit”and the
peripheral destination size (PSIZE) to“32-bit”.

8.3.5 Error management
A DMA transfer error can be generated by reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or a write access, the faulty
channel is automatically disabled through a hardware clear of its EN bit in the correspond-
ing Channel configuration register (DMA_CCRx). The channel’s transfer error interrupt
flag (TEIF) in the DMA_IFR register is set and an interrupt is generated if the transfer
error interrupt enable bit (TEIE) in the DMA_CCRx register is set.

8.3.6 Interrupts
An interrupt can be produced on a Half-transfer, Transfer complete or Transfer error for
each DMA channel. Separate interrupt enable bits are available for flexibility.

Table 32. DMA Interrupt Requests

Interrupt event Event flag Enable Control bit

Half-transfer HTIF HTIE

Transfer complete TCIF TCIE

Transfer error TEIF TEIE

8.3.7 DMA request mapping

DMA controller
The 5 requests from the peripherals TIMx、ADC、SPI、I2C and UART are simply logically
ORed before entering the DMA1, this means that only one request must be enabled at a

www.mm32mcu.com 94/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

time. Refer to the following figure.

The peripheral DMA requests can be independently activated/de-activated by program-
ming the DMA control bit in the registers of the corresponding peripheral.

487345

(1)

(1) (1)

(2)

(2)(2)

(2)

(2)

(2) (2)

(1)

(1)

(2)

(2)

Figure 22. Peripheral DMA Request Mapping

Table 33. Summary of DMA Requests for Each Channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

ADC ADC1(1) ADC1(2)

SPI SPI1_RX SPI1_TX SPI2_RX SPI2_TX

UART UART1_TX (1) UART1_RX(1) UART2_TX(2) UART2_RX(2)

I2C I2C1_TX I2C1_RX

TIM1 TIM1_CH1 TIM1_CH2

TIM1_CH4

TIM1_TRIG

TIM1_COM

TIM1_UP

TIM1_CH3

TIM2 TIM2_CH3 TIM2_UP TIM2_CH2 TIM2_CH4 TIM2_CH1

TIM3 TIM3_CH3
TIM3_CH4

TIM3_UP

TIM3_CH1

TIM3_TRIG

TIM16
TIM16_CH1(1)

TIM16_UP(1)

TIM16_CH1(2)

TIM16_UP(2)

www.mm32mcu.com 95/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

TIM17
TIM17_CH1(1)

TIM17_UP(1)

TIM17_CH1(2)

TIM17_UP(2)

1. If the mapping bit in SYSCFG_CFGR register is cleared, the DMA request is mapped
on the DMA channel.

2. If the mapping bit in SYSCFG_CFGR register is set, the DMA request is mapped on
the DMA channel.

8.4 DMA register description

Table 34. Summary of DMA Registers

Offset Acronym Register Name Reset Section

0x00 DMA_ISR DMA interrupt status register 0x00000000 section 8.4.1

0x04 DMA_IFCR DMA interrupt flag clear register 0x00000000 section 8.4.2

0x08 + 20 ×

(n - 1)

DMA_CCRx DMA channel x configuration register 0x00000000 section 8.4.3

0x0C + 20 ×

(n - 1)

DMA_CNDTRx DMA channel x number of data register 0x00000000 section 8.4.4

0x10 + 20 ×

(n - 1)

DMA_CPARx DMA channel x peripheral address regis-

ter

0x00000000 section 8.4.5

0x14 + 20 ×

(n - 1)

DMA_CMARx DMA channel x memory address register 0x00000000 section 8.4.6

8.4.1 DMA interrupt status register(DMA_ISR)
Offset address: 0x00

Reset value: 0x0000 0000

TCIF5HTIF5TEIF5 GIF5

TEIF4 HTIF4 TEIF3GIF4TCIF4 HTIF3 TCIF3 TCIF1HTIF1TEIF1GIF2TCIF2HTIF2TEIF2GIF3 GIF1

Reserved

171819202122232425 162728293031 26

123456789 01112131415 10

rrr r

r rrrrrrrrrrrrr rr

Bit Field Type Reset Description

31 : 20 Reserved Reserved, always read as 0.
19,15,11,
7, 3

TEIFx r 0x00 Channel x transfer error flag(x = 1 ... 5)
This bit is set by hardware. It is cleared by software writing
1 to the corresponding bit in the DMA_IFCR register.
0: No transfer error (TE) on channel x
1: A transfer error (TE) occurred on channel x

www.mm32mcu.com 96/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

Bit Field Type Reset Description

18,14,10,
6, 2

HTIFx r 0x00 Channel x half transfer flag(x = 1 ... 5)
This bit is set by hardware. It is cleared by software writing
1 to the corresponding bit in the DMA_IFCR register.
0: No half transfer (HT) event on channel x
1: A half transfer (HT) event occurred on channel x

17,13,9,
5, 1

TCIFx r 0x00 Channel x transfer complete flag(x = 1 ... 5)
This bit is set by hardware. It is cleared by software writing
1 to the corresponding bit in the DMA_IFCR register.
0: No transfer complete (TC) event on channel x
1: A transfer complete (TC) event occurred on channel x

16,12,8,
4, 0

GIFx r 0x00 Channel x global interrupt flag(x = 1 ... 5)
This bit is set by hardware. It is cleared by software writing
1 to the corresponding bit in the DMA_IFCR register.
0: No TE, HT or TC event on channel x
1: A TE, HT or TC event occurred on channel x

8.4.2 DMA interrupt flag clear register(DMA_IFCR)
Offset address: 0x04

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

w wwwwwwwwwwwwww w

www w

CTE

 IF1

CTE

 IF2

CTE

 IF3

CTE

 IF4

CHT

 IF1

CHT

 IF2

CHT

 IF3

CHT

 IF4

CTC

 IF1

CTC

 IF2

CTC

 IF3

CTC

 IF4

 CG

 IF4

 CG

 IF3

 CG

 IF2

 CG

 IF1

CTE

 IF5

CHT

 IF5

CTC

 IF5

 CG

 IF5
Reserved

Bit Field Type Reset Description

31 : 20 Reserved Reserved, always read as 0.
19,15,11,
7, 3

CTEIFx w 0x00 Channel x transfer error clear(x = 1 ... 5)
This bit is set and cleared by software.
0: No effect
1: Clear the corresponding TEIF flag in the DMA_ISR reg-
ister

18,14,10,
6, 2

CHTIFx w 0x00 Channel x half transfer clear(x = 1 ... 5)
This bit is set and cleared by software.
0: No effect
1: Clear the corresponding HTIF flag in the DMA_ISR reg-
ister

www.mm32mcu.com 97/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

Bit Field Type Reset Description

17,13,9,
5, 1

CTCIFx w 0x00 Channel x transfer complete clear(x = 1 ... 5)
This bit is set and cleared by software.
0: No effect
1: Clear the corresponding TCIF flag in the DMA_ISR reg-
ister

16,12,8,
4, 0

CGIFx w 0x00 Channel x global interrupt clear(x = 1 ... 5)
This bit is set and cleared by software.
0: No effect
1: Clear the GIF, TEIF, HTIF and TCIF flags in the
DMA_ISR register

8.4.3 DMA channel x configuration register(DMA_CCRx) (x = 1…5)
Offset address: 0x08 + 20 x (channel number - 1)

Reset value: 0x0000 0000

ARE
MEM2

MEM
PL TCIEHTIETEIEDIRCIRCPINCMINC ENMSIZE PSIZE

Reserved

171819202122232425 162728293031 26

123456789 01112131415 10

rwrwrw rwrw rwrw rwrw rwrw rwrwrw rwrw

Bit Field Type Reset Description

31 : 16 Reserved Reserved, always read as 0.
15 ARE rw 0x00 Auto-Reload Enable

This bit is set and cleared by software. After aborting the
transfer, whether the NDT, PADDR, MADDR registers of
each channel return to the initial value set:
1: Initial value of auto-reload setting after aborting transfer
0: Disable automatic reload function

14 MEM2MEM rw 0x00 Memory to memory mode
This bit is set and cleared by software.
0: Memory to memory mode disabled
1: Memory to memory mode enabled

13 : 12 PL rw 0x00 Channel priority level
This bit is set and cleared by software.
00: Low
01: Medium
10: High
11: Very high

www.mm32mcu.com 98/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

Bit Field Type Reset Description

11 : 10 MSIZE rw 0x00 Memory size
This bit is set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

9 : 8 PSIZE rw 0x00 Peripheral size
This bit is set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

7 MINC rw 0x00 Memory increment mode
This bit is set and cleared by software.
0: Memory increment mode disabled
1: Memory increment mode enabled

6 PINC rw 0x00 Peripheral increment mode
This bit is set and cleared by software.
0: Peripheral increment mode disabled
1: Peripheral increment mode enabled

5 CIRC rw 0x00 Circular mode
This bit is set and cleared by software.
0: Circular mode disabled
1: Circular mode enabled

4 DIR rw 0x00 Data transfer direction
This bit is set and cleared by software.
0: Read from peripheral
1: Read from memory

3 TEIE rw 0x00 Transfer error interrupt enable
This bit is set and cleared by software.
0: TE interrupt disabled
1: TE interrupt enabled

2 HTIE rw 0x00 Half transfer interrupt enable
This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled

1 TCIE rw 0x00 Transfer complete interrupt enable
This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled

www.mm32mcu.com 99/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

Bit Field Type Reset Description

0 EN rw 0x00 Channel enable
This bit is set and cleared by software.
0: Channel disabled
1: Channel enabled

8.4.4 DMA channel x number of data register(DMA_CNDTRx) (x =
1…5)

Offset address: 0x0C + 20 x (channel number - 1)

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

NDT

Reserved

rw

Bit Field Type Reset Description

31 : 16 Reserved Reserved, always read as 0.
15 : 0 NDT rw 0x0000 Number of data to transfer

Number of data to be transferred (0 to 65535). This regis-
ter can only be written when the channel is disabled (EN
bit of DMA_CCRx is 0). Once the channel is enabled,
this register is read-only, indicating the remaining bytes
to be transmitted. This register decrements after each
DMA transfer. Once the transfer is completed, this reg-
ister can either stay at zero or be reloaded automatically
by the value previously programmed if the channel is con-
figured in auto-reload mode.
If this register is zero, no transaction can be served no
matter whether the channel is enabled or not.

8.4.5 DMA channel x peripheral address register(DMA_CPARx) (x
= 1…5)

Offset address: 0x10 + 20 x (channel number - 1)

Reset value: 0x0000 0000

This register must not be written when the channel (EN bit of DMA_CCRx is 0) is enabled.

www.mm32mcu.com 100/513

UM_MM32SPIN05x_q_Ver1.19
DIRECT MEMORY ACCESS CONTROLLER(DMA)

171819202122232425 162728293031 26

123456789 01112131415 10

PA

PA

rw

rw

Bit Field Type Reset Description

31 : 0 PA rw 0x0000
0000

Peripheral address
Base address of the peripheral data register is used as a
source or target of data transfer.
When PSIZE is 01 (16-bit), the PA[0] bit is ignored. Access
is automatically aligned to a half word address.
When PSIZE is 10 (32-bit), PA[1:0] are ignored. Access is
automatically aligned to a word address.

8.4.6 DMA channel x memory address register(DMA_CMARx) (x =
1…5)

Offset address: 0x14 + 20 x (channel number - 1)

Reset value: 0x0000 0000

This register must not be written when the channel (EN bit of DMA_CCRx is 0) is enabled.

171819202122232425 162728293031 26

123456789 01112131415 10

MA

MA

rw

rw

Bit Field Type Reset Description

31 : 0 MA rw 0x0000
0000

Memory address
The memory address serves as the source or destination
of data transmission.
When MSIZE is 01 (16-bit), the MA[0] bit is ignored. Ac-
cess is automatically aligned to a half-word address.
When MSIZE is 10 (32-bit), MA [1:0] are ignored. Access
is automatically aligned to a word address.

www.mm32mcu.com 101/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

9 Analog-to-digital converter(ADC)

Analog-to-digital converter(ADC)

9.1 ADC introduction

The 12-bit ADC is a successive approximation analog-to-digital converter.

A/D conversion of the various channels can be performed in single, continuous, scan
mode, and you can choose automatic channel scanning.

Its start-up mode includes the software setting, external pin triggering and activated by
timers.

The window comparator (analog watchdog) allows the application to detect if the input
voltage goes outside the user-defined high or low thresholds.

The ADC input clock is generated from the PCLK2 clock divided by a prescaler and it must
not exceed 15 MHz.

9.2 ADC main features
• 12-bit-resolution SAR ADC, up to 13 external input channels and 2 internal input chan-
nels

• Up to 1 Msps conversion rate
• Supporting multiple operation modes:

– Single conversion mode: one A/D conversion in specified channel
– Single-cycle scanning mode: one A/D conversion cycle (from low-number
channel to high-number channel) completed in all designated channels

– Continuous scanmode: A/D converter continuously performs single-cycle scan-
ning until the converter is disabled by software

• Channel sampling time and resolution can be configured by software
• Support DMA transfer
• Conditions of A/D conversion:

– By software
– External triggering
– Timer matching

• In terms of analog watchdog, the conversion result can be compared with the speci-
fied value; the user can set whether to generate an interrupt request or not when the
conversion value matches the set value.

9.3 ADC functional description

The ADC block diagram is as shown below.

www.mm32mcu.com 102/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

424697

AGND

VREF

Analog Multiplexer

12 bit

SAR

ADC

AIN. 1

AIN. 2

AIN. 3

AIN. 4

AIN. 5

AIN. 6

AIN. 0

...

A
na

lo
g

M
U

X

A
P

B
 B

us

A
D

 C
on

fig
ur

e
R

eg
is

te
r

(A
D

C
F

G
)

A
D

 D
A

T
A

 R
eg

is
te

r
0

(A
D

D
R

0)

A
D

 C
ha

ne
l S

el
ec

t
(A

D
C

H
S

)

A
D

 C
on

tr
ol

 R
eg

is
te

r
(A

D
C

R
)

A
D

 D
A

T
A

 R
eg

is
te

r
1

(A
D

D
R

1)

...

A
D

 C
om

pa
re

 R
eg

is
te

r
(A

D
C

M
P

R
)

A
D

 S
ta

tu
s

R
eg

is
te

r
(A

D
S

T
A

)

CMPF

A
D

E
O

C
F

...

A
C

om
pa

ra
tiv

e
 d

at
a

AD Interrupt

Temperature Sensor

Internal reference voltage

Figure 23. ADC block diagram

9.3.1 ADC on-off control
The ADC can be powered-on by setting the ADEN bit in the ADCFG register. When the
ADEN bit is set for the first time, it wakes up the ADC from Power Down mode.

Conversion starts when ADST bit of ADCR register is set after ADC power-up time.

The conversion can be stopped by clearing the ADST bit, and the ADC put in power down
mode by resetting the ADEN bit.

9.3.2 Channel selection
There are several external input channels, internal temperature sensor channel and in-
ternal 1.2 V reference voltage channel. Among them, each external input channel has
independent enabling bit, which can be configured by setting bits concerned of the AD-

www.mm32mcu.com 103/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

CHS register.

9.4 ADC operating mode

9.4.1 Single conversion mode
In the single conversion mode, the A/D conversion is only performed once on the corre-
sponding channel, and the specific process is as follows:

• The A/D conversion is activated by software, external trigger input, and the ADST bit of
the timer overflow setting ADCR register.

• After the A/D conversion, the data value concerned will be saved in the ADDATA and
ADDRn data registers of A/D converter.

• ADIF bit of status register ADSTA is set to ’1’ after the A/D conversion. If ADIE bit of
control register ADCR is set to ’1’ at this time, an AD conversion end interrupt request
will be generated.

• During the A/D conversion, the ADST bit remains 1. After that, the ADST bit is cleared
automatically and the idle mode is enabled.

Note: If the software, in the single conversion mode, enables more than one channel, the channel

with the smallest number will be converted and other channels will be ignored.

307539

ADCLK

ADST

SAMPLE

ADDATA[11:0]

ADEOCF

SAMCTL[3 0] RSLTCTL[2:0]

Sample

Vin(n)

ADDATA[11:0]

Figure 24. Timing Diagram of Single Conversion Mode

9.4.2 Single-cycle scan mode
In the single-cycle scanmode, the A/D conversion is performed in the order of the channels
that can be enabled (the scan channel direction can be selected by the configuration
register bit SCAN_DIR). The operation steps are as follows:

• A/D conversion starts in software or external trigger setting ADST. The direction setting
defaults from the minimum serial number channel to the maximum serial number chan-
nel. It can also be set according to the program, from the largest serial number channel

www.mm32mcu.com 104/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

to the smallest serial number channel.
• After A/D conversion in each channel, the A/D conversion values will be loaded into
the data registers in the corresponding channels in an orderly manner, and the ADIF
conversion end flag will be set. If the conversion end interrupt flag is set, an interrupt
request will be generated after the conversion in all channels.

• After the conversion, ADST bit is cleared automatically, so that A/D converter enters
idle state.

603371

ADST

Chsel[2:0]

sample

ADDATA[11:0]

SAR[11:0]

3'b000 3'b010 3'b1113'b101

R0 R2 R7R5

R0 R2 R5 R7

DMA moved away

Single-cycle scan channels 0, 2, 5, 7 ADCHS[8 0] = 9'b010100101

DMA moved away DMA moved away DMA moved away

Figure 25. Timing Diagram of Enabled Channel During Conversion in Single-cycle Scan Mode(channel
direction from low to high)

040923

ADST

Chsel[2:0]

sample

ADDATA[11:0]

SAR[11:0]

3'b111 3'b101 3'b0003'b010

R0 R2 R7R5

R0 R2 R5 R7

DMA moved away DMA moved away DMA moved away DMA moved away

Single-cycle scan channels 0, 2, 5, 7 ADCHS[8 0] = 9'b010100101

Figure 26. Timing Diagram of Enabled Channel During Conversion in Single-cycle Scan Mode(channel
direction from high to low)

www.mm32mcu.com 105/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

9.4.3 Continuous scan mode
In the continuous scan mode, the A/D conversion is performed on the enabled CHENn
bit in the ADCHS register(the scan channel direction can be selected by the configuration
register bit SCAN_DIR). The operation steps are as follows:

• A/D conversion starts in software or external trigger setting ADST. External trigger can
be configured by software. The direction setting defaults from the minimum serial num-
ber channel to the maximum serial number channel. It can also be set according to the
program, from the largest serial number channel to the smallest serial number channel.

• After A/D conversion in all channels, the A/D conversion values will be loaded into the
data registers concerned in an orderly manner, and the ADIF conversion end flag will
be set. If the conversion end interrupt flag is set, an interrupt request will be generated
after the conversion in all channels.

• As long as the ADST bit remains 1, the A/D conversion continues. When ADST bit is
cleared and A/D conversion is completed, A/D converter enters the idle mode. When
ADST is cleared, the current A/D conversion will be completed.

550679

ADST

Chsel[2:0]

sample

ADDATA[11:0]

3'b000 3'b010 3'b1113'b101

Con nuous scan channels 0 , 2, 5, 7 ADCHS[8 0] = 9'b010100101

3'b000 3'b010 3'b101 3'b111 3'b000

So"ware clears ADST

Figure 27. Timing Diagram of Enabled Channel During Conversion in Continuous Scan Mode(channel direction
from low to high)

www.mm32mcu.com 106/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

453605

ADST

Chsel[2:0]

sample

ADDATA[11:0]

3'b111 3'b101 3'b0003'b010 3'b111 3'b101 3'b010 3'b000 3'b111

So ware clears ADST

Con"nuous scan channels 0 , 2, 5, 7 ADCHS[8 0] = 9'b010100101

Figure 28. Timing Diagram of Enabled Channel During Conversion in Continuous Scan Mode(channel direction
from high to low)

9.4.4 DMA request
In the single-cycle scan and continuous scan modes, the value of channel conversion is
saved in the data registers (ADDRn) in respective channel, and the result of the latest con-
version is also stored in the ADDATA register. During DMA transmission, you can choose
to transfer data in a specific channel or transfer the results of all scanning channels.

9.5 Data alignment

ALIGN bit in the ADCR register selects the alignment of data stored after conversion. Data
can be left or right aligned as shown in the following figure .

730272

0 0 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0

Data is right-justified

Data is left-justified

Figure 29. Data Alignment Modes

www.mm32mcu.com 107/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

9.5.1 Programmable resolution
The effective ADC conversion bits can be changed by modifying RSLT CTL [2: 0] bits
in ADC_CFG register, to improve the data conversion rate. The effective data bits are
aligned at the high bits of 12-bit data.

9.5.2 Programmable sample time
ADCLK, the ADC clock, is generated by dividing PCLK2, and its division factor can be
determined by setting the AD-CPRE bit in ADCFG bit, namely, the PCLK2 / (N + 1) / 2 is
used as the ADC clock.

The ADC resolution is n (n=8, 9, 10, 11 and 12), the sampling period in each channel is
m, and the number of sampling periods can be modified through the SAMCTL bits in the
ADC_CFG registers.

The sampling frequency and sampling time are calculated as follows:

Fsample = FADCLK / (m + n + 1.5).

Example:

With an ADCCLK = 15MHz, the resolution of 12 bits and a sampling time of 1.5 cycles

Fsample = FADCLK / 15.

TCONV = 1.5 + 13.5 = 15 cycles = 1µs

9.6 Conversion on external trigger

Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the
TRGEN bit of ADCR register is set, then external events are able to trigger a conversion.
By setting the TRGSEL bits, the external trigger sources can be selected.

For the selection of specific external trigger sources, please refer to the description of
relevant bits in AD control register.

The external trigger can set the delay control, refer to the description of TRGSHIFT of
ADCR[21:19].

The sampling is initiated after the generation of trigger signal and N PCLK2 cycles. In the
trigger scan mode, only the sampling of the first channel is delayed, and the rest channels
is sampled immediately after the end of the previous operation.

9.7 Temperature sensor

The temperature sensor can be used to measure the ambient temperature (TA) of the
device.

The temperature sensor is internally connected to the ADC input channel which is used
to convert the sensor output voltage into a digital value. When not in use, this sensor can
be disabled separately by setting relevant bits of the register.

The temperature sensor output voltage changes linearly with temperature. The offset of
this line varies from chip to chip due to process variation.

www.mm32mcu.com 108/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

The internal temperature sensor is more suited to applications that detect temperature
variations instead of absolute temperatures. If accurate temperature readings are needed,
an external temperature sensor part should be used.

The temperature is calculated as follows:

T(◦C) = (VSENSE - V25) / Avg_Slope + 25

V25: VSENSE value for 25◦C

VSENSE: the current output voltage of temperature sensor

VSENSE = Value * Vdd / 4096 (Value is the conversion result of ADC)

Avg_Slope: Average Slope for curve between Temperature vs. VSENSE(given in mV/◦C or
µV/◦C)

Refer to the temperature sensor section for the actual values of V25 and Avg_Slope.

9.8 Internal reference voltage

The input channel of ADC is loaded with an internal reference voltage (1.2V), converting
the reference voltage output of 1.2V into a digital value.

The internal reference voltage has a separate enable bit, which can be enabled or disabled
by setting the corresponding bit in the register.

9.9 Monitoring of AD conversion results in window
comparator mode

The upper limit and lower limit compare registers are enabled in the comparison mode,
and the CMPCH bit can be set by software, to select the monitoring channel.

If CPMHDATA is ≥ CPMLDATA, and the comparison result is greater than or equal to the
specified value of CMPHDATA in the ADCMPR register or less than the specified value
of CMPLDATA, the ADWIF bit of the status register ADSTA is set to 1.

If CPMHDATA is < CPMLDATA and the comparison result is equal to the specified value
of CMPHDATA or between the two specified value, the ADWIF bit of the status register
ADSTA is set to 1. An interrupt request will be generated if ADWIE bit of the control register
ADCR is set. An interrupt request will be generated if ADWIE bit of the control register
ADCR is set.

9.10 ADC register description

Table 35. Summary of ADC Registers

Offset Acronym Register Name Reset Section

0x00 ADC_ADDATA A/D data register 0x00000000 section 9.10.1

0x04 ADC_ADCFG A/D configuration register 0x00000000 section 9.10.2

0x08 ADC_ADCR A/D control register 0x00000000 section 9.10.3

0x0C ADC_ADCHS A/D channel select register 0x00000000 section 9.10.4

www.mm32mcu.com 109/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

Offset Acronym Register Name Reset Section

0x10 ADC_ADCMPR A/D window compare register 0x00000000 section 9.10.5

0x14 ADC_ADSTA A/D status register 0x00000000 section 9.10.6

0x18∼ 0x48 ADC_ADDR0 ∼ 12 A/D data register 0x00000000 section 9.10.7

0x50∼ 0x54 ADC_ADDR14 ∼ 15 A/D data register 0x00000000 section 9.10.7

0x58 ADC_ADSTA_EXT A/D extended status register 0x00000000 section 9.10.8

9.10.1 A/D data register(ADC_ADDATA)
Address offset: 0x00

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

DATA

r

rr rr rr

rrrr r rr rrrrrrrr

OVER

RUN
CHANNELSELVAILD

Bit Field Type Reset Description

31 : 22 Reserved Reserved, always read as 0.
21 VALID r 0x00 Valid flag (read-only)

1 = DATA[11: 0] bits are valid
0 = DATA[11: 0] bits are invalid
After the conversion in the corresponding analog channel,
this bit is set and this bit is cleared by hardware after the
ADDATA register is read.

20 OVERRUN r 0x00 Overrun flag (read-only)
1 = DATA[11: 0] data overwritten
0 = The last conversion result of DATA[11: 0] data
Before the new conversion result is loaded into the reg-
ister, if the data of DATA[11: 0] is not read, OVERRUN
will be set to 1. This bit is cleared by hardware after the
ADDATA register is read.

www.mm32mcu.com 110/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

Bit Field Type Reset Description

19 : 16 CHANNELSEL r 0x00 Channel selection (the 4 bits show the channel corre-
sponding to the current data)
0000 = convert data for Channel 0
0001 = convert data for Channel 1
0010 = convert data for Channel 2
0011 = convert data for Channel 3
0100 = convert data for Channel 4
0101 = convert data for Channel 5
0110 = convert data for Channel 6
0111 = convert data for Channel 7
1000 = convert data for Channel 8
1001 = convert data for Channel 9
1010 = convert data for Channel 10
1011 = convert data for Channel 11
1100 = convert data for Channel 12
1110 = convert data of temperature sensor
1111 = convert data of internal reference voltage
Others: invalid

15 : 0 DATA r 0x00 Transfer data (12-bit A/D conversion result)
Left alignment or right alignment, depending on specific
settings.

9.10.2 A/D configuration register(ADC_ADCFG)
Address offset: 0x04

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

rw rwrwrwrw rwrw rwrwrwrwrwrwrw rw

VSENSAMCTL RSLTCTL ADCPRE TSEN ADWEN ADENADCPRERes.

Bit Field Type Reset Description

31 : 15 Reserved Reserved, always read as 0.
14 ADCPRE rw 0x00 ADC prescaler

As the lowest bit of ADCPRE[3:0], combined with Bit[6:4]

www.mm32mcu.com 111/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

Bit Field Type Reset Description

13 : 10 SAMCTL rw 0x00 Channel x Sample time selection
These bits are used to independently select the sampling
time for each channel. The channel select bit must remain
unchanged during the sampling period.
0000: 1.5 cycles 0100: 41.5 cycles
0001: 7.5 cycles 0101: 55.5 cycles
0010: 13.5 cycles 0110: 71.5 cycles
0011: 28.5 cycles 0111: 239.5 cycles
1000: 2.5 cycles 1001: 3.5 cycles
1010: 4.5 cycles 1011: 5.5 cycles
1100: 6.5 cycles Others: Reserved

9 : 7 RSLTCTL rw 0x00 Resolution (select ADCx conversion data resolution)
000: valid in 12 bits 001: valid in 11 bits
010: valid in 10 bits 011: valid in 9 bits
100: valid in 8 bits

6 : 4 ADCPRE rw 0x00 ADC prescaler
Set to ’1’ or cleared by software to determine the ADC
clock frequency.
When Bit[14] is 0, the actual division factor is (2 * (AD-
CPRE + 1))
When Bit[14] is 1, the actual division factor is (2 * (AD-
CPRE + 1) + 1)

3 VSEN rw 0x00 Voltage Sensor enable
1: Internal voltage sensor enabled
0: Internal voltage sensor disabled

2 TSEN rw 0x00 Temperature sensor enable
1 = Temperature sensor enabled
0 = Temperature sensor disabled

1 ADWEN rw 0x00 ADC window comparison enable
1 = A/D window comparator enabled
0 = A/D window comparator disabled

0 ADEN rw 0x00 ADC enable
1 = Enabled
0 = Disabled

9.10.3 A/D control register(ADC_ADCR)
Address offset: 0x08

Reset value: 0x0000 0000

www.mm32mcu.com 112/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

171819202122232425 162728293031 26

123456789 01112131415 10

CMPCH ADMDALIGN ADST Res. DMAEN

Reserved

TRGSEL TRGEN ADWIE ADIE

rw rwrwrwrw rwrwrw rwrwrwrwrwrwrw

TRGSHIFT TRGSEL SCANDIR

rwrwrwrw rwrw

Bit Field Type Reset Description

31 : 22 Reserved Reserved, always read as 0.
21 : 19 TRGSHIFT rw 0x00 External trigger shift sample

After the trigger signal is generated, the clock period of N
PCLK2 is delayed to start sampling again.
If the scan mode is triggered, the other channels start im-
mediately after the last sample is finished.
0: No delay 1: 4 cycles
2: 16 cycles 3: 32 cycles
4: 64 cycles 5: 128 cycles
6: 256 cycles 7: 512 cycles

18 :17 TRGSEL rw 0x00 External trigger selection
Used in conjunction with Bit[6:4].

16 SCANDIR rw 0x00 ADC scan direction
Set the order of the scan channels in single-cycle or con-
tinuous scan mode:
0: ADC channel select registers are scanned from low to
high
1: ADC channel select registers are scanned from high to
low

www.mm32mcu.com 113/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

Bit Field Type Reset Description

15 : 12 CMPCH rw 0x00 Window comparison channel selection
0000 = Conversion result of select comparison channel 0
0001 = Conversion result of select comparison channel 1
0010 = Conversion result of select comparison channel 2
0011 = Conversion result of select comparison channel 3
0100 = Conversion result of select comparison channel 4
0101 = Conversion result of select comparison channel 5
0110 = Conversion result of select comparison channel 6
0111 = Conversion result of select comparison channel 7
1000 = Conversion result of select comparison channel 8
1001 = Conversion result of select comparison channel 9
1010 = Conversion result of select comparison channel 10
1011 = Conversion result of select comparison channel 11
1100 = Conversion result of select comparison channel 12
1110 = Conversion result of select comparison tempera-
ture sensor
1111 = Conversion result of reference voltage on select
comparison channel
Other: invalid

11 ALIGN rw 0x00 Data alignment
0: Right alignment
1: Left alignment

10 : 9 ADMD rw 0x00 ADC mode
00: Single conversion
01: Single-cycle scan
10: Continuous scan
When changing the conversion mode, disable the ADST
bit by the software.

8 ADST rw 0x00 ADC start
1 = Conversion starts
0 = Conversion ends or it enables idle mode
ADST bit can be set in the following two ways:
In single mode or single-cycle mode, ADST bit will be au-
tomatically cleared by hardware after the conversion.
In the continuous scan mode, the A/D conversion contin-
ues until the software writes’ 0’ to this bit or the system
resets.

7 Reserved Reserved, always read as 0.

www.mm32mcu.com 114/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

Bit Field Type Reset Description

6 : 4 TRGSEL rw 0x00 External trigger selection, Bit[18:17,6:4] select external
trigger source
00000: TIM1_CC1
00001: TIM1_CC2
00010: TIM1_CC3
00011: TIM2_CC2
00100: TIM3_TRGO
00101: TIM1_CC4 and CC5
00110: TIM3_CC1
00111: EXTI line 11
01000: TIM1_TRGO
01011: TIM2_CC1
01100: TIM3_CC4
01101: TIM2_TRGO
01111: EXTI line 15
10000: TIM1_CC4
10001: TIM1_CC5
Others: invalid

3 DMAEN rw 0x00 Direct memory access enable
1 = DMA request enabled
0 = DMA disabled

2 TRGEN rw 0x00 External trigger enable
1 = Start A/D conversion with external trigger signal
0 = Start A/D conversion without external trigger signal

1 ADWIE rw 0x00 ADC window comparator interrupt enable
1 = A/D window comparator interrupt enabled
0 = A/D window comparator interrupt disabled

0 ADIE rw 0x00 ADC interrupt enable
1 = A/D interrupt enabled
0 = A/D interrupt disabled
If ADIF is set, an interrupt request is generated after the
A/D conversion.

9.10.4 A/D channel select register(ADC_ADCHS)
Address offset: 0x0C

Reset value: 0x0000 0000

www.mm32mcu.com 115/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

171819202122232425 162728293031 26

123456789 01112131415 10

CHEN9CHEN11CHEN12 CHEN6

Reserved

CHEN10 CHEN5 CHEN4 CHEN0

rwrwrwrw rwrwrwrw

CHENVS CHENTS

rwrw

Res. CHEN7CHEN8 CHEN1CHEN2CHEN3

rwrwrwrwrw

Bit Field Type Reset Description

31 : 16 Reserved Reserved, always read as 0.
15 CHENVS rw 0x00 Voltage Sensor enable

1 = Enabled
0 = Disabled

14 CHENTS rw 0x00 Temperature Sensor enable
1 = Enabled
0 = Disabled

13 Reserved Reserved, always read as 0.
12 CHEN12 rw 0x00 Analog input channel 12 enable

1 = Enabled
0 = Disabled

11 CHEN11 rw 0x00 Analog input channel 11 enable
1 = Enabled
0 = Disabled

10 CHEN10 rw 0x00 Analog input channel 10 enable
1 = Enabled
0 = Disabled

9 CHEN9 rw 0x00 Analog input channel 9 enable
1 = Enabled
0 = Disabled

8 CHEN8 rw 0x00 Analog input channel 8 enable
1 = Enabled
0 = Disabled

7 CHEN7 rw 0x00 Analog input channel 7 enable
1 = Enabled
0 = Disabled

6 CHEN6 rw 0x00 Analog input channel 6 enable
1 = Enabled
0 = Disabled

5 CHEN5 rw 0x00 Analog input channel 5 enable
1 = Enabled
0 = Disabled

4 CHEN4 rw 0x00 Analog input channel 4 enable
1 = Enabled
0 = Disabled

www.mm32mcu.com 116/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

Bit Field Type Reset Description

3 CHEN3 rw 0x00 Analog input channel 3 enable
1 = Enabled
0 = Disabled

2 CHEN2 rw 0x00 Analog input channel 2 enable
1 = Enabled
0 = Disabled

1 CHEN1 rw 0x00 Analog input channel 1 enable
1 = Enabled
0 = Disabled

0 CHEN0 rw 0x00 Analog input channel 0 enable
1 = Enabled
0 = Disabled

Note: If channels enabled are all 0, Channel 0 is enabled.

9.10.5 A/D window compare register(ADC_ADCMPR)
Address offset: 0x10

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

CMPHDATA

CMPLDATAReserved

Reserved

rw rwrwrwrw rw rwrw rwrwrwrw

rw rwrwrwrw rw rwrw rwrwrwrw

Bit Field Type Reset Description

31 : 28 Reserved Reserved, always read as 0.
27 : 16 CMPHDATA rw 0x00 Compare data high limit

The 12-bit value will be compared with the conversion re-
sult of the specified channel.

15 : 12 Reserved Reserved, always read as 0.
11 : 0 CMPLDATA rw 0x00 Compare data low limit

The 12-bit value will be compared with the conversion re-
sult of the specified channel.

9.10.6 A/D status register(ADC_ADSTA)
Address offset: 0x14

Reset value: 0x0000 0000

www.mm32mcu.com 117/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

171819202122232425 162728293031 26

123456789 01112131415 10

Res.

VALIDOVERRUN

VALID CHANNEL BUSY ADWIF ADIF

rrrr rrrrr

r rc_w1rrr

r

rr rc_w1rrrrrrr

rrrrrr

Bit Field Type Reset Description

31 : 20 OVERRUN r 0x0000 Overrun flag (Channel 0 ∼ 11)
Read only.

19 : 8 VALID r 0x0000 Valid flag (Channel 0 ∼ 11)
Read only.

7 : 4 CHANNEL r 0x00 Current conversion channel
In case of BUSY = 1, the 4 bits indicate the channel being
converted. In case of BUSY = 0, they indicate the channel
to be converted in the next time.

3 Reserved Reserved, always read as 0.
2 BUSY r 0x00 Busy/idle

1 = A/D converter is busy
0 = A/D converter is idle

1 ADWIF rc_w1 0x00 ADC window comparator interrupt flag
If the result of selected A/D conversion channel is greater
than or equal to ADCMPHR or less than ADCMPLR, this
bit is set to ’1’.
This flag bit is cleared by writing ’1’.

0 ADIF rc_w1 0x00 ADC interrupt flag
This bit is set by hardware at the end of channel group
conversion and cleared by software.
1 = A/D conversion completed
0 = A/D conversion not completed
This flag bit is cleared by writing’ 1’.

9.10.7 A/D data register(ADC_ADDR0 ∼ 12, 14 ∼ 15)
Address offset: 0x18 − 0x48, 0x50 − 0x54

Reset value: 0x0000 0000

www.mm32mcu.com 118/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

DATA

r

rr

rrrr r rr rrrrrrrr

OVER

RUN
ReservedVAILD

Bit Field Type Reset Description

31 : 22 Reserved Reserved, always read as 0.
21 VALID r 0x00 Valid flag(read-only)

1 = DATA[11: 0] bits are valid
0 = DATA[11: 0]bits are invalid
After the conversion in the corresponding analog channel,
this bit is set and this bit is cleared by hardware after the
ADDATA register is read.

20 OVERRUN r 0x00 Overrun flag(read-only)
1 = DATA [11: 0]bits are overwritten
0 = The last conversion result of DATA[11: 0] data
Before the new conversion result is loaded into the reg-
ister, if the data of DATA[11: 0] is not read, OVERRUN
will be set to 1. This bit is cleared by hardware after the
ADDATA register is read.

19 : 16 Reserved Reserved, always read as 0.
15 : 0 DATA r 0x00 Transfer data(12-bit A/D conversion result on channel)

Left alignment or right alignment, depending on specific
settings.

9.10.8 A/D extended status register(ADC_ADSTA_EXT)
Address offset: 0x58

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

Reserved

r rrr

OVERRUN VALID

r r r r

Bit Field Type Reset Description

31 : 8 Reserved Reserved, always read as 0.

www.mm32mcu.com 119/513

UM_MM32SPIN05x_q_Ver1.19
ANALOG-TO-DIGITAL CONVERTER(ADC)

Bit Field Type Reset Description

7 : 4 OVERRUN r 0x00 Overrun flag
1000: channel 15(V_SENSOR)
0100: channel 14(T_SENSOR)
0001: channel 12

3 : 0 VALID r 0x00 Valid flag
1000: channel 15(V_SENSOR)
0100: channel 14(T_SENSOR)
0001: channel 12

www.mm32mcu.com 120/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

10 Comparator(COMP)

Comparator(COMP)

10.1 COMP introduction

Universal embedded chip comparator may be used independently (for all terminals on the
I / O port), also be combined with the use of a timer which can be used for a variety of
functions, including:. Par

• Trigger the wakeup event in the low power consumption mode through the analog signal
• Adjust analog signal
• Combined with the PWM of the timer output to form a cycle-by-cycle current control loop

10.2 Main features of comparator
• Rail-to-rail comparator
• Each comparator has optional thresholds

– Reusable I/O pins
– Alternatively CRV internal comparison voltage AVDD or the internal reference
voltage value of divided voltage

• Programmable latency voltage
• Programmable rate and power consumption
• Filter function that supports comparison results
• The output can be redirected to one I/O port or several timer inputs, to trigger the fol-
lowing events:
– Capture event
– OCref_clr event (cycle-by-cycle current control)
– Break event enabling fast PWM shutdown

• Two comparators can be integrated in one window comparator for operation.
• Each comparator can trigger interrupts and wake up the CPU from sleep and shutdown
modes (via EXTI controller).

• COMP has 4 positive phase inputs and 4 inverting inputs with polling
– Polling function for fixed cycle switching
– Controllable polling channel 1/2/3 or 1/2
– Optional fixed inverting input

10.3 Functional description of comparator

10.3.1 Introduction
The following figure is a block diagram of the comparator.

www.mm32mcu.com 121/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

416078

TIM1_BK

TIM1_ OCref_clr

TIM1_IC1

TIM2_IC4

TIM2_ OCref_clr

TIM3_IC1

TIM3_ OCref_clr

COMP_INP

COMP_INM

COMP interrupt

EXTI 19

Polarity

selection
CRV

COMP _CSR

OUT

Noise

Filter

COMP _POLL

OUT

Mask TIM1 PWM

CMP

COMP _POUT1/2/3

COMP _OUT

COMP _ OUT

1111

1110

1101

0010

0001

0000

CRV_SEL[3:0]

CRV_EN

4R

R

R

R

R

R

PA[4]

request (to EXTI)

PA[3]

PA[2]

PA[1]

PA[7]

PA[6]

PA[5]

AVDD

CRV_EN

CRV_SOUSEL

VREF

Figure 30. Comparator Block Diagram

10.3.2 Clock
The clock, provided by the COMP clock controller, is synchronized with PCLK (APB2
clock). Before using the comparator, enable the clock enable control bit in the RCC con-
troller.

10.3.3 Comparator switch control
The COMP can be powered up by setting the EN bit of the COMPx_CSR register. When
the EN bit is set, it wakes up the COMP from the power-down state, and clearing the EN
bit stops the comparator operation.

10.3.4 Comparator input and output
The I/O pin as the comparator input shall be set to the analog mode in the GPIO register.

The comparator output can be internally redirected to various timer inputs:

• As break input, disabling the PWM signal in emergency mode
• As OCref_clr, enabling cycle-by-cycle current control
• As input capture, measuring time sequence

10.3.5 Comparator channel selection
The COMP has four positive-phase inputs and four inverting input channels. The positive-
phase input can be selected from four external pins. The inverting input can be divided
from three external pins or CRV voltage. The voltage of the CRV can be Select AVDD or
internal reference 1.2V divider.

The input channel of COMP can be selected by software in normal working mode, or it can
monitor the comparison result of multiple channels by hardware polling in polling mode.
It is logically similar to multiple comparators working at the same time.

www.mm32mcu.com 122/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

In normal mode, the comparator compares the signals on the selected INP and INM ports
as follows:

• Configure the INP_SEL bit and the INM_SEL bit of the COMPx_CSR register to select
the signal to be compared;

• Configure the EN bit of the COMPx_CSR register, and the comparator starts to power
on;

• The result of the comparison is stored in the OUT bit of the COMPx_CSR register.

In addition, when COMM’s INM_SEL selects CRV, you need to configure the CRV_SEL
bit in the COMP_CRV register, then set CRV_EN.

In the polling mode, the signal on the INP port of COMP4/5 will be periodically polled, and
the signal of the INM port can be configured to match the FIXN bit of the COMPx_POLL
register to follow the INP port change or by COMPx_CSR The INM_SEL bit is configured.
It should be noted that the INP_SEL bit of COMPx_CSR will be disabled when the polling
function is started. Similarly, if the FIXN bit of the COMPx_POLL register selects the INM
port to follow the INP polling change, INN_SEL bit of COMPx_CSR will also lose its effect.
The specific process is as follows:

• Configure the PERIOD bit of the COMPx_POLL register to select the desired polling
wait period;

• Configure the FIXN bit of the COMPx_POLL register to determine if the signal on the
INM port follows the INP port polling change;

• Configure the POLL_CH bit of the COMPx_POLL register to determine whether the
channel to be polled is 1/2/3 or 1/2;

• Configure the POLL_EN bit in the COMPx_POLL register to start the polling function;
• Configure the EN bit of the COMPx_CSR register and the comparator starts to power
up.

• The result of the polling comparison is stored in the POUT bit of the COMPx_POLL reg-
ister, where the POUT[2], POUT[1], and POUT[0] bits respectively store the comparison
result of the polling channel 3/2/1.

10.3.6 Interrupt and wakeup
The output of the comparator can be internally connected to an external interrupt and
event controller. Each comparator has its own EXTI signal, enabling triggering interrupts
or events. The same mechanism can be used to exit from the low power mode.

Refer to Interrupts and events section of the datasheet for details.

10.3.7 Power consumption mode
In specific applications, the optimal results can be obtained by adjusting the power con-
sumption and response time of the comparator.

The MODE bit in the COMPx_CSR register is configured as follows:

• 00: High speed/high power consumption
• 01: Medium speed/medium power consumption
• 10: Low speed/low power consumption

www.mm32mcu.com 123/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

• 11: Very low speed/very low power consumption

10.3.8 Comparator locking mechanism
Comparators can be used for safety purposes, such as overcurrent or overheat protection.
In some applications with specific requirements, it is necessary to ensure that comparator
settings will not be changed by invalid register access or failure of program counter.

For this purpose, the comparator control and status registers can be write-protected (read-
only).

Once being configured, the LOCK bit shall be set to 1, making the entire COMPx_CSR
register read-only, including the LOCK bit. The write protection can only be cleared by
resetting MCU.

10.3.9 Latency
The configurable latency voltage of the comparator can prevent noise signals generated
by invalid output changes, and the latency can be disabled without latency voltage .

199472

INP

INM

INM-V
hyst

COMP_OUT

Figure 31. Comparator Latency

10.4 Description of comparator register

Table 36. Summary of Compare Register

Offset Acronym Register Name Reset Section

0x00 COMPx_CSR(x=1) Comparator x(x=1)Control and Status

Register

0x00000000 section 10.4.1

0x18 COMP_CRV Comparator external reference voltage

register

0x00000000 section 10.4.2

0x1C COMPx_POLL(x=1) Comparator x(x=1)polling register 0x00000000 section 10.4.3

www.mm32mcu.com 124/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

10.4.1 Comparator control status register(COMPx_CSR)(x=1)
Address offset: 0x00

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

rw rwrwrwrwrwrw rw

rw rwr rw

ReservedLOCK OUT

Res.POL OUT_SEL Res. MODE Res. EN

HYSTOFLT

INP_SEL Res. INM_SEL

rwrw

rw rw rw

rwrw

Bit Field Type Reset Description

31 LOCK rw 0x00 Comparator lock
These bit can only be written once, set by software to ’1’,
cleared by system reset.
It makes all control bits of comparator x read-only.
1: COMPx_CSR read-only.
0: COMPx_CSR is readable and writable

30 OUT r 0x00 Comparator x lock
Read-only, reflecting the output state of the comparator x.
1: High output (non-inverting input is higher than inverting
input)
0: Low output (non-inverting input is lower than inverting
input)

29 : 21 Reserved Always read as 0.
20 : 18 OFLT rw 0x00 Comparator output filter

These bits control the output filtering of comparator x, and
the continuous PCLK2 clock comparator output is consid-
ered to be a valid result, otherwise it remains unchanged.
111: 512 clock cycles
110: 256 clock cycles
101: 128 clock cycles
100: 64 clock cycles
011: 32 clock cycles
010: 16 clock cycles
001: 4 clock cycles
000: 1 clock cycle, no filtering

17 : 16 HYST rw 0x00 Comparator x hysteresis
These bits control the hysteresis voltage of comparator x.
11: 90mV
10: 30mV
01: 15mV
00: 0mV

www.mm32mcu.com 125/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

Bit Field Type Reset Description

15 POL rw 0x00 Comparator x output polarity
This bit is used to switch the comparator x output polarity.
1: inverted output
0: Non-inverting output

14 Reserved Always read as 0.
13 : 10 OUT_SEL rw 0x00 Comparator x output selection

These bits are used to select the x output direction.
0010: Timer 1 brake input
0110: Timer 1 Ocrefclear input
0111: Timer 1 input capture 1
1000: Timer 2 input capture 4
1001: Timer 2 OCrefclear input
1010: Timer 3 input capture 1
1011: Timer 3 Ocrefclear input
Other: No choice

9 Reserved Always read as 0.
8 : 7 INP_SEL rw 0x00 Comparator x normal phase input selection

These bits are used to select the source connected to the
non-inverting input of comparator x.
00: COMP1_INP0(PA1)
01: COMP1_INP1(PA2)
10: COMP1_INP2(PA3)
11: COMP1_INP3(PA4)

6 Reserved Always read as 0.
5 : 4 INM_SEL rw 0x00 Comparator x inverting input selection

These bits are used to select the source of the inverting
input connected to comparator x.
00: COMP1_INM0(PA5)
01: COMP1_INM1(PA6)
10: COMP1_INM2(PA7)
11: COMP1_INM3(CRV)

3 : 2 MODE rw 0x00 Comparator x mode
Comparator x operating mode control bit, allowing adjust-
ment of rate and loss.
11: Very low power
10: Low power
01: medium rate
00: High rate

1 Reserved Always read as 0.

www.mm32mcu.com 126/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

Bit Field Type Reset Description

0 EN rw 0x00 Comparator xEnable
This bit is the Comparator switch control bit.
1: Comparator x opens
0: Comparator x closes

10.4.2 Comparator external reference voltage register(COMP_CRV)
Address offset: 0x18

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

rwrw rw

Reserved

CRV_SEL

rwrw

Reserved
CRV_

SRC
CRV_EN

rw

Bit Field Type Reset Description

31 : 6 Reserved Always read as 0.
5 CRV_SRC rw 0x00 Comparator external reference voltage source select

0: AVDD
1: VREF

4 CRV_EN rw 0x00 Comparator external reference voltage enable
1: Comparator External reference voltage enable.
0: Comparator External reference voltage is prohibited.

3 : 0 CRV_SEL rw 0x00 Comparator external reference voltage select
Select Comparator external reference voltage.
0000: 1/20AVDD / VREF
0001: 2/20AVDD / VREF
0010: 3/20AVDD / VREF
0011: 4/20AVDD / VREF
0100: 5/20AVDD / VREF
0101: 6/20AVDD / VREF
0110: 7/20AVDD / VREF
0111: 8/20AVDD / VREF
1000: 9/20AVDD / VREF
1001: 10/20AVDD / VREF
1010: 11/20AVDD / VREF
1011: 12/20AVDD / VREF
1100: 13/20AVDD / VREF
1101: 14/20AVDD / VREF
1110: 15/20AVDD / VREF
1111: 16/20AVDD / VREF

www.mm32mcu.com 127/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

10.4.3 Comparator polling register(COMPx_POLL)(x=1)
Address offset: 0x1c

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

rwrw rw

Reserved

rwrw

Reserved
POLL

_CH

rw

POUT Res. PERIOD Res. FIXN
POLL

_EN

r rr

Bit Field Type Reset Description

31 : 11 Reserved Always read as 0.
10 : 8 POUT r 0x00 Polling output

Read-only, reflecting the polling channel output status.
POUT[0] corresponds to channel 1, POUT[1] corresponds
to channel 2, and POUT[2] corresponds to channel 3.
1: High output (non-inverting input is higher than inverting
input)
0: low output (non-inverting input is lower than inverting
input)

7 Reserved Always read as 0.
6 : 4 PERIOD rw 0x00 Polling wait cycle

Switch to the next polling channel every n PCLK2 cycles.
111: 128 clock cycles
110: 64 clock cycles
101: 32 clock cycles
100: 16 clock cycles
011: 8 clock cycles
010: 4 clock cycles
001: 2 clock cycles
000: 1 clock cycle

3 Reserved Always read as 0.
2 FIXN rw 0x00 Polling inverting input fix

1: Polling channel inverting input fixed. Determined by
CSR register INM_SEL.
0: The polling channel inverting input is not fixed.
It changes simultaneously with the INP channel, and
INM_SEL is invalid.

www.mm32mcu.com 128/513

UM_MM32SPIN05x_q_Ver1.19
COMPARATOR(COMP)

Bit Field Type Reset Description

1 POLL_CH rw 0x00 Comparator Polling Channel
1: Polling channel 1/2/3.
0: polling channel 1/2.
Note: INP_SEL is invalid at this time.

0 POLL_EN rw 0x00 Comparator Polling mode enable (Comparator polling en-
able)
1: Comparator polling mode enable.
0: Comparator polling mode is disabled.

www.mm32mcu.com 129/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

11 Advanced-control timer(TIM1)

Advanced-control timer(TIM1)

11.1 TIM1 introduction

Advanced-control timer(TIM1) consists of a 16-bit auto-reload counter driven by a pro-
grammable prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM, comple-
mentary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to sev-
eral milliseconds using the timer prescaler and the RCC clock controller prescalers.

The advanced-control (TIM1) and general-purpose (TIMx) timers are completely indepen-
dent, and do not share any resources. They can be synchronized together as described
in Section Timer Synchronization.

11.2 Main features

TIM1 functions include:

• 16-bit up, down, up/down auto-reload register
• 16-bit programmable prescaler allowing dividing (modifing in real time) the counter clock
frequency either by any factor between 1 and 65536.

• Up to 4 independent channels for:
– Input capture
– Output compare
– PWM generation (Edge and Center-aligned Mode)
– One-pulse mode output

• outputs with programmable dead-time
• circuit to control the timer with external signals and to interconnect several timers to-
gether.

• counter to update the timer registers only after a given number of cycles of the counter
• input to put the timer’s output signals in reset state or in a known state
• Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or inter-
nal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external
trigger)

– Input capture

www.mm32mcu.com 130/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

– Output compare
– Break input

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning pur-
poses

• Trigger input for external clock or cycle-by-cycle current management

459861

Polarity Selection & Edge
Detector & Prescaler

Input Filter

Trigger
Controller

Slave
Mode

Controller

Encoder
Interface

ITR0
ITR1
ITR2
ITR3

ITR

ETRP

TRGI

TRC

TI1FP1
TI2FP2

ETRF

Internel Clock(CK_INT)

CLK_TIM from RCC
TRGO

to other timers
to DAC/ADC

Reset ,Enable,Up/Down,Count

ETR

AutoReload Register

CNT
COUNTER

+/-

Capture/Compare 1 Register

Capture/Compare 2 Register

Capture/Compare 3 Register

Capture/Compare 4 Register

PSC
Prescaler

CK_CNTCK_PSC

Stop, Clear or Up/Down
Reprtition
counter

REP Register

U

ETRF

Prescaler
IC1PS U

Prescaler
IC2PS

Prescaler
IC3PS

Prescaler
IC4PS

IC1Input Filter &
Edge detector

TI1FP1
TI1FP2

TRC

Input Filter &
Edge detector

TI2FP1
TI2FP2

TRC

IC2

IC3Input Filter &
Edge detector

IC4

TRC

Input Filter &

Edge detector
TRC

TI1
XOR

TI2

TI3

TIMx_ETR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4 TI4

U

U

U

DTG
OC1REF

CC1I

CC2I

DTG
OC2REF

DTG
OC3REF

CC3I

CC4I

OC4REF

TGI

CC1I

CC2I

CC3I

CC4I

U
UI

DTG registers

output
control

output
control

output
control

output
control

OC1N

OC1

OC2

TIMx_CH1

OC2N

OC3

OC3N

OC4

TIMx_BKIN Polarity Selection

Clock failure event from clock controller
CSS (Clock Security system)

BI

TI1F_ED

TI3FP3
TI3FP4

TI4FP3
TI4FP4

TIMx_CH1N

TIMx_CH2

TIMx_CH2N

TIMx_CH3

TIMx_CH3N

TIMx_CH4

Capture/Compare 5 Register

ICC5

Preload registers transferred to active registers on U event accroding

to control bit.

Event

Interrupt & DMA output

U

RegNotes:

Figure 32. Block Diagram of Advanced-control Timer

11.3 Functional description

11.3.1 Time-base unit
The main block of the programmable advanced-control timer is a 16-bit counter with its
related auto-reload register. The counter can count up, down or both up and down. The
counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by

www.mm32mcu.com 131/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)
• Prescaler register (TIMx_PSC)
• Auto-reload register (TIMx_ARR)
• Repetition counter register (TIMx_RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into
the shadow register permanently or at each update event (UEV), depending on the auto-
reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when
the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit
equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation
of the update event is described in details for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when
the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode
controller description to get more details on counter enabling).

Note: The counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR register.

Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536.
It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC reg-
ister). It can be changed on the fly as this control register is buffered. The new prescaler
factor is taken into account at the next update event.

The following figures give some examples of the counter behavior when the prescaler
factor is changed on the fly:

810652

CK_PSC

CEN

 Timer clock = CK_CNT

Update event(UEV)

F7 F8 F9 FA FB FC 00 01 02 03

0 1

10

0 0 0 001 1 1 1

Write a new value in TIMx_PSC

Counter register

Prescaler control register

Prescaler buffer

Prescaler counter

Figure 33. Counter Timing Diagram with Prescaler Division Change from 1 to 2

www.mm32mcu.com 132/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

646475

F7 F8 F9 FA FB FC 00 01

0 3

30

0 0 2 201 3 1 3

CK_PSC

CEN

Timer clock = CK_CNT

Update event(UEV)

Write a new value in TIMx_PSC

Counter register

Prescaler control register

Prescaler buffer

Prescaler counter

Figure 34. Counter Timing Diagram with Prescaler Division Change from 1 to 4

11.3.2 Counter modes

Upcounting mode
In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is re-
peated for the number of times programmed in the repetition counter register (TIMx_RCR).
Otherwise, the update event is generated at each counter overflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to
0. However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag bit(UIF
bit in TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register.
• The auto-reload shadow register is updated with the preload value (TIMx_ARR).
• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

www.mm32mcu.com 133/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

446234

CK_PSC

CNT_EN

31 32 33 34 35 36 0500 01 02 03 04 06 07

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 35. Counter Timing Diagram, Internal Clock Divided by 1

036407

0034 0035 00000036 0001 0002 0003

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 36. Counter Timing Diagram, Internal Clock Divided by 2

959219

0035 00000036 0001

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 37. Counter Timing Diagram, Internal Clock Divided by 4

www.mm32mcu.com 134/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

345045

1F 20 00

CK_PSC

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 38. Counter Timing Diagram, Internal Clock Divided by N

800181

31 32 33 34 35 36 0500 01 02 03 04 06 07

FF 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Auto-reload register

Write a new value in TIMx_ARR

Figure 39. Counter Timing Diagram, Update Event When ARPE = 0 (TiMx_ARR Not Preloaded)

www.mm32mcu.com 135/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

175157

F0 F1 F2 F3 F4 F5 0500 01 02 03 04 06 07

F5 36

F5 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 40. Counter Timing Diagram, Update Event When ARPE = 1 (TiMx_ARR Preloaded)

Downcounting mode
In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

If the repetition counter is used, the update event (UEV) is generated after downcounting
is repeated for the number of times programmed in the repetition counter register plus one
(TIMx_RCR). Otherwise, the update event is generated at each counter underflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of
the prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag bit(UIF
bit in TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register.
• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updatedwith the preload value (content of the TIMx_ARR

www.mm32mcu.com 136/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

register).

Note: The auto-reload is updated before the counter is reloaded, so that the next period is the

expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

878146

05 04 03 02 01 00 3136 35 34 33 32 30 2F

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 41. Counter Timing Diagram, Internal Clock Divided by 1

100845

0002 0001 00360000 0035 0034 0033

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 42. Counter Timing Diagram, Internal Clock Divided by 2

247112

0001 00360000 0035

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 43. Counter Timing Diagram, Internal Clock Divided by 4

www.mm32mcu.com 137/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

044951

20 1F 00 36

CK_PSC

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 44. Counter Timing Diagram, Internal Clock Divided by N

844225

05 04 03 02 01 00 3136 35 34 33 32 30 2F

FF 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Auto-reload register

Write a new value in TIMx_ARR

Figure 45. Counter Timing Diagram, Update Event when Repetition Counter is Not Used

Center-aligned mode (Upcounting/Downcounting))
In center-aligned mode, the counter counts from 0 to the auto-reload value (content of
the TIMx_ARR register)–1, generates a counter overflow event, then counts from the
auto-reload value down to 1 and generates a counter underflow event. Then it restarts
counting from 0.

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter under-
flow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave
mode controller) . In this case, the counter restarts counting from 0, so does the counter
of the prescaler.

TheUEV update event can be disabled by software by setting theUDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the

www.mm32mcu.com 138/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

preload registers. Then, no update event occurs until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag bit(UIF
bit in TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register.
• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updatedwith the preload value (content of the TIMx_ARR
register).

Note: If the update source is a counter overflow, the auto-reload is updated before the counter is

reloaded, so that the next period is the expected one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

519069

04 03 02 01 00 01 0502 03 04 05 06 04 03

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Counter underflow

Figure 46. Counter Timing Diagram, Internal Clock Divided by 1, TIMx_ARR = 6

www.mm32mcu.com 139/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

897437

0003 0002 00000001 0001 0002 0003

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 47. Counter Timing Diagram, Internal Clock Divided by 2

365016

0034 00360035 0035

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Note: Here, center-aligned mode 2 or 3 is used with an UIF on overflow

Figure 48. Counter Timing Diagram, Internal Clock Divided by 4, TIMx_ARR = 0×36

www.mm32mcu.com 140/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

918695

20 1F 0001

CK_PSC

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Figure 49. Counter Timing Diagram, Internal Clock Divided by N

608655

06 05 04 03 02 01 0500 01 02 03 04 06 07

FD 36

FD 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 50. Counter Timing Diagram, Update Event with ARPE = 1(Counter Underflow)

www.mm32mcu.com 141/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

712179

F7 F8 F9 FA FB FC 3136 35 34 33 32 30 2F

FD 36

FD 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 51. Counter Timing Diagram, Update Event with ARPE = 1(Counter Overflow))

11.3.3 Repetition counter
Time-base unit describes how the update event (UEV) is generated with respect to the
counter overflows/underflows. It is actually generated only when the repetition counter
has reached zero. This can be useful when generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx cap-
ture/compare registers in compare mode) every N counter overflows or underflows, where
N is the value in the TIMx_RCR repetition counter register.

The repetition counter is decremented:

• At each counter overflow in upcounting mode;
• At each counter underflow in downcounting mode;
• At each counter overflow and at each counter underflow in center-aligned mode. Al-
though this limits the maximum number of repetition to 128 PWM cycles, it makes it
possible to update the duty cycle twice per PWM period. When refreshing compare reg-
isters only once per PWM period in center-aligned mode, maximum resolution is 2xTck,
due to the symmetry of the pattern.

The repetition counter is an auto-reload type; the repetition rate is maintained as defined
by the TIMx_RCR register value (refer to Figure 49). When the update event is generated
by software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave
mode controller, it occurs immediately whatever the value of the repetition counter is and
the repetition counter is reloaded with the content of the TIMx_RCR register.

www.mm32mcu.com 142/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

848184

TIMX_CNT

TIMX_RCR=0 UEV

UEV

UEV

UEV

UEV

UEV

TIMX_RCR=1

TIMX_RCR=2

TIMX_RCR=3

TIMX_RCR=3

Center-allgned mode
Edge-allgned mode

Counter Upcounting Downcounting

and

 re-synchronization

(by SW) (by SW)(by SW)

Update Event: Preload registers transferred to active registers and update interrupt generated.

Update Event if the repetition counter underflow occurs when the counter

is equal to the auto-reload value.

Figure 52. Update Rate Examples Depending on Modes and TIMx_RCR Register Settings

11.3.4 Clock selection
The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT).
• External clock mode1: external input pin (TIx).
• External clock mode2: external trigger input (ETR).
• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for exam-
ple, the user can configure Timer 1 to act as a prescaler for Timer 2.

Internal clock (CK_INT)
If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) andUGbits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN
bit is written to 1, the prescaler is clocked by the internal clock CK_INT.

The following figure shows the behavior of the control circuit and the upcounter in normal
mode, without prescaler.

www.mm32mcu.com 143/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

397736

CEN = CNT_EN

CNT_INT

UG

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_INT

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 53. Control Circuit in Normal Mode, Internal Clock Divided By 1

External clock source mode 1
This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

756508

CK_PSC

ICF[3:0] CC2P

TS[2:0]

SMS[2:0]ECE

TI2

TIMx_CCMR1 TIMx_CCER

TI2F_Rising

TI2F_Falling

ITRx

TI1F_ED

TI1FP1

TI2FP2

ETRF

001

100

101

110

111

TRGI

ETRF

CK_INT

TIMx_SMCR

TI2F

TI1F

or

or
or

TIMx_SMCR

0

1
Filter

Edge

Detector

(internal clock)

encoder

mode

external clock

mode 1

external clock

mode 2

internal clock

mode

Figure 54. TI2 External Clock Connection Example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’
in the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.
4. Select the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR

register.
5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.

www.mm32mcu.com 144/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so the user does not need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay

between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization

circuit on TI2 input.

274714

TI2

CNT_EN

Write TIF = 0

34 36

TIF

35

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 55. Control Circuit in External Clock Mode 1

External clock source mode 2
This mode is selected by writing ECE = 1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

The following figure gives an overview of the external trigger input block.

www.mm32mcu.com 145/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

160574

CK_PSC

/1,/2,/4,/8

SMS[2:0]ECE

ETR pin
ETR

TRGI

ETRF

CK_INT

TI2F

TI1F

or

or
or

0

1

ETP

ETRP
CK_INT

ETF[3:0]ETPS[1:0]

TIMx_SMCR TIMx_SMCR TIMx_SMCR

TIMx_SMCR

Divider Filter

downcounter

(internal clock)

encoder

mode

external clock

mode 1

external clock

mode 2

internal clock

mode

Figure 56. External Trigger Input Block

For example, to configure the upcounter to count once each 2 rising edges on ETR, use
the following procedure:

• As no filter is needed in this example, write ETF [3:0]=0000 in the TIMx_SMCR register.
• Set the prescaler by writing ETPS [1:0]=01 in the TIMx_SMCR register.
• Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR reg-
ister.

• Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.
• Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to
the resynchronization circuit on the ETRP signal.

www.mm32mcu.com 146/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

096922

ETRP

CNT_EN

34 36

ETRF

35

ETR

fCK_INT

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 57. Control Circuit in External Clock Mode 2

11.3.5 Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), including an input stage for capture (with digital filter, multiplexing and
prescaler) and an output stage (with comparator and output control).

Figure 58 to Figure 61 give an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can
be used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

www.mm32mcu.com 147/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

468148

IC1PS

ICF[3:0] CC1P

ICPS[1:0]

TI1

TIMx_CCMR1
TIMx_CCER

TI1F_Rising

TI1F_Falling
01

10

11

0

1
fDTS

TI1F

0

1

divider

/1,/2,/4,/8
IC1

CC1ECC1S[1:0]

TIMx_CCMR1 TIMx_CCER

TRC

TI2F_Rising

TI2F_Falling
(from channel 2)

(from channel 2)

TI2FP1

TI1FP1

TI1F_ED

to the slave mode controller

Filter

downcounter

Edge

Detector

(from slave mode

 controller)

Figure 58. Capture/Compare Channel (Example: Channel 1 Input Stage)

523832

MCU-peripheral Interface

APB Bus

8

CC1S[1]

OC1PE

TIMx_CCMR1UEV

read CCR1L

read CCR1H

CC1S[1]

CC1S[0]

IC1PS

CC1E

CC1G

TIMx_EGR

read_in_progress

8

capture_transfer
compare_transfer

write_in_progress

CNT > CCR1

CNT = CCR1

write CCR1H

write CCR1L

CC1S[0]

OC1PE

S

R

S

R

input

mode

Capture/Compare Preload Register

Capture/Compare Shadow Register

capture comparator

Counter

output

mode

h
ig

h

(i
f
1

6
-b

it
)

lo
w

(from time base

unit)

Figure 59. Capture/Compare Channel 1 Main Circuit

www.mm32mcu.com 148/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

180377

OC1M[2:0]

TIMx_CCMR1

CNT>CCR1

CNT=CCR1

ETRF

OC1ref

0

1

CC1P

TIMx_CCER

CC1E TIMx_CCER

OC1

Output

Mode

Controller

To the master

mode controller
Output

Enable

Circuit

Figure 60. Output stage of Capture/Compare Channel (Channels 1 to 3)

062055

OC2M[2:0]

TIMx_CCMR2

CNT>CCR4

CNT=CCR4

ETRF

OC4ref

0

1

CC4P

TIMx_CCER

CC4E TIMx_CCER

OC4

MOE

OIS4

TIMx_BDTR

TIM1_CR2

OSSI

Output

Mode

Controller

To the master

mode controller Output

Enable

Circuit

Figure 61. Output stage of Capture/Compare Channel (Channel 4)

The capture/compare block is made of one preload register and one shadow register.
Write and read always access the preload register. In capture mode, captures are actually
done in the shadow register, which is copied into the preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

11.3.6 Input capture mode
In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch
the value of the counter after a transition detected by the corresponding ICx signal. When

www.mm32mcu.com 149/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

a capture occurs, the corresponding CCxIF flag (TIMx_SR register) is set and an interrupt
or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF
flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF
can be cleared by software by writing it to ’0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written to ’0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input).
Let’s imagine that, when toggling, the input signal is not stable during at most five
internal clock cycles. We must program a filter duration longer than these five clock
cycles. We can validate a transition on TI1 when 8 consecutive samples with the new
level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in
the TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

• Configure the input prescaler. In our example, we wish the capture to be performed
at each valid transition, so the prescaler is disabled (write IC1PS bits to ’00’ in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register to ’1’.

• If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER
register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register.

When an input capture occurs:

• TIMx_CCR1 register gets the value of the counter on the active transition.
• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.
• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the over-
capture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding

CCxG bit in the TIMx_EGR register.

11.3.7 PWM input mode
This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.
• These 2 ICx signals are active on edges with opposite polarity.

www.mm32mcu.com 150/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode. For example, user can measure the period (in TIMx_CCR1
register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using
the following procedure (depending on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ’0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ’1’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to‘1’in the TIMx_CCER register.

065889

0004 0000 0001 0002 0003 0004 0000

0004

0002

TIMx_CNT

TIMx_CCR1

TIMx_CCR2

TI1

IC1 Capture

IC2 Capture

IC2 Capture IC1 Capture

reset counter

pulse width

measurement

period

measurement

Figure 62. PWM Input Mode Timing

The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the
fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller.

11.3.8 Forced output mode
In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare sig-
nal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by
software, being independent of any comparison between the output compare register and
the counter.

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs to

www.mm32mcu.com 151/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

TheOCxREF signal can be forced low by writing theOCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, in this mode, the comparison between the TIMx_CCRx shadow register and the
counter is still performed and allows the flag to be set. Interrupt and DMA requests can
be sent accordingly. This is described in the output compare mode section below.

11.3.9 Output compare mode
This function is used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag bit in the interrupt status register (CCxIF bit in the TIMx_SR register).
• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends aDMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER
register, CCDS bit in the TIMx_CR2 register for the DMA request selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output comparemode, the update event UEV has no effect onOCxREF andOCx output.

The timing resolution is one count of the counter. Output compare mode can also be used
to output a single pulse (in One Pulse mode)

Procedure:

• Select the counter clock (internal, external, prescaler).
• Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
• Set the CCxIE bit if an interrupt request is to be generated.
• Select the output mode. For example:

– Write OCxM = 011 to toggle OCx output pin when CNT matches with CCRx
– Write OCxPE = 0 to disable preload register
– Write CCxP = 0 to select active high polarity
– Write CCxE = 1 to enable the output

• Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, otherwise

www.mm32mcu.com 152/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

TIMx_CCRx shadow register is updated only at the next update event UEV). An example
is given in the following figure.

484761

0039 003A 003B B200 B201

003A B201

TIMX_CNT

TIMX_CCR1

OC1REF=OC1

Write B201h in the CC1R register

Match detected on CCR1.

Interrupt generated if enabled

Figure 63. Output Compare Mode, Toggle on OC1

11.3.10 PWM mode
Pulse Width Modulation mode allows generating a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing‘110’(PWM mode 1) or‘111’(PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register
(in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user must initialize all the registers by setting the
UG bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. OCx output is enabled by a combi-
nation of the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR
registers). Refer to the TIMx_CCER register for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤TIMx_CNT or TIMx_CNT ≤TIMx_CCRx (depending on the direction
of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode depend-
ing on the CMS bits in the TIMx_CR1 register.

www.mm32mcu.com 153/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

PWM edge-aligned mode
Upcounting configuration
Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to sec-
tion 11.3.2.

In the following example, we consider PWMmode 1. The reference PWM signal OCxREF
is high as long as TIMx_CNT < TIMx_CCRx, otherwise it becomes low. If the compare
value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF
is held at‘1’. If the compare value is 0 then OCxRef is held at‘0’. Figure 61 shows
some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

652093

0 1 2 3 4 5 6 7 8 0 1

‘1’

‘0’

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

Counter register

Figure 64. Edge-aligned PWM Waveforms (ARR = 8)

Downcounting configuration
Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to section 11.3.2.

In PWMmode 1, the reference signal OCxRef is low as long as TIMx_CNT > TIMx_CCRx,
otherwise it becomes high. If the compare value in TIMx_CCRx is greater than the auto-
reload value in TIMx_ARR, then OCxREF is held at‘1’. 0% PWM is not possible in this
mode.

PWM center-aligned mode
Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’(all the remaining configurations having the same effect on the OCxRef/OCx signals).
The compare flag is set when the counter counts up, when it counts down or when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in
the TIMx_CR1 register is updated by hardware and must not be changed by software.
Refer to section 11.3.2 Center-aligned Mode.

www.mm32mcu.com 154/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Figure 65 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR = 8
• PWM mode 1
• The flag is set when the counter counts down corresponding to the center-aligned mode
1 selected for CMS=01 in TIMx_CR1 register.

931803

0 1 2 3 4 5 6 7 8 7 6

‘1’

‘0’

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

CMS=01
CMS=10
CMS=11

CMS=10 or 11

‘1’

5 4 3 2 1 0 1

CCRx=7

OCxREF

CCxIF

CMS=01
CMS=10
CMS=11

CMS=01
CMS=10
CMS=11

CMS=01
CMS=10
CMS=11

Counter register

Figure 65. Center-aligned PWM Waveforms (ARR = 8)

Hints in center-aligned mode:
• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR
bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at
the same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:
– The direction is not updated if the user writes a value in the counter greater
than the auto-reload value (TIMx_CNT>TIMx_ARR).

– For example, if the counter was counting up, it will continue to count up.
– The direction is updated if the user writes 0 or write the TIMx_ARR value in
the counter but no Update Event UEV is generated

• The safest way to use center-alignedmode is to generate an update by software (setting
the UG bit in the TIMx_EGR register) just before starting the counter and not to write

www.mm32mcu.com 155/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

the counter while it is running.

11.3.11 Complementary outputs and dead-time insertion
The advanced-control timers (TIM1) can output two complementary signals and manage
the switching-off and the switching-on instants of the outputs. This time is generally known
as dead-time and it has to be adjusted depending on the devices connected to the outputs
and their characteristics (intrinsic delays of level-shifters, delays due to power switches).

User can select the polarity of the outputs (main output OCx or complementary OCxN)
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Ta-
ble 40 Output Control Bits for Complementary OCx and OCxN Channels with Break Fea-
ture for more details. In particular, the dead-time is activated when switching to the IDLE
state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit
if the break circuit is present. DTG[7:0] bits of the TIMx_BDTR register are used to con-
trol the dead-time generation for all channels. From a reference waveform OCxREF, it
generates 2 outputs OCx and OCxN. If OCx and OCxN are active high:

• The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

• The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge. If the delay is greater than the
width of the active output (OCx or OCxN) then the corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF(we suppose CCxP = 0, CCxNP = 0, MOE =
1, CCxE = 1 and CCxNE = 1 in these examples).

376699

OCxN

OCx

OCxREF

delay

delay

Figure 66. Complementary Output with Dead-time Insertion

www.mm32mcu.com 156/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

393374

OCxN

OCx

OCxREF

delay

Figure 67. Dead-time Waveforms with Delay Greater Than the Negative Pulse

118234

OCxN

OCx

OCxREF

delay

Figure 68. Dead-time Waveforms with Delay Greater than the Positive Pulse

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to section 11.4.18 for delay calculation.

Re-directing OCxREF to OCx or OCxN
In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.

This allows the user to send a specific waveform (such as PWM or static active level)
on one output while the complementary remains at its inactive level. Other possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.

Note: When only OCxN is enabled (CCxE = 0, CCxNE = 1), it is not complemented and becomes

active as soon as OCxREF is high. For example, if CCxNP = 0 then OCxN = OCxRef. On the other

hand, when both OCx and OCxN are enabled (CCxE = CCxNE = 1) OCx becomes active when

OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low.

11.3.12 Using the break function
When using the break function, the output enable signals and inactive levels are modified
according to additional control bits (MOE, OSSI andOSSR bits in the TIMx_BDTR register,

www.mm32mcu.com 157/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs
cannot be set both to active level at a given time. Refer to Table 40 Output Control Bits
for Complementary OCx and OCxN Channels with Break Feature for more details.

The break source can be either the break input pin or a clock failure event, generated by
the Clock Security System (CSS), from the Reset Clock Controller.

When exiting from reset, the break circuit is disabled and the MOE bit is low. User can
enable the break function by setting the BKE bit in the TIMx_BDTR register. The break
input polarity can be selected by configuring the BKP bit in the same register. BKE and
BKP can be modified at the same time.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control
bit (accessed in the TIMx_BDTR register). It results in some delays between the asyn-
chronous and the synchronous signals. In particular, if MOE is written to 1 whereas it
was low, a delay (dummy instruction) must be inserted before reading it correctly. This is
because the user writes an asynchronous signal, but reads a synchronous signal.

When a break occurs (selected level on the break input):

• The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

• Each output channel is drivenwith the level programmed in theOISx bit in the TIMx_CR2
register as soon as MOE=0. If OSSI=0 then the timer releases the enable output other-
wise the enable output remains high.

• In case of complementary output:
– The outputs are first put in reset state i.e. inactive state (depending on the po-
larity). This is done asynchronously so that it works even if no clock is provided
to the timer.

– If the timer clock is still present, the dead-time generator is reactivated in order
to drive the outputs with the level programmed in the OISx and OISxN bits after
a dead-time. Even in this case, OCx and OCxN cannot be driven to their active
level together. Note that because of the resynchronization on MOE, the dead-
time duration is a bit longer than usual (around 2 CK_TIM clock cycles).

– If OSSI = 0 then the timer releases the enable outputs otherwise the enable
outputs remain or become high as soon as one of the CCxE or CCxNE bits is
high.

• The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be gen-
erated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if the
BDE bit in the TIMx_DIER register is set.

• If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event UEV. This can be used to perform a regulation, for instance.
Otherwise, MOE remains low until it is written to ‘1’again. In this case, it can be
used for security and the break input can be connected to an alarm from power drivers,
thermal sensors or any security components.

www.mm32mcu.com 158/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input

is active (neither automatically nor by software). In the meantime, the status flag BIF cannot be

cleared.

The break can be generated by the BRK input which has a programmable polarity and an
enable bit BKE in the TIMx_BDTR Register.

In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows freezing the
configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). The user can choose
from three levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer
to Section 11.4.8. The LOCK bits can be written only once after an MCU reset.

The following figure shows an example of behavior of the outputs in response to a break:

www.mm32mcu.com 159/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

844716

OCxN

OCx

OCxREF

(OCxN not implemented, CCxp=0,OISx=1)

(OCxN not implemented, CCxp=0,OISx=0)
OCx

OCx
(OCxN not implemented, CCxp=1,OISx=1)

OCx
(OCxN not implemented, CCxp=1,OISx=1)

OCx

(CCxE=1,CCxP=0,OISx=0,CCxNE=1,CCxNP=0,OISxN=1)

OCxN

OCx

OCx

OCxN

OCx

OCxN

OCx

OCxN

BREAK(MOE)

(CCxE=1,CCxP=0,OISx=1,CCxNE=1,CCxNP=1,OISxN=1)

(CCxE=1,CCxP=0,OISx=0,CCxNE=0,CCxNP=0,OISxN=1)

(CCxE=1,CCxP=0,CCxNP=0,OISx=OISxN=0 or OISx=OISxN=1)

(CCxE=1,CCxP=0,OISx=1,CCxNE=0,CCxNP=0,OISxN=0)

delay delay delay

delay delay delay

delay

delay

Figure 69. Output Behavior in Response to A Break

11.3.13 Clearing the OCxREF signal on an external event
The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to‘1’).
The OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used
for current handling. In this case, the ETR must be configured as follow:

www.mm32mcu.com 160/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

• The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to‘00’.

• The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set
to‘0’.

• The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be config-
ured according to the user needs.

The following Figure shows the behavior of the OCxREF signal when the ETRF Input
becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx
is programmed in PWM mode.

769364

counter(CNT)

(CCRx)

ETRF

OCxREF
(OCxCE=’0’)

OCxREF
(OCxCE=’1’)

OCREF_CLR OCREF_CLR

becomes high still high

Figure 70. Clearing TIMx OCxREF

11.3.14 Six-step PWM generation
When complementary outputs are used on a channel, preload bits are available on the
OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the
COM commutation event. The user can thus program in advance the configuration for the
next step and change the configuration of all the channels at the same time. COM can be
generated by software by setting the COM bit in the TIMx_EGR register or by hardware
(on TRGI rising edge).

A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can
generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request
(if the COMDE bit is set in the TIMx_DIER register).

The following figure describes the behavior of the OCx and OCxN outputs when a COM
event occurs, in 3 different examples of programmed configurations.

www.mm32mcu.com 161/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

186221

counter(CNT)

(CCRx)

Write COM to 1

CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

CCxE=1
CCxNE=0
OCxM=100

CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

CCxE=0
CCxNE=1
OCxM=101

CCxE=1
CCxNE=0
OCxM=100

OCxREF

COM event

OCx

OCxN

OCx

OCxN

OCx

OCxN

CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

Write OCxM to 100

Write OCxNE to 1

and OCxM to 101

Write OCxNE to 0

and OCxM to 100

Example 1

Example 2

Example 3

Figure 71. Six-step PWM, COM Example (OSSR = 1)

11.3.15 One-pulse mode
One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output comparemode or PWMmode. Select One-pulsemode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration
must be:

www.mm32mcu.com 162/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

• In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)
• In downcounting: CNT > CCRx

947210

OC1

TI2

OC1REF

tDELAY
tPULSE

t
0

TIMx_ARR

TIMx_CCR1

C
o
u
n
te
r

Figure 72. Example of One Pulse Mode

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 to TI2 by writing CC2S = ’01’ in the TIMx_CCMR1 register.
• TI2FP2 must detect a rising edge, write CC2P = ’0’ in the TIMx_CCER register.
• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS = ’110’
in the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ’110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by the value written in the compare registers (taking into
account the clock frequency and the counter prescaler)

• The tDELAY is defined by the value written in the TIMx_CCR1 register.
• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let us say the user wants to build a waveform with a transition from ’0’ to ’1’ when a
compare match occurs and a transition from ‘1’to ‘0’when the counter reaches
the auto-reload value. To do this, enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=’1’in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case the compare value must be written in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to‘0’in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

www.mm32mcu.com 163/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

The user only wants one pulse (Single mode), so ’1’must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls
over from the auto-reload value back to 0).

Particular case: OCx fast enable
In One-pulse mode, the edge detection on TIx input sets the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If the user wants to output a waveform with the minimum delay, the OCxFE bit in the
TIMx_CCMRx register must be set. Then OCxRef (and OCx) are forced in response to
the stimulus, without taking in account the comparison. Its new level is the same as if a
compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or
PWM2 mode.

11.3.16 Encoder interface mode
To select Encoder Interface mode: write SMS = ’001’ in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS = ’010’ if it is counting on TI1 edges only and
SMS = ’011’ if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming theCC1P andCC2P bits in the TIMx_CCER
register. When needed, the user can program the input filter as well. The two inputs TI1
and TI2 are used to interface to an incremental encoder. Refer to Table 37. The counter
is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and
polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered
and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to
‘1’). The sequence of transitions of the two inputs is evaluated and generates count
pulses as well as the direction signal. Depending on the sequence the counter counts up
or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The
DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is
counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in
the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So
user must configure TIMx_ARR before starting. In the same way, the capture, compare,
prescaler, repetition counter, trigger output features continue to work as normal. Encoder
mode and External clock mode 2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction
of the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction corresponds to the rotation direction of the connected sensor.
The following table summarizes the possible combinations, assuming TI1 and TI2 do not
switch at the same time.

www.mm32mcu.com 164/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Table 37. Counting Direction Versus Encoder Signals

Active edge
Level on opposite signal (TI1FP1 for

TI2, TI2FP2 for TI1)

TI1FP1 signal TI1FP2 signal
Rising Falling Rising Falling

Counting on TI1 only
High Down Up No Count No Count

Low Up Down No Count No Count

Counting on TI2 only
High No Count No Count Up Down

Low No Count No Count Down Up

Counting on TI1 and

TI2

High Down Up Up Down

Low Up Down Down Up

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally used to convert the encoder’s differ-
ential outputs to digital signals. This greatly increases noise immunity. The third encoder
output which indicates the mechanical zero position, may be connected to an external
interrupt input and trigger a counter reset.

The following figure gives an example of counter operation, showing count signal genera-
tion and direction control. It also shows how input jitter is restrained where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points.

For this example we assume that the configuration is the following:

• CC1S=’01’(TIMx_CCMR1 register, TI1FP1 mapped on TI1).
• CC2S=’01’(TIMx_CCMR2 register, TI1FP2 mapped on TI2).
• CC1P=’0’, (TIMx_CCER register, IC1FP1 non-inverted, IC1FP1=TI1).
• C2P= ’0’ (TIMx_CCER register, IC2FP2 non-inverted, IC2FP2=TI2).
• SMS= ’011’ (TIMx_SMCR register, all inputs are active on both rising and falling edges).
• CEN= ’1’ (TIMx_CR1 register, Counter enabled).

352612

TI1

TI2

forward forwardjitterjitter backward

up updown

counter

Figure 73. Example of Counter Operation in Encoder Mode

www.mm32mcu.com 165/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

136200

TI1

TI2

forward forwardjitterjitter backward

down downup

counter

Figure 74. Example of Encoder Interface Mode with Inverted IC1FP1

The timer, when configured in Encoder Interface mode provides information on the sen-
sor’s current position.The user can obtain dynamic information (speed, acceleration,
deceleration) by measuring the period between two encoder events using a second timer
configured in capture mode. The output of the encoder which indicates the mechanical
zero can be used for this purpose. Depending on the time between two events, the counter
can also be read at regular times.

This can be done by latching the counter value into a third input capture register if available
(then the capture signal must be periodic and can be generated by another timer). When
available, it is also possible to read its value through a DMA request generated by a real-
time clock.

11.3.17 Timer input XOR function
The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected
to the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and
TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input cap-
ture. An example of this feature used to interface Hall sensors is given in section 11.3.18.

11.3.18 Interfacing with Hall sensors
This is done using the advanced-control timers (TIM1) to generate PWM signals to drive
the motor and another timer TIMx (TIM2 or TIM3) referred to as ”interfacing timer” in Fig-
ure 75. The ”interfacing timer” captures the 3 timer input pins (CC1, CC2, CC3) connected
through an XOR to the TI1 input channel (selected by setting the TI1S bit in the TIMx_CR2
register).

The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus,

www.mm32mcu.com 166/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates
a time base triggered by any change on the Hall inputs.

On the “interfacing timer”, capture/compare channel 1 is configured in capture mode,
capture signal is TRC (see Figure 58). The captured value, which corresponds to the time
elapsed between 2 changes on the inputs, gives information about motor speed.

The“interfacing timer”can be used in output mode to generate a pulse which changes
the configuration of the channels of the advanced-control timer TIM1 (by triggering a COM
event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this,
the interfacing timer channel must be programmed so that a positive pulse is generated
after a programmed delay (in output compare or PWM mode). This pulse is sent to the
advanced-control timer (TIM1) through the TRGO output.

Example: the user wants to change the PWM configuration of the advanced-control timer
TIMx after a programmed delay each time a change occurs on the Hall inputs connected
to one of the TIMx timers.

• Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the
TIMx_CR2 register to ’1’.

• Program the time base: write the TIMx_ARR to the max value (the counter must be
cleared by the TI1 change. Set the prescaler to get a maximum counter period longer
than the time between 2 changes on the sensors.

• Program channel 1 in capturemode (TRC selected): write the CC1S bits in the TIMx_CCMR1
register to‘01’. The user can also program the digital filter if needed.

• Program channel 2 in PWM 2mode with the desired delay: write the OC2M bits to‘111’
and the CC2S bits to‘00’in the TIMx_CCMR1 register.

• Select OC2REF as trigger output on TRGO: write theMMSbits in the TIMx_CR2 register
to‘101’.

In the advanced-control timer TIM1, the right ITR input must be selected as trigger input,
the timer is programmed to generate PWM signals, the capture/compare control signals
are preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the
trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM)
are written after a COM event for the next step (this can be done in an interrupt subroutine
generated by the rising edge of OC2REF).

The following figure describes this example.

www.mm32mcu.com 167/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

190862

TIH1

TIH2

TIH3

Counter(CNT)

(CCR2)

TRGO = OC2REF

COM

OC1

OC1N

OC2

OC2N

OC3

OC3N

Write CCxE,CCxNE

and OCxM for next step

CCR1 C7A3 C7A8 C794 C7A5 C7AB C796

In
te

rf
a

c
in

g
 T

im
e

r
A

d
v
a

n
c
e

d
-c

o
n

tr
o

l
T

im
e

r

Figure 75. Example of Hall Sensor Interface

11.3.19 TIMx and external trigger synchronization
The TIMx timer can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode
The counter and its prescaler can be reinitialized in response to an event on a trigger
input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV
is generated. Then, all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1
input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter dura-
tion (in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edges only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE (interrupt enable) and TDE (DMA

www.mm32mcu.com 168/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

enable) bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

770275

TI1

UG

Counter clock = CK_CNT = CK_PSC

TIF

33323130 00 01 02 0336 00 01 0234 35 03Counter register

Figure 76. Control Circuit in Reset Mode

Slave mode: Gated mode
The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in
this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is
not used for triggering, so the user does not need to configure it. The CC1S bits select
the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 in
TIMx_CCER register to validate the polarity (and detect low level only)

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever the trigger input level is)

The counter starts counting on the internal clock as long as TI1 is low and stops as soon
as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter
starts or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

www.mm32mcu.com 169/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

470760

TI1

CNT_EN

34

TIF

33323130 35 36 37 38

Write TIF = 0

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 77. Control Circuit in Gated Mode

Slave mode: Trigger mode
The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter dura-
tion (in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC2S
bits are only configured to select CC2P=1 in TIMx_CCER register, so as to validate the
polarity (and detect low level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and
the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the
counter is due to the resynchronization circuit on TI2 input.

873472

TI2

CNT_EN

34 35 36

TIF

37 38

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 78. Control Circuit in Trigger Mode

Slave mode: external clock mode 2 + trigger mode
The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock

www.mm32mcu.com 170/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

input, and another input can be selected as trigger input (in reset mode, gated mode
or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of
TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

• Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:
– ETF = 0000: no filter
– ETPS = 00: prescaler disabled
– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external
clock mode 2.

• Configure the channel 1 as follows, to detect rising edges on T1:
– IC1F=0000: no filter.
– The capture prescaler is not used for triggering and does not need to be con-
figured.

– CC1S=01 in TIMx_CCMR1 register to select only the input capture source.
– CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edge
only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts
on ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter
is due to the resynchronization circuit on ETRP input.

608005

TI1

CEN/CNT_EN

34 35 36

TIF

ETR

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 79. Control Circuit in External Clock Mode 2 + Trigger Mode

11.3.20 Timer synchronization
The TIM timers are linked together internally for timer synchronization or chaining. Refer
to Section TIM2/3/4 for details.

www.mm32mcu.com 171/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

11.3.21 Debug mode
When the microcontroller enters debug mode (CPU core halted), the TIMx counter either
continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in
DBG module. For more details, refer to the following debug sections.

11.4 Register description

Table 38. Summary of TIM1 Register

Offset Acronym Register Name Reset Section

0x00 TIMx_CR1 Control register 1 0x00000000 section 11.4.1

0x04 TIMx_CR2 Control register 2 0x00000000 section 11.4.2

0x08 TIMx_SMCR Slave mode control register 0x00000000 section 11.4.3

0x0C TIMX_DIER DMA /interrupt enable register 0x00000000 section 11.4.4

0x10 TIMx_SR Status register 0x00000000 section 11.4.5

0x14 TIMx_EGR Event generation register 0x00000000 section 11.4.6

0x18 TIMx_CCMR1 Capture/compare mode register 1 0x00000000 section 11.4.7

0x1C TIMx_CCMR2 Capture/compare mode register 2 0x00000000 section 11.4.8

0x20 TIMx_CCER Capture/compare enable register 0x00000000 section 11.4.9

0x24 TIMx_CNT Counter 0x00000000 section 11.4.10

0x28 TIMx_PSC Prescaler 0x00000000 section 11.4.11

0x2C TIMx_ARR Auto-reload register 0x00000000 section 11.4.12

0x30 TIMx_RCR Repetition counter register 0x00000000 section 11.4.13

0x34 TIMx_CCR1 Capture/compare register 1 0x00000000 section 11.4.14

0x38 TIMx_CCR2 Capture/compare register 2 0x00000000 section 11.4.15

0x3C TIMx_CCR3 Capture/compare register 3 0x00000000 section 11.4.16

0x40 TIMx_CCR4 Capture/compare register 4 0x00000000 section 11.4.17

0x44 TIMx_BDTR Break and dead-time register 0x00000000 section 11.4.18

0x48 TIMx_DCR DMA control register 0x00000000 section 11.4.19

0x4C TIMx_DMAR DMA address in continuous mode 0x00000000 section 11.4.20

0x54 TIMx_CCMR3 Capture/compare mode register 3 0x00000000 section 11.4.21

0x58 TIMx_CCR5 Capture/compare register 5 0x00000000 section 11.4.22

11.4.1 Control register 1(TIMx_CR1)
Offset address: 0x00

Reset value: 0x0000

123456789 01112131415 10

Reserved ARPE UDISCMS URSOPMDIR CENCKD

rwrwrwrwrwrwrwrwrw rw

www.mm32mcu.com 172/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.
9: 8 CKD rw 0x00 Clock division

The 2 bits indicates the division ratio between the timer
clock (CK_INT) frequency and the dead-time and sam-
pling clock (tDTS) used by the dead-time generators and
the digital filters (ETR, TIx).
00: tDTS = tCK_INT
01: tDTS = 2 x tCK_INT
10: tDTS = 4 x tCK_INT
11: Reserved, do not program this value

7 ARPE rw 0x00 Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

6: 5 CMS rw 0x00 Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down
depending on the direction bit (DIR).
01: Center-aligned mode 1. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set both when the counter is counting up or down.
Note: It is not allowed to switch from edge-aligned mode to

center-aligned mode when the counter is enabled (CEN=1).

4 DIR rw 0x00 Direction
0: Counter used as upcounter
1: Counter used as downcounter
Note: This bit is read only when the timer is configured in Center-

aligned mode or Encoder mode.

3 OPM rw 0x00 One pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clear-
ing the bit CEN)

www.mm32mcu.com 173/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

2 URS rw 0x00 Update request source
This bit is set and cleared by software to select the UEV
event sources.
0: Any of the following events generates an update inter-
rupt or DMA request if enabled.These events can be:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update
interrupt or DMA request if enabled.

1 UDIS rw 0x00 Update disable
This bit is set and cleared by software to enable/disable
UEV event generation.
0: UEV enabled. The Update (UEV) event is generated
by one of the following events:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller,
buffered registers are then loaded with their preload val-
ues
1: UEV disabled. The Update event is not generated,
shadow registers keep their value (ARR, PSC, CCRx).
However the counter and the prescaler are reinitialized if
the UG bit is set or if a hardware reset is received from the
slave mode controller.

0 CEN rw 0x00 Counter enable
0: Counter disabled
1: Counter enabled
Note: External clock, gated mode and encoder mode can work

only if the CEN bit has been previously set by software. How-

ever, trigger mode can set the CEN bit automatically by hard-

ware.

11.4.2 Control register 2(TIMx_CR2)
Offset address: 0x04

Reset value: 0x0000 0000

www.mm32mcu.com 174/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

171819202122232425 162728293031 26

123456789 01112131415 10

Res. OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1 TI1S MMS CCDS CCUS Res. CCPC

OIS5Reserved

rwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw

Bit Field Type Reset Description

31: 17 Reserved Reserved, always read as 0.
16 OIS5 rw 0x00 Output Idle state 5 (OC5 output).Refer to OIS1 bit.
15 Reserved Reserved, always read as 0.
14 OIS4 rw 0x00 Output Idle state 4 (OC4 output).Refer to OIS1 bit.
13 OIS3N rw 0x00 Output Idle state 3(OC3N output). Refer to OIS1N bit.
12 OIS3 rw 0x00 Output Idle state 3 (OC3 output).Refer to OIS1 bit.
11 OIS2N rw 0x00 Output Idle state 2(OC2N output). Refer to OIS1N bit.
10 OIS2 rw 0x00 Output Idle state 2 (OC2 output).Refer to OIS1 bit.
9 OIS1N rw 0x00 Output Idle state 1 (OC1N output).

0: OC1N = 0 after a dead-time when MOE = 0
1: OC1N = 1 after a dead-time when MOE = 0
Note: This bit can not be modified as long as LOCK level 1, 2 or

3 has been programmed (LOCK bits in TIMx_BKR register).

8 OIS1 rw 0x00 Output Idle state 1 (OC1 output).
0: OC1 = 0 (after a dead-time if OC1N is implemented)
when MOE = 0
1: OC1 = 1 (after a dead-time if OC1N is implemented)
when MOE = 0
Note: This bit can not be modified as long as LOCK level 1, 2 or

3 has been programmed (LOCK bits in TIMx_BKR register).

7 TI1S rw 0x00 TI1 selection
0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to
the TI1 input (XOR combination)

www.mm32mcu.com 175/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

6: 4 MMS rw 0x00 Master mode selection
These bits allow to select the information to be sent in mas-
ter mode to slave timers for synchronization (TRGO). The
combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is
used as trigger output (TRGO). If the reset is generated by
the trigger input (slave mode controller configured in reset
mode) then the signal on TRGO is delayed compared to
the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used
as trigger output (TRGO). It is useful to start several timers
at the same time or to control a window in which a slave
timer is enable. The Counter Enable signal is generated
by a logic OR between CEN control bit and the trigger in-
put when configured in gated mode. When the Counter
Enable signal is controlled by the trigger input, there is a
delay on TRGO, except if the master/slave mode is se-
lected (see the MSM bit description in TIMx_SMCR regis-
ter).
010: Update - The update event is selected as trigger out-
put (TRGO). For instance, amaster timer can then be used
as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive
pulse when the CC1IF flag is to be set (even if it was al-
ready high), as soon as a capture or a compare match
occurred (TRGO).
100: Compare - OC1REF signal is used as trigger output
(TRGO)
101: Compare - OC2REF signal is used as trigger output
(TRGO)
110: Compare - OC3REF signal is used as trigger output
(TRGO)
111: Compare - OC4REF signal is used as trigger output
(TRGO)

3 CCDS rw 0x00 Capture/compare DMA selection
0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

www.mm32mcu.com 176/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

2 CCUS rw 0x00 Capture/compare control update selection
0: When capture/compare control bits are preloaded
(CCPC=1), they are updated by setting the COM bit only
1: When capture/compare control bits are preloaded
(CCPC=1), they are updated by setting the COM bit or
when an rising edge occurs on TRGI
Note: This bit acts only on channels that have a complementary

output.

1 Reserved Reserved, always read as 0.
0 CCPC rw 0x00 Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after hav-
ing been written, they are updated only when a commuta-
tion event (COM) occurs (COMG bit set).
Note: This bit acts only on channels that have a complementary

output.

11.4.3 Slave mode control register(TIMx_SMCR)
Offset address: 0x08

Reset value: 0x0000

123456789 01112131415 10

ETP ETPSECE ETF MSM TS OCCS SMS

rw rwrwrwrwrwrwrwrwrwrwrwrwrw rwrw

Bit Field Type Reset Description

15 ETP rw 0x00 External trigger polarity
This bit selects whether ETR or inverted ETR is used for
trigger operations.
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

www.mm32mcu.com 177/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

14 ECE rw 0x00 External clock enable
This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked
by any active edge on the ETRF signal.
Note 1: Setting the ECE bit has the same effect as selecting
external clock mode 1 with TRGI connected to ETRF (SMS=111
and TS=111).
Note 2: It is possible to simultaneously use external clock mode
2 with the following slave modes: reset mode, gated mode and
trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).

Note 3: If external clock mode 1 and external clock mode 2 are

enabled at the same time, the external clock input is ETRF.

13: 12 ETPS rw 0x00 External trigger prescaler
External trigger signal ETRP frequency must be at most
1/4 of TIMxCLK frequency. A prescaler can be enabled to
reduce ETRP frequency. It is useful when inputting fast
external clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

www.mm32mcu.com 178/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

11: 8 ETF rw 0x00 External trigger filter
This bit-field then defines the frequency used to sample
ETRP signal and the length of the digital filter applied to
ETRP. The digital filter is made of an event counter in
which N consecutive events are needed to validate a tran-
sition on the output:
0000: No filter, sampling is done at fDTS.
0001: sampling frequency fSAMPLING=fCK_INT, N = 2
0010: sampling frequency fSAMPLING=fCK_INT, N = 4
0011: sampling frequency fSAMPLING=fCK_INT, N = 8
0100: sampling frequency fSAMPLING=fDTS/2, N = 6
0101: sampling frequency fSAMPLING=fDTS/2, N = 8
0110: sampling frequency fSAMPLING=fDTS/4, N = 6
0111: sampling frequency fSAMPLING=fDTS/4, N = 8
1000: sampling frequency fSAMPLING=fDTS/8, N = 6
1001: sampling frequency fSAMPLING=fDTS/8, N = 8
1010: sampling frequency fSAMPLING=fDTS/16, N = 5
1011: sampling frequency fSAMPLING=fDTS/16, N = 6
1100: sampling frequency fSAMPLING=fDTS/16, N = 8
1101: sampling frequency fSAMPLING=fDTS/32, N = 5
1110: sampling frequency fSAMPLING=fDTS/32, N = 6
1111: sampling frequency fSAMPLING=fDTS/32, N = 8

7 MSM rw 0x00 Master/slave mode
0: No action
1: The effect of an event on the trigger input (TRGI) is de-
layed to allow a perfect synchronization between the cur-
rent timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external
event.

www.mm32mcu.com 179/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

6: 4 TS rw 0x00 Trigger selection
This bit-field selects the trigger input to be used to synchro-
nize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1(ITR1)
010: Internal Trigger 2(ITR2)
011: Internal Trigger 3(ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2(TI2FP2)
111: External Trigger input (ETRF)
See the following table for more details on ITRx.
Note: These bits must be changed only when they are not used

(e.g. when SMS=000) to avoid wrong edge detections at the

transition.

3 OCCS rw 0x00 Output compare clear selection
In PWM mode, clear the comparator output
1: Comparator output as clear signal
0: External trigger signal as clear signal

www.mm32mcu.com 180/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

2: 0 SMS rw 0x00 Slave mode selection
When external signals are selected the active edge of the
trigger signal (TRGI) is linked to the polarity selected on
the external input (refer to Input Control register and Con-
trol Register description).
000: Slavemode disabled - if CEN =‘1’then the prescaler
is clocked directly by the internal clock.
001: Encoder mode 1 - Counter counts up/down on
TI2FP1 edge depending on TI1FP2 level.
010: Encoder mode 2 - Counter counts up/down on
TI1FP2 edge depending on TI2FP1 level.
011: Encoder mode 3 - Counter counts up/down on both
TI1FP1 and TI2FP2 edges depending on the level of the
other input.
100: Reset Mode - Rising edge of the selected trigger in-
put (TRGI) reinitializes the counter and generates an up-
date of the registers.
101: Gated Mode - The counter clock is enabled when the
trigger input (TRGI) is high. The counter stops (but is not
reset) as soon as the trigger input becomes low. Both start
and stop of the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of
the trigger TRGI (but it is not reset). Only the start of the
counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected
trigger input (TRGI) clock the counter.
Note: The gated mode must not be used if TI1F_EN is selected

as the trigger input (TS= ’100’). Indeed, TI1F_ED outputs 1 pulse

for each transition on TI1F, whereas the gated mode checks the

level of the trigger signal.

Table 39. TIMx Internal Trigger Connection

Slave timer ITR0 ITR1 ITR2 ITR3

TIM1 x TIM2 TIM3 x

TIM2 TIM1 x TIM3 x

TIM3 TIM1 TIM2 x x

11.4.4 DMA/interrupt enable register (TIMX_DIER)
Offset address: 0x0C

Reset value: 0x0000 0000

www.mm32mcu.com 181/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

171819202122232425 162728293031 26

123456789 01112131415 10

Res. TDE BIE UIE
COM

DE

CC4

DE

CC3

DE

CC2

DE

CC1

DE UDE TIE
COM

IE

CC4

 IE

CC3

 IE

CC2

 IE

CC1

 IE

Reserved
CC5

DE

CC5

IE

rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rw

Bit Field Type Reset Description

31:18 Reserved Reserved, always read as 0.
17 CC5DE rw 0x00 Capture/Compare 5 DMA request enable

0: CC5 DMA request disabled
1: CC5 DMA request enabled

16 CC5IE rw 0x00 Capture/Compare 5 interrupt enable
0: CC5 interrupt disabled
1: CC5 interrupt enabled

15 Reserved Reserved, always read as 0.
14 TDE rw 0x00 Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

13 COMDE rw 0x00 COM DMA request enable
0: COM DMA request disabled
1: COM DMA request enabled

12 CC4DE rw 0x00 Capture/Compare 4 DMA request enable
0: CC4 DMA request disabled
1: CC4 DMA request enabled

11 CC3DE rw 0x00 Capture/Compare 3 DMA request enable
0: CC3 DMA request disabled
1: CC3 DMA request enabled

10 CC2DE rw 0x00 Capture/Compare 2 DMA request enable
0: CC2 DMA request disabled
1: CC2 DMA request enabled

9 CC1DE rw 0x00 Capture/Compare 1 DMA request enable
0: CC1 DMA request disabled
1: CC1 DMA request enabled

8 UDE rw 0x00 Update DMA request enable
0: Update DMA request disabled
1: Update DMA request enabled

7 BIE rw 0x00 Break interrupt enable
0: Break interrupt disabled
1: Break interrupt enabled

6 TIE rw 0x00 Trigger interrupt enable
0: Trigger interrupt disabled
1: Trigger interrupt enabled

www.mm32mcu.com 182/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

5 COMIE rw 0x00 COM interrupt enable
0: COM interrupt disabled
1: COM interrupt enabled

4 CC4IE rw 0x00 Capture/Compare 4 interrupt enable
0: CC4 interrupt disabled
1: CC4 interrupt enabled

3 CC3IE rw 0x00 Capture/Compare 3 interrupt enable
0: CC3 interrupt disabled
1: CC3 interrupt enabled

2 CC2IE rw 0x00 Capture/Compare 2 interrupt enable
0: CC2 interrupt disabled
1: CC2 interrupt enabled

1 CC1IE rw 0x00 Capture/Compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled

0 UIE rw 0x00 Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

11.4.5 Status register(TIMx_SR)
Offset address: 0x10

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved
CC4

OF

CC3

OF

CC2

OF

CC1

OF Res. BIF TIF UIF
COM

IF

CC4

IF

CC3

IF

CC2

IF

CC1

IF

CC5

IFReserved

rc_w0rc_w0rc_w0rc_w0rc_w0rc_w0rc_w0rc_w0rc_w0rc_w0rc_w0 rc_w0

rc_w0

Bit Field Type Reset Description

31: 17 Reserved Reserved, always read as 0.
16 CC5IF rc_w0 0x00 Capture/Compare 5 interrupt flag

Refer to CC1IF description.
15: 13 Reserved Reserved, always read as 0.
12 CC4OF rc_w0 0x00 Capture/Compare 4 overcapture flag

Refer to CC1OF description.
11 CC3OF rc_w0 0x00 Capture/Compare 3 overcapture flag

Refer to CC1OF description.
10 CC2OF rc_w0 0x00 Capture/Compare 2 overcapture flag

Refer to CC1OF description.

www.mm32mcu.com 183/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

9 CC1OF rc_w0 0x00 Capture/Compare 1 overcapture flag
This flag is set by hardware only when the corresponding
channel is configured in input capture mode. It is cleared
by software by writing it to‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1
register while CC1IF flag was already set.

8 Reserved Reserved, always read as 0.
7 BIF rc_w0 0x00 Break interrupt flag

This flag is set by hardware as soon as the break input
goes active. It can be cleared by software if the break
input is not active.
0: No break event occurred.
1: An active level has been detected on the break

6 TIF rc_w0 0x00 Trigger interrupt flag
This flag is set by hardware on trigger event (active edge
detected on TRGI input when the slave mode controller is
enabled in all modes but gated mode, both edges in case
gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

5 COMIF rc_w0 0x00 COM interrupt flag
This flag is set by hardware on COM event (when Cap-
ture/compare Control bits - CCxE, CCxNE, OCxM - have
been updated). It is cleared by software.
0: No COM event occurred.
1: COM interrupt pending.

4 CC4IF rc_w0 0x00 Capture/Compare 4 interrupt flag
Refer to CC1IF description.

3 CC3IF rc_w0 0x00 Capture/Compare 3 interrupt flag
Refer to CC1IF description.

2 CC2IF rc_w0 0x00 Capture/Compare 2 interrupt flag
Refer to CC1IF description.

www.mm32mcu.com 184/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

1 CC1IF rc_w0 0x00 Capture/Compare 1 interrupt flag
If channel CC1 is configured as output:
This flag is set by hardware when the counter matches
the compare value, with some exception in center-aligned
mode (refer to the CMS bits in the TIMx_CR1 register de-
scription). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the con-
tent of the TIMx_CCR1 register.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by
software or by reading the TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1
register (An edge has been detected on IC1 which
matches the selected polarity)

0 UIF rc_w0 0x00 Update interrupt flag
This bit is set by hardware on an update event. It is cleared
by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware
when the registers are updated:
- At overflow or underflow regarding the repetition counter
value (update if repetition counter= 0) and if the UDIS=0
in the TIMx_CR1 register.
–When CNT is reinitialized by software using the UG
bit in TIMx_EGR register, if URS=0 and UDIS=0 in the
TIMx_CR1 register.
–When CNT is reinitialized by a trigger event (refer to the
description of synchronization control register), if URS=0
and UDIS=0 in the TIMx_CR1 register.

11.4.6 Event generation register (TIMx_EGR)
Offset address: 0x14

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved BG UGTG COMG CC4G CC3G CC2G CC1G

Reserved CC5G

wwwwwww w

w

www.mm32mcu.com 185/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

31: 17 Reserved Reserved, always read as 0.
16 CC5G w 0x00 Capture/Compare 5 generation

Refer to CC1G description.
15: 8 Reserved Reserved, always read as 0.
7 BG w 0x00 Break generation

This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: A break event is generated. MOE bit is cleared and BIF
flag is set. Related interrupt or DMA transfer can occur if
enabled.

6 TG w 0x00 Trigger generation
This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related inter-
rupt or DMA transfer can occur if enabled.

5 COMG w 0x00 Capture/Compare control update generation
This bit can be set by software, it is automatically cleared
by hardware.
0: No action
1: WhenCCPC bit is set, it allows to update CCxE, CCxNE
and OCxM bits
Note: This bit acts only on channels having a complementary

output.

4 CC4G w 0x00 Capture/Compare 4 generation
Refer to CC1G description.

3 CC3G w 0x00 Capture/Compare 3 generation
Refer to CC1G description.

2 CC2G w 0x00 Capture/Compare 2 generation
Refer to CC1G description.

www.mm32mcu.com 186/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

1 CC1G w 0x00 Capture/Compare 1 generation
This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel CC1
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request
is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in
TIMx_CCR1 register. The CC1IF flag is set, the cor-
responding interrupt or DMA request is sent if enabled.
The CC1OF flag is set if the CC1IF flag was already high.

0 UG w 0x00 Update generation
This bit can be set by software, it is automatically cleared
by hardware.
0: No action
1: Reinitialize the counter and generate an update of
the registers. Note that the prescaler counter is cleared
too (anyway the prescaler factor is not affected). The
counter is cleared if the center-aligned mode is selected or
if DIR=0 (upcounting), otherwise, it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

11.4.7 Capture/compare mode register 1 (TIMx_CCMR1)
Offset address: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So the user must take care that the same
bit can have a different meaning for the input stage and for the output stage.

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

OC2M

CC1S

OC2

PE

OC2

FE OC1M
OC1

PE

OC1

FE

IC2F IC2PSC

CC2S

OC1

CE

IC1F IC1PSC

OC2

CE

Output compare mode:

www.mm32mcu.com 187/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

15 OC2CE rw 0x00 Output compare 2 clear enable
14: 12 OC2M rw 0x00 Output compare 2 mode
11 OC2PE rw 0x00 Output compare 2 preload enable
10 OC2FE rw 0x00 Output compare 4 fast enable
9: 8 CC2S rw 0x00 Capture/Compare 2 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on
TI2
10: CC2 channel is configured as input, IC2 is mapped on
TI1
11: CC2 channel is configured as input, IC2 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF

(CC2E =‘0’in TIMx_CCER).

7 OC1CE rw 0x00 Output compare 1 clear enable
0: OC1Ref is not affected by the ETRF Input
1: OC1Ref is cleared as soon as a High level is detected
on ETRF input

www.mm32mcu.com 188/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

6: 4 OC1M rw 0x00 Output compare 1 mode
These bits define the behavior of the output reference
signal OC1REF from which OC1 and OC1N are derived.
OC1REF is active high whereas OC1 and OC1N active
level depends on CC1P and CC1NP bits.
000: Frozen - The comparison between the output com-
pare register TIMx_CCR1 and the counter TIMx_CNT has
no effect on the outputs
001: Set channel 1 to active level on match. OC1REF
signal is forced high when the counter TIMx_CNTmatches
the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF
signal is forced low when the counter TIMx_CNT matches
the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when
TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as
long as TIMx_CNT<TIMx_CCR1
otherwise inactive. In downcounting, channel 1 is inactive
(OC1REF=‘0’) as long as TIMx_CNT>TIMx_CCR1 oth-
erwise active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is in-
active as long as TIMx_CNT<TIMx_CCR1otherwise ac-
tive. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 otherwise inactive.
Note 1: These bits can not be modified as long as LOCK level 3
has been programmed (LOCK bits in TIMx_BDTR register) and
CC1S=’00’(the channel is configured in output).

Note 2: In PWM mode 1 or 2, the OCREF level changes only

when the result of the comparison changes or when the output

compare mode switches from“frozen”mode to“PWM”mode.

www.mm32mcu.com 189/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

3 OC1PE rw 0x00 Output compare 1 preload enable
0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1
can be written at anytime, the new value is taken in ac-
count immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write
operations access the preload register. TIMx_CCR1
preload value is loaded in the active register at each up-
date event.
Note 1: These bits can not be modified as long as LOCK level 3
has been programmed (LOCK bits in TIMx_BDTR register) and
CC1S=’00’(the channel is configured in output).

Note 2: The PWM mode can be used without validating

the preload register only in one pulse mode (OPM bit set in

TIMx_CR1 register). Else the behavior is not guaranteed.

2 OC1FE rw 0x00 Output compare 1 fast enable
This bit is used to accelerate the effect of an event on the
trigger in input on the CC output.
0: CC1 behaves normally depending on counter and
CCR1 values even when the trigger is ON. The minimum
delay to activate CC1 output when an edge occurs on the
trigger input is 5 clock cycles.
1: An active edge on the trigger input acts like a compare
match on CC1 output. Then, OC is set to the compare
level independently from the result of the comparison. De-
lay to sample the trigger input and to activate CC1 output
is reduced to 3 clock cycles. OCFE acts only if the channel
is configured in PWM1 or PWM2 mode.

1: 0 CC1S rw 0x00 Capture/Compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E = ’0’ in TIMx_CCER).

Input capture mode:

www.mm32mcu.com 190/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

15: 12 IC2F rw 0x00 Input capture 2 filter
11: 10 IC2PSC rw 0x00 Input capture 2 prescaler
9: 8 CC2S rw 0x00 Capture/Compare 2 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on
TI2
10: CC2 channel is configured as input, IC2 is mapped on
TI1
11: CC2 channel is configured as input, IC2 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF

(CC2E =‘0’in TIMx_CCER).

7: 4 IC1F rw 0x00 Input capture 1 filter
This bit-field defines the frequency used to sample TI1 in-
put and the length of the digital filter applied to TI1. The
digital filter is made of an event counter in which N con-
secutive events are needed to validate a transition on the
output:
0000: No filter, sampling is done at fDTS
1000: sampling frequency fSAMPLING=fDTS/8, N = 6
0001: sampling frequency fSAMPLING=fCK_INT, N = 2
1001: sampling frequency fSAMPLING=fDTS/8, N = 8
0010: sampling frequency fSAMPLING=fCK_INT, N = 4
1010: sampling frequency fSAMPLING=fDTS/16, N = 5
0011: sampling frequency fSAMPLING=fCK_INT, N = 8
1011: sampling frequency fSAMPLING=fDTS/16, N = 6
0100: sampling frequency fSAMPLING=fDTS/2, N = 6
1100: sampling frequency fSAMPLING=fDTS/16, N = 8
0101: sampling frequency fSAMPLING=fDTS/2, N = 8
1101: sampling frequency fSAMPLING=fDTS/32, N = 5
0110: sampling frequency fSAMPLING=fDTS/4, N = 6
1110: sampling frequency fSAMPLING=fDTS/32, N = 6
0111: sampling frequency fSAMPLING=fDTS/4, N = 8
1111: sampling frequency fSAMPLING=fDTS/32, N = 8

www.mm32mcu.com 191/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

3: 2 IC1PSC rw 0x00 Input capture 1 prescaler
This bit-field defines the factor of the prescaler acting on
CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’(TIMx_CCER
register).
00: no prescaler, capture is done each time an edge is
detected on the capture input.
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

1: 0 CC1S rw 0x00 Capture/compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E =‘0’in TIMx_CCER).

11.4.8 Capture/compare mode register 2(TIMx_CCMR2)
Offset address: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

OC4M

CC3S

OC4

PE

OC4

FE
OC3M

OC3

PE

OC3

FE

OC4

CE

IC4F IC4PSC

CC4S

OC3

CE

IC3F IC3PSC

Output compare mode:

Bit Field Type Reset Description

15 OC4CE rw 0x00 Output compare 4 clear enable
14: 12 OC4M rw 0x00 Output compare 4 mode
11 OC4PE rw 0x00 Output compare 4 preload enable
10 OC4FE rw 0x00 Output compare 4 fast enable

www.mm32mcu.com 192/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

9: 8 CC4S rw 0x00 Capture/Compare 4 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on
TI4
10: CC4 channel is configured as input, IC4 is mapped on
TI3
11: CC4 channel is configured as input, IC4 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF

(CC4E =‘0’in TIMx_CCER)

7 OC3CE rw 0x00 Output compare 3 clear enable
6: 4 OC3M rw 0x00 Output compare 3 mode
3 OC3PE rw 0x00 Output compare 3 preload enable
2 OC3FE rw 0x00 Output compare 3 fast enable
1: 0 CC3S rw 0x00 Capture/Compare 3 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on
TI3
10: CC3 channel is configured as input, IC3 is mapped on
TI4
11: CC3 channel is configured as input, IC3 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF

(CC3E =‘0’in TIMx_CCER)

Input capture mode:

Bit Field Type Reset Description

15: 12 IC4F rw 0x00 Input capture 4 filter
11: 10 IC4PSC rw 0x00 Input capture 4 prescaler

www.mm32mcu.com 193/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

9: 8 CC4S rw 0x00 Capture/Compare 4 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on
TI4
10: CC4 channel is configured as input, IC4 is mapped on
TI3
11: CC4 channel is configured as input, IC4 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF

(CC4E =‘0’in TIMx_CCER).

7: 4 IC3F rw 0x00 Input capture 3 filter
3: 2 IC3PSC rw 0x00 Input capture 3 prescaler
1: 0 CC3S rw 0x00 Capture/compare 3 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on
TI4
10: CC3 channel is configured as input, IC3 is mapped on
TI3
11: CC3 channel is configured as input, IC3 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF

(CC3E =‘0’in TIMx_CCER).

11.4.9 Capture/compare enable register(TIMx_CCER)
Offset address: 0x20

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved CC1PCC2E CC1ECC4P CC4E
CC3

NP

CC3

NE CC3P CC3E
CC2

NE

CC2

NP CC2P
CC1

NP

CC1

NE

CC5P CC5EReserved

rwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rw

www.mm32mcu.com 194/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

31: 18 Reserved Reserved, always read as 0.
17 CC5P rw 0x00 Capture/Compare 5 output polarity

Refer to CC1P description.
16 CC5E rw 0x00 Capture/Compare 5 output enable

Refer to CC1E description.
15: 14 Reserved Reserved, always read as 0.
13 CC4P rw 0x00 Capture/Compare 4 output polarity

Refer to CC1P description.
12 CC4E rw 0x00 Capture/Compare 4 output enable

Refer to CC1E description.
11 CC3NP rw 0x00 Capture/Compare 3 complementary output polarity

Refer to CC1NP description.
10 CC3NE rw 0x00 Capture/Compare 3 complementary output enable

Refer to CC1NE description.
9 CC3P rw 0x00 Capture/Compare 3 output polarity

Refer to CC1P description.
8 CC3E rw 0x00 Capture/Compare 3 output enable

Refer to CC1E description.
7 CC2NP rw 0x00 Capture/Compare 2 complementary output polarity

Refer to CC1NP description.
6 CC2NE rw 0x00 Capture/Compare 2 complementary output enable

Refer to CC1NE description.
5 CC2P rw 0x00 Capture/Compare 2 output polarity

Refer to CC1P description.
4 CC2E rw 0x00 Capture/Compare 2 output enable

Refer to CC1E description.
3 CC1NP rw 0x00 Capture/Compare 1 complementary output polarity

0: OC1N active high
1: OC1N active low
Note: This bit is not modified as soon as LOCK level 2 or 3

has been programmed (LOCK bits in TIMx_BDTR register) and

CC1S=”00”(the channel is configured in output).

2 CC1NE rw 0x00 Capture/Compare 1 complementary output enable
0: Off - OC1N is not active. OC1N level is then function of
MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits.
1: On - OC1N signal is output on the corresponding output
pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and
CC1E bits.

www.mm32mcu.com 195/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

1 CC1P rw 0x00 Capture/Compare 1 output polarity
CC1 channel is configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel is configured as input:
This bit selects whether IC1 or inverted IC1 is used for
trigger or capture operations.
0: non-inverted: capture is done on a rising edge of IC1.
When used as external trigger, IC1 is non-inverted.
1: inverted: capture is done on a falling edge of IC1. When
used as external trigger, IC1 is inverted

0 CC1E rw 0x00 Capture/Compare 1 output enable
CC1 channel is configured as output:
0: Off - OC1 is not active. OC1 level is then function of
MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits.
1: On - OC1 signal is output on the corresponding output
pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and
CC1E bits.
CC1 channel is configured as input:
This bit determines if a capture of the counter value can
actually be done into the input capture/compare register 1
(TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

www.mm32mcu.com 196/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Table 40. Output Control Bits for Complementary OCx and OCxN Channels with Break Feature
Control bits Output states(1)

MOE

bit

OSSI

bit

OSSR

bit

CCxE

bit

CCxNE

bit

OCx output state OCxN output state

1 X

0 0 0 Output Disabled (not driven by

the timer), OCx = 0, OCx_EN =

0

Output Disabled (not driven by

the timer), OCxN = 0, OCxN_EN

= 0

0 0 1 Output Disabled (not driven by

the timer), OCx = 0, OCx_EN =

0

OCxREF + Polarity, OCxN =

OCxREF xor CCxNP, OCxN_EN

= 1

0 1 0 OCxREF + Polarity, OCx =

OCxREF xor CCxP, OCx_EN =

1

Output Disabled (not driven by

the timer), OCxN = 0, OCxN_EN

= 0

0 1 1 OCREF + Polarity + dead-time,

OCx_EN = 1

OCxREF (inverted) + Polarity +

dead-time, OCxN_EN = 1

1 0 0 Output Disabled (not driven

by the timer), OCx = CCxP,

OCx_EN = 0

Output Disabled (not driven by

the timer), OCxN = CCxNP,

OCxN_EN = 0

1 0 1 Off-State (output enabled with

inactive state) OCx = CCxP,

OCx_EN = 1

OCxREF + Polarity, OCxN =

OCxREF xor CCxNP, OCxN_EN

= 1

1 1 0 OCxREF + Polarity, OCx =

OCxREF xor CCxP, OCx_EN =

1

Off-State (output enabled with in-

active state), OCxN = CCxNP,

OCxN_EN = 1

1 1 1 OCxREF + Polarity + dead-

time, OCx_EN = 1

OCxREF (inverted) + Polarity +

dead-time, OCxN_EN = 1

0

0

X

0 0 Output Disabled (not driven by the timer)

0 0 1 Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP,

0 1 0 OCxN_EN = 0;

0 1 1 Then if the clock is present:after a dead-time

OCx = OISx , OCxN = OISxN,

Assuming that OISx and OISxN do not correspond to OCX and

OCxN in active state.

1 0 0 Off-State (output enabled with inactive state)

1 0 1 Asynchronously: OCx = CCxP, OCx_EN = 1, OCxN = CCxNP,

1 1 0 OCxN_EN = 1;

1 1 1 Then if the clock is present:after a dead-time

OCx = OISx , OCxN = OISxN,

Assuming that OISx and OISxN do not correspond to OCX and

OCxN in active state.

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN,
CCxP and CCxNP bits must be kept cleared.

www.mm32mcu.com 197/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Note 1: The state of the external I/O pins connected to the complementary OCx and OCxN channels
depends on the OCx and OCxN channel state and the GPIO registers.

2: In case of CCxE=0 and CCxNE=0, OCx and OCxN are in high impedance state after output is

disabled.

11.4.10 Counter(TIMx_CNT)
Offset address: 0x24

Reset value: 0x0000

123456789 01112131415 10

CNT

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 CNT rw 0x0000 Counter value

11.4.11 Prescaler(TIMx_PSC)
Offset address: 0x28

Reset value: 0x0000

123456789 01112131415 10

PSC

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 PSC rw 0x0000 Prescaler value
The counter clock frequency (CK_CNT) is equal to fCK_PSC
/(PSC + 1).
PSC contains the value to be loaded in the active prescaler
register at each update event (including when the counter
is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in ”reset mode”)

11.4.12 Auto-reload register(TIMx_ARR)
Offset address: 0x2C

Reset value: 0x0000

123456789 01112131415 10

ARR

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

www.mm32mcu.com 198/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

15: 0 ARR rw 0x0000 Prescaler value
ARR is the value to be loaded in the actual auto-reload
register.
Refer to section 11.3.1 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.

11.4.13 Repetition counter register(TIMx_RCR)
Offset address: 0x30

Reset value: 0x0000

123456789 01112131415 10

REPReserved

rwrwrwrwrwrw rwrw

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.
7: 0 REP rw 0x00 Repetition counter value

These bits allow the user to set-up the update rate of the
compare registers (i.e. periodically transfers from preload
to active registers) when preload registers are enabled, as
well as the update interrupt generation rate, if this interrupt
is enabled.
Each time the REP_CNT related downcounter reaches
zero, an update event is generated and it restarts count-
ing from REP value. As REP_CNT is reloaded with REP
value only at the repetition update event U_RC, any write
to the TIMx_RCR register is not taken in account until the
next repetition update event.
It means in PWM mode (REP + 1) corresponds to:
- the number of PWM periods in edge-aligned mode
- number of half PWM period in center-aligned mode

11.4.14 Capture/compare register 1(TIMx_CCR1)
Offset address: 0x34

Reset value: 0x0000

123456789 01112131415 10

CCR1

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

www.mm32mcu.com 199/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

15: 0 CCR1 rw 0x0000 Capture/Compare 1 value
If CC1 channel is configured as output:
CCR1 is the value to be loaded in the actual cap-
ture/compare 1 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR1 register (bit OC1PE). Otherwise the
preload value is copied in the active capture/compare 1
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC1 output.
If CC1 channel is configured as input:
CCR1 contains the counter value transferred by the last
input capture 1 event (IC1).

11.4.15 Capture/compare register2(TIMx_CCR2)
Offset address: 0x38

Reset value: 0x0000

123456789 01112131415 10

CCR2

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 CCR2 rw 0x0000 Capture/Compare 2 value
If CC2 channel is configured as output:
CCR2 contains the value to be loaded in the actual cap-
ture/compare 2 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR2 register (bit OC2PE). Otherwise the
preload value is copied in the active capture/compare 2
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC2 output.
If CC2 channel is configured as input:
CCR2 contains the counter value transferred by the last
input capture 2 event (IC2).

11.4.16 Capture/compare register 3(TIMx_CCR3)
Offset address: 0x3C

www.mm32mcu.com 200/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Reset value: 0x0000

123456789 01112131415 10

CCR3

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 CCR3 rw 0x0000 Capture/Compare 3 value
If CC3 channel is configured as output:
CCR3 contains the value to be loaded in the actual cap-
ture/compare 3 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR3 register (bit OC3PE). Otherwise the
preload value is copied in the active capture/compare 3
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC3 output.
If CC3 channel is configured as input:
CCR3 contains the counter value transferred by the last
input capture 3 event (IC3).

11.4.17 Capture/compare register 4(TIMx_CCR4)
Offset address: 0x40

Reset value: 0x0000

123456789 01112131415 10

CCR4

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

www.mm32mcu.com 201/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

15: 0 CCR4 rw 0x0000 Capture/Compare 4 value
If CC4 channel is configured as output:
CCR4 contains the value to be loaded in the actual cap-
ture/compare 4 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR4 register (bit OC4PE). Otherwise the
preload value is copied in the active capture/compare 4
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC4 output.
If CC4 channel is configured as input:
CCR4 contains the counter value transferred by the last
input capture 4 event (IC4).

11.4.18 Break and dead-time register(TIMx_BDTR)
Offset address: 0x44

Reset value: 0x0000 0000

15 1234567891011121314 0

31 1718192021222324252627282930 16

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw

OSSI DTGMOE AOE BKP BKE OSSR LOCK

DOEReserved

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG can be write-locked depending on the

LOCK configuration, it can be necessary to configure all of them during the first write access to the

TIMx_BDTR register.

Bit Field Type Reset Description

31:17 Reserved Reserved, always read as 0.
16 DOE rw 0x00 Direct output enable

When the brake is valid and the MOE is set to zero, it is
valid.
1: Immediately output the idle state, no longer waiting for
the dead time to output.
0: After the brake input, wait for a dead time and output
the idle state.

www.mm32mcu.com 202/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

15 MOE rw 0x00 Main output enable
This bit is cleared asynchronously by hardware as soon as
the break input is active. It is cleared by software or set
automatically, depending on the AOE bit. It is acting only
on the channels which are configured in output.
0: OC and OCN outputs are disabled or forced to idle
state.
1: OC and OCN outputs are enabled if their respective en-
able bits are set (CCxE, CCxNE in TIMx_CCER register).
See OC/OCN enable description for more details (sec-
tion 11.4.9: capture/compare enable register).

14 AOE rw 0x00 Automatic output enable
0: MOE can be set only by software
1: MOE can be set by software or automatically at the next
update event (if the break input is not be active)
Note: This bit can not be modified as long as LOCK level 1 has

been programmed (LOCK bits in TIMx_BDTR register).

13 BKP rw 0x00 Break polarity
0: Break input BRK is active low
1: Break input BRK is active high
Note: This bit can not be modified as long as LOCK level 1 has

been programmed (LOCK bits in TIMx_BDTR register).

12 BKE rw 0x00 Break enable
0: Break inputs (BRK and BRK_ACTH) disabled
1: Break inputs (BRK and BRK_ACTH) enabled
Note: This bit can not be modified as long as LOCK level 1 has

been programmed (LOCK bits in TIMx_BDTR register).

11 OSSR rw 0x00 Off-state selection for Run mode
This bit is used when MOE=1 on channels configured as
complementary outputs. OSSR is not implemented if no
complementary output is implemented in the timer.
See OC/OCN enable description for more details
(section 11.4.9: capture/compare enable register
(TIMx_CCER)).
0: When inactive, OC/OCN outputs are disabled
(OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are forced first with
their idle level as soon as CCxE=1 or CCxNE=1. Then,
set OC/OCN enable output signal=1
Note: This bit can not be modified as long as LOCK level 2 has

been programmed (LOCK bits in TIMx_BDTR register).

www.mm32mcu.com 203/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

10 OSSI rw 0x00 Off-state selection for Idle mode
This bit is used when MOE=0 on channels configured as
outputs.
See OC/OCN enable description for more details
(section 11.4.9: capture/compare enable register
(TIMx_CCER)).
0: When inactive, OC/OCN outputs are disabled
(OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are forced first with
their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN
enable output signal=1
Note: This bit can not be modified as long as LOCK level 2 has

been programmed (LOCK bits in TIMx_BDTR register).

9: 8 LOCK rw 0x00 Lock configuration
These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write protected.
01: LOCK Level 1 = DTG, BKE, BKP, AOE bits in
TIMx_BDTR register, and OISx/OISxN bits in TIMx_CR2
register can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits
(CCxP/CCxNP bits in TIMx_CCER register, as long as the
related channel is configured in output through the CCxS
bits) as well as OSSR and OSSI bits can no longer be writ-
ten.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits
(OCxM and OCxPE bits in TIMx_CCMRx registers, as
long as the related channel is configured in output through
the CCxS bits) can no longer be written.
Note: The LOCK bits can be written only once after the reset.

Once the TIMx_BDTR register has been written, their content is

frozen until the next reset.

www.mm32mcu.com 204/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

7: 0 DTG rw 0x00 Dead-time generator setup
This bit-field defines the duration of the dead-time inserted
between the complementary outputs. It is assumed that
DT correspond to this duration.
DTG[7: 5] = 0xx:
DT = (DTG[7: 0] + 1) × tdtg, tdtg = tDTS;
DTG[7: 5] = 10x:
DT = (DTG[5: 0] + 1 + 64) × tdtg, tdtg = 2 × tDTS;
DTG[7: 5] = 110:
DT = (DTG[4: 0] + 1 + 32) × tdtg, tdtg = 8 × tDTS;
DTG[7: 5] = 111:
DT = (DTG[4: 0] + 1 + 32) × tdtg, tdtg = 16 × tDTS;
Example: if tDTS = 125ns(8MHz), dead-time possible val-
ues are:
125ns to 15875ns by 125 nS steps;
16µs to 31750ns by 250 nS steps;
32µs to 63µs by 1 µs steps;
64µs to 126µs by 2 µs steps;
Note: This bit-field can not be modified as long as LOCK level

1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR reg-

ister).

11.4.19 DMA control register(TIMx_DCR)
Offset address: 0x48

Reset value: 0x0000

123456789 01112131415 10

wwwwwwwww w

DBL Res.Res. DBA

Bit Field Type Reset Description

15: 13 Reserved Reserved, always read as 0.

www.mm32mcu.com 205/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

Bit Field Type Reset Description

12: 8 DBL w 0x00 DMA burst length
This bit field defines the burst transfer in the continuous
mode (the timer detects a burst transfer when a write ac-
cess to the TIMx_DMAR register address is performed),
namely, the number of transfers, in half-word (double
bytes) or bytes.
00000: 1 transfer 00001: 2 transfers
00010: 3 transfers
...... 10001: 18 transfers
Example: Let us consider the following transfer: DBL = 7
and DBA = TIM2_CR1.
- If DBL =7 and DBA = TIM2_CR1 represent the address
of data to be transferred, the transfer address is given by:
(Address of TIMx_CR1) + DBA + (DMA index), where,
DMA index = DBL
TIMx_CR1 address + DBA + 7 is the address of data to be
written or read, so that the transfer is completed to/from
7 registers starting from the TIMx_CR1 address + DBA.
According to the setting of DMA data length, the following
case may occur:
-If the data is set to half word (16 bits), the data will be
transferred to all 7 registers.
-If the data is set to bytes, the data will still be transferred
to all 7 registers: the first register contains the first MSB
byte, the second register contains the first LSB byte, and
so on. Therefore, the user must specify the data width of
DMA transfer for the timer.

7: 5 Reserved Reserved, always read as 0.
4: 0 DBA w 0x00 DMA base address

These bits define the base-address for DMA transfers in
the continuous mode (when write access is done through
the TIMx_DMAR address). DBA is defined as an offset
starting from the address of the TIMx_CR1 register.
00000: TIMx_CR1
00001: TIMx_CR2
00010: TIMx_SMCR
......

11.4.20 DMA address for full transfer(TIMx_DMAR)
Offset address: 0x4C

Reset value: 0x0000

www.mm32mcu.com 206/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

123456789 01112131415 10

w wwwwwwwwwwwwww w

DMAB

Bit Field Type Reset Description

15: 0 DMAB w 0x0000 DMA register for burst accesses
A write operation to the TIMx_DMAR register will access
the register located at the following address:
TIMx_CR1 address + DBA + DMA index, Where:
‘TIMx_CR1 address’is the address of the control register
1;
‘DBA’is the DMA base address configured in TIMx_DCR
register;
‘DMA index’is the offset automatically controlled by
the DMA transfer, depending on DBL configured in
TIMx_DCR.

11.4.21 Capture/compare mode register 3(TIMx_CCMR3)
Offset address: 0x54

Reset value: 0x0000

The channel can only be used in output (compare mode).

123456789 01112131415 10

OC5

CE OC5M
OC5

PE

OC5

FE Reserved

rwrwrwrw

Reserved

Output compare mode:

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.
7 OC5CE rw 0x00 Output compare 5 clear enable
6: 4 OC5M rw 0x00 Output compare 5 mode
3 OC5PE rw 0x00 Output compare 5 preload enable
2 OC5FE rw 0x00 Output compare 5 fast enable
1: 0 Reserved Reserved, always read as 0.

11.4.22 Capture/compare register 5(TIMx_CCR5)
Offset address: 0x58

Reset value: 0x0000

www.mm32mcu.com 207/513

UM_MM32SPIN05x_q_Ver1.19
ADVANCED-CONTROL TIMER(TIM1)

123456789 01112131415 10

CCR5

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 CCR5 rw 0x0000 Capture/Compare 5 value
The CC5 channel can only be configured as an output:
CCR5 is the value to be loaded in the actual cap-
ture/compare 5 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR3 register (bit OC5PE). Otherwise the
preload value is copied in the active capture/compare 5
register when an update event occurs.
The active capture/compare register contains the value to
be compared to the counter TIMx_CNT and signaled on
OC5 output.

www.mm32mcu.com 208/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

12 16-bit general-purpose timers

(TIMx16 Bit)
16-bit general-purpose timers (TIMx16 Bit)

12.1 TIMx introduction

General-purpose timers consist of a 16-bit auto-reload counter driven by a programmable
prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to sev-
eral milliseconds using the timer prescaler and the RCC clock controller prescalers.

TIMx are completely independent, and do not share any resources. They can be synchro-
nized together as described in Section Timer Synchronization.

12.2 TIMx Main features

TIM3 functions include:

• 16-bit up, down, up/down auto-reload register
• 16-bit programmable prescaler allowing dividing (modifing in real time) the counter clock
frequency either by any factor between 1 and 65536.

• Up to 4 independent channels for:
– Input capture
– Output compare
– PWM generation (Edge and Center-aligned Mode)
– One-pulse mode output

• circuit to control the timer with external signals and to interconnect several timers to-
gether.

• Interrupt/DMA generation on the following events:
– Update: counter overflow/underflow, counter initialization (by software or inter-
nal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external
trigger)

– Input capture
– Output compare

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning pur-
poses

www.mm32mcu.com 209/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

• Trigger input for external clock or cycle-by-cycle current management

073662

ITR0
ITR1
ITR2
ITR3

ITR

ETRP

TRGI

TRC

TI1FP1
TI2FP2

ETRF
TRGO

ETR

+/-PSC CK_CNTCK_PSC U

ETRF

IC1PS U

IC2PS

IC3PS

IC4PS

IC1
TI1FP1
TI1FP2

TRC

TI2FP1
TI2FP2

TRC

IC2

IC3

IC4

TRC

TRC

TI1
XOR

TI2

TI3

TIMx_ETR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4 TI4

U

U

U

OC1REF

CC1I

CC2I

OC2REF

OC3REF

CC3I

CC4I

OC4REF

TGI

CC1I

CC2I

CC3I

CC4I

U UI

OC1N

OC1

OC2

TIMx_CH1

OC2N

OC3

OC3N

OC4

TI1F_ED

TI3FP3
TI3FP4

TI4FP3
TI4FP4

TIMx_CH1N

TIMx_CH2

TIMx_CH2N

TIMx_CH3

TIMx_CH3N

TIMx_CH4

Internel Clock(CK_INT)

CLK_TIM from RCC
Trigger

Controller

Slave

Mode

Controller

Encoder

Interface

Polarity Selection & Edge

Detector & Prescaler
Input Filter

to other timers

to DAC/ADC

Reset, Enable, Up/Down, Count

Input Filter &

Edge detector

Input Filter &

Edge detector

Input Filter &

Edge detector

Input Filter &

Edge detector

Prescaler

Prescaler

Prescaler

Prescaler

Prescaler

AutoReload Register

CNT Counter

Stop, Clear or Up/Down

Capture/Compare 1 Register

Capture/Compare 2 Register

Capture/Compare 3 Register

Capture/Compare 4 Register

output

control

output

control

output

control

output

control

Preload registers transferred to active registers on U event accroding

to control bit.

Event

Interrupt & DMA output

U

RegNotes:

Figure 80. Block Diagram of general-purpose timer

12.3 TIMx Functional description

12.3.1 Time-base unit
The main block of the programmable general-purpose timer is a 16-bit counter with its
related auto-reload register. The counter can count up, down or both up and down. The
counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running. The time-base unit includes:

• Counter register (TIMx_CNT)
• Prescaler register (TIMx_PSC)

www.mm32mcu.com 210/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

• Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into
the shadow register permanently or at each update event (UEV), depending on the auto-
reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when
the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit
equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation
of the update event is described in details for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when
the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode
controller description to get more details on counter enabling).

Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536.
It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC reg-
ister). It can be changed on the fly as this control register is buffered. The new prescaler
factor is taken into account at the next update event.

The following figures give some examples of the counter behavior when the prescaler
factor is changed on the fly:

059785

CK_PSC

CEN

 Timer clock = CK_CNT

F7 F8 F9 FA FB FC 00 01 02 03

0 1

10

0 0 0 001 1 1 1

Counter register

Update event(UEV)

Prescaler control register

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 81. Counter Timing Diagram with Prescaler Division Change from 1 to 2

www.mm32mcu.com 211/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

763391

F7 F8 F9 FA FB FC 00 01

0 3

30

0 0 2 201 3 1 3

CK_PSC

CEN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Prescaler control register

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 82. Counter Timing Diagram with Prescaler Division Change from 1 to 4

12.3.2 Counter modes

Upcounting mode
In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in
the TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to
0. However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag bit(UIF
bit in TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload shadow register is updated with the preload value (TIMx_ARR).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

www.mm32mcu.com 212/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

894901

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 83. Counter Timing Diagram, Internal Clock Divided by 1

100720

0034 0035 00000036 0001 0002 0003

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 84. Counter Timing Diagram, Internal Clock Divided by 2

564964

0035 00000036 0001

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 85. Counter Timing Diagram, Internal Clock Divided by 4

www.mm32mcu.com 213/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

372226

1F 20 00

CK_PSC

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 86. Counter Timing Diagram, Internal Clock Divided by N

370803

31 32 33 34 35 36 0500 01 02 03 04 06 07

FF 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload register

Write a new value in TIMx_ARR

Figure 87. Counter Timing Diagram, Update Event When ARPE = 0 (TiMx_ARR Not Preloaded)

www.mm32mcu.com 214/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

874537

F0 F1 F2 F3 F4 F5 0500 01 02 03 04 06 07

F5 36

F5 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 88. Counter Timing Diagram, Update Event When ARPE = 1 (TiMx_ARR Preloaded)

Downcounting mode
In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in
the TIMx_EGR register (by software or by using the slave mode controller).

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of
the prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit
in TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updatedwith the preload value (content of the TIMx_ARR
register).

Note: The auto-reload is updated before the counter is reloaded, so that the next period is the

expected one.

The following figures show some examples of the counter behavior for different clock

www.mm32mcu.com 215/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

frequencies when TIMx_ARR = 0x36.

721721

05 04 03 02 01 00 3136 35 34 33 32 30 2F

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 89. Counter Timing Diagram, Internal Clock Divided by 1

819787

0002 0001 00360000 0035 0034 0033

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 90. Counter Timing Diagram, Internal Clock Divided by 2

213411

0001 00360000 0035

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 91. Counter Timing Diagram, Internal Clock Divided by 4

www.mm32mcu.com 216/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

264550

20 1F 00 36

CK_PSC

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 92. Counter Timing Diagram, Internal Clock Divided by N

367681

05 04 03 02 01 00 3136 35 34 33 32 30 2F

FF 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload register

Write a new value in TIMx_ARR

Figure 93. Counter Timing Diagram, Update Event when Repetition Counter is Not Used

Center-aligned mode (Upcounting/Downcounting))
In center-aligned mode, the counter counts from 0 to the auto-reload value (content of
the TIMx_ARR register)–1, generates a counter overflow event, then counts from the
auto-reload value down to 1 and generates a counter underflow event. Then it restarts
counting from 0.

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter under-
flow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave
mode controller) . In this case, the counter restarts counting from 0, so does the counter
of the prescaler.

TheUEV update event can be disabled by software by setting theUDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the

www.mm32mcu.com 217/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

preload registers. Then, no update event occurs until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag bit(UIF
bit in TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updatedwith the preload value (content of the TIMx_ARR
register).

Note: If the update source is a counter overflow, the auto-reload is updated before the counter is

reloaded, so that the next period is the expected one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

775077

04 03 02 01 00 01 0502 03 04 05 06 04 03

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Counter underflow

Figure 94. Counter Timing Diagram, Internal Clock Divided by 1, TIMx_ARR = 6

www.mm32mcu.com 218/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

824268

0003 0002 00000001 0001 0002 0003

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 95. Counter Timing Diagram, Internal Clock Divided by 2

464735

0034 00360035 0035

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Note: Here, center-aligned mode 2 or 3 is used with an UIF on overflow

Figure 96. Counter Timing Diagram, Internal Clock Divided by 4, TIMx_ARR = 0×36

www.mm32mcu.com 219/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

220046

20 1F 0001

CK_PSC

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 97. Counter Timing Diagram, Internal Clock Divided by N

482632

06 05 04 03 02 01 0500 01 02 03 04 06 07

FD 36

FD 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 98. Counter Timing Diagram, Update Event with ARPE = 1(Counter Underflow)

www.mm32mcu.com 220/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

970767

F7 F8 F9 FA FB FC 3136 35 34 33 32 30 2F

FD 36

FD 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 99. Counter Timing Diagram, Update Event with ARPE = 1(Counter Overflow))

12.3.3 Clock selection
The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT).
• External clock mode1: external input pin (TIx).
• External clock mode2: external trigger input (ETR).
• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for exam-
ple, the user can configure Timer 1 to act as a prescaler for Timer 2.

Internal clock (CK_INT)
If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) andUGbits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN
bit is written to 1, the prescaler is clocked by the internal clock CK_INT.

The following figure shows the behavior of the control circuit and the upcounter in normal
mode, without prescaler.

www.mm32mcu.com 221/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

199864

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_INT

CEN = CNT_EN

UG

Counter register

Counter clock = CK_CNT = CK_PSC

Cnt_INT

Figure 100. Control Circuit in Normal Mode, Internal Clock Divided By 1

External clock source mode 1
This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

356901

CK_PSC

ICF[3:0] CC2P

TS[2:0]

SMS[2:0]ECE

TI2

TIMx_CCMR1 TIMx_CCER

TI2F_Rising

TI2F_Falling

ITRx

TI1F_ED

TI1FP1

TI2FP2

ETRF

001

100

101

110

111

TRGI

ETRF

CK_INT

TIMx_SMCR

TI2F

TI1F

or

or
or

TIMx_SMCR

0

1
Filter

Edge

Detector

encoder

mode

external clock

mode 1

external clock

mode 2

internal clock

mode
(internal clock)

Figure 101. TI2 External Clock Connection Example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’
in the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000). Note: The capture prescaler is not used

for triggering, so there: Tno need to configure it.

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.
4. Select the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR

register.

www.mm32mcu.com 222/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.
6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

518995

TI2

CNT_EN

34 36

TIF

35

Counter clock = CK_CNT = CK_PSC

Counter register

Write TIF = 0

Figure 102. Control Circuit in External Clock Mode 1

External clock source mode 2
This mode is selected by writing ECE = 1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

The following figure gives an overview of the external trigger input block.

www.mm32mcu.com 223/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

132558

CK_PSC

/1,/2,/4,/8

SMS[2:0]ECE

ETR pin
ETR

TRGI

ETRF

CK_INT

TI2F

TI1F

or

or
or

0

1

ETP

ETRP
CK_INT

ETF[3:0]ETPS[1:0]

TIMx_SMCR TIMx_SMCR TIMx_SMCR

TIMx_SMCR

encoder

mode

external clock

mode 1

external clock

mode 2

internal clock

mode

Divider Filter

downcounter

(internal clock)

Figure 103. External Trigger Input Block

For example, to configure the upcounter to count once each 2 rising edges on ETR, use
the following procedure:

• As no filter is needed in this example, write ETF [3:0]=0000 in the TIMx_SMCR register.
• Set the prescaler by writing ETPS [1:0]=01 in the TIMx_SMCR register.
• Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR reg-
ister.

• Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.
• Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to
the resynchronization circuit on the ETRP signal.

www.mm32mcu.com 224/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

052284

34 3635

ETRP

CNT_EN

ETRF

ETR

fCK_INT

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 104. Control Circuit in External Clock Mode 2

12.3.4 Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), including an input stage for capture (with digital filter, multiplexing and
prescaler) and an output stage (with comparator and output control).

The following figures show a capture/compare channel. The input stage samples the
corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with
polarity selection generates a signal (TIxFPx) which can be used as trigger input by the
slave mode controller or as the capture command. It is prescaled before the capture
register (ICxPS).

www.mm32mcu.com 225/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

565511

IC1PS

ICF[3:0] CC1P

ICPS[1:0]

TI1

TIMx_CCMR1
TIMx_CCER

TI1F_Rising

TI1F_Falling
01

10

11

0

1
fDTS

TI1F

0

1

divider

/1,/2,/4,/8
IC1

CC1ECC1S[1:0]

TIMx_CCMR1 TIMx_CCER

TRC

TI2F_Rising

TI2F_Falling
(from channel 2)

(from channel 2)

TI2FP1

TI1FP1

TI1F_ED

Filter

downcounter

Edge

Detector

to the slave mode controller

(from slave mode

 controller)

Figure 105. Capture/Compare Channel (Example: Channel 1 Input Stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

903065

8

CC1S[1]

OC1PE

TIMx_CCMR1UEV

CC1S[1]

CC1S[0]

IC1PS

CC1E

CC1G

TIMx_EGR

read_in_progress

8

capture_transfer
compare_transfer

write_in_progress

CNT > CCR1

CNT = CCR1

CC1S[0]

OC1PE

S

R

S

R

MCU-peripheral Interface

APB Bus

read CCR1L

read CCR1H

input

mode

Capture/Compare Preload Register

Capture/Compare Shadow Register

capture comparator

Counter

write CCR1H

write CCR1L

output

mode

(from time base

unit)

h
ig

h

(i
f
1

6
-b

it
)

lo
w

Figure 106. Capture/Compare Channel 1 Main Circuit

www.mm32mcu.com 226/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

358425

OC1M[2:0]

TIMx_CCMR1

CNT>CCR1

CNT=CCR1

ETRF

OC1ref

0

1

CC1P

TIMx_CCER

CC1E TIMx_CCER

OC1

Output

Mode

Controller

To the master

mode controller
Output

Enable

Circuit

Figure 107. Output Stage of Capture/Compare Channel (Channel 1)

The capture/compare block is made of one preload register and one shadow register.
Write and read always access the preload register. In capture mode, captures are actually
done in the shadow register, which is copied into the preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

12.3.5 Input capture mode
In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch
the value of the counter after a transition detected by the corresponding ICx signal. When
a capture occurs, the corresponding CCxIF flag (TIMx_SR register) is set and an interrupt
or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF
flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF
can be cleared by software by writing it to ’0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written to ’0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input).
Let’s imagine that, when toggling, the input signal is not stable during at most five
internal clock cycles. We must program a filter duration longer than these five clock
cycles. We can validate a transition on TI1 when 8 consecutive samples with the new
level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in
the TIMx_CCMR1 register.

www.mm32mcu.com 227/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

• Configure the input prescaler. In our example, we wish the capture to be performed
at each valid transition, so the prescaler is disabled (write IC1PS bits to ’00’ in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register to ’1’.

• If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER
register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register.

When an input capture occurs:

• TIMx_CCR1 register gets the value of the counter on the active transition.
• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• CC1OF is also set to 1.
• An interrupt is generated depending on the CC1IE bit.
• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the over-
capture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding

CCxG bit in the TIMx_EGR register.

12.3.6 PWM input mode
This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.
• These 2 ICx signals are active on edges with opposite polarity.
• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, the user can measure the period (in TIMx_CCR1 register) and the duty
cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ’0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ’1’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the

www.mm32mcu.com 228/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

TIMx_SMCR register.
• Enable the captures: write the CC1E and CC2E bits to‘1’in the TIMx_CCER register.

789042

0004 0000 0001 0002 0003 0004 0000

0004

0002

TI1

TIMx_CNT

TIMx_CCR1

TIMx_CCR2

IC1 Capture

IC2 Capture

IC2 Capture IC1 Capture

reset counter

pulse width

measurement

period

measurement

Figure 108. Output Stage of Capture/Compare Channel (Channel 1)

The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the
fact that only TI1FP1 and TI2FP2 are connected to the slave mode.

12.3.7 Forced output mode
In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare sig-
nal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by
software, being independent of any comparison between the output compare register and
the counter.

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs to
write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

TheOCxREF signal can be forced low by writing theOCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, in this mode, the comparison between the TIMx_CCRx shadow register and the
counter is still performed and allows the flag to be set. Interrupt and DMA requests can
be sent accordingly. This is described in the output compare mode section below.

12.3.8 Output compare mode
This function is used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the capture/compare register and the counter, the output

www.mm32mcu.com 229/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag bit in the interrupt status register (CCxIF bit in the TIMx_SR register).
• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends aDMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER
register, CCDS bit in the TIMx_CR2 register for the DMA request selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output comparemode, the update event UEV has no effect onOCxREF andOCx output.

The timing resolution is one count of the counter. Output compare mode can also be used
to output a single pulse (in One Pulse mode)

Procedure:

1. Select the counter clock (internal, external, prescaler).
2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be gener-

ated.
4. Select the output mode. For example, the user must write OCxM=011, OCxPE=0,

CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx
preload is not used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the out-
put waveform, provided that the preload register is not enabled (OCxPE=’0’, else
TIMx_CCRx shadow register is updated only at the next update event UEV). An exam-
ple is given in the following figure.

www.mm32mcu.com 230/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

803963

0039 003A 003B B200 B201

003A B201

TIMX_CNT

TIMX_CCR1

OC1REF = OC1

Write B201h in the CC1R register

Match detected on CCR1.

Interrupt generated if enabled

Figure 109. Output Compare Mode (Toggle OC1)

12.3.9 PWM mode
Pulse Width Modulation mode allows generating a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing‘110’(PWM mode 1) or‘111’(PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register
(in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user must initialize all the registers by setting the
UG bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. OCx output is enabled by the CCxE
bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more
details.

In PWM mode (1 or 2), TIMx_CNT and TIM1_CCRx are always compared to determine
whether TIM1_CCRx≤TIM1_CNT or TIM1_CNT≤TIM1_CCRx (depending on the direction
of the counter). However, to comply with the OCREF_CLR (OCxREF can be cleared by
an external event through the ETR signal until the next PWM period), the OCxREF signal
is asserted only:

• When the result of the comparison changes
• When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the period), the OC enabled by the CCxE bit in the TIMx_CCER register. Refer to the

www.mm32mcu.com 231/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

TIMx_CCERx register

This forces the PWM by software while the timer is running. The timer is able to generate
PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the
TIMx_CR1 register.

PWM edge-aligned mode
Upcounting configuration
Upcounting is active when the DIR bit in the TIMx_CR1 register is low.

In the following example, we consider PWMmode 1. The reference PWM signal OCxREF
is high as long as TIMx_CNT < TIMx_CCRx, otherwise it becomes low. If the compare
value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF
is held at‘1’. If the compare value is 0 then OCxRef is held at‘0’. Figure 61 shows
some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

458343

0 1 2 3 4 5 65 7 8 0 1

1

0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

Counter register

Figure 110. Edge-aligned PWM Waveforms (ARR = 8)

Downcounting configuration
Downcounting is active when DIR bit in TIMx_CR1 register is high.

In PWMmode 1, the reference signal OCxRef is low as long as TIMx_CNT > TIMx_CCRx,
otherwise it becomes high. If the compare value in TIMx_CCRx is greater than the auto-
reload value in TIMx_ARR, then OCxREF is held at‘1’. 0% PWM is not possible in this
mode.

PWM center-aligned mode
Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’(all the remaining configurations having the same effect on the OCxRef/OCx signals).

www.mm32mcu.com 232/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

The compare flag is set when the counter counts up, when it counts down or when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in
the TIMx_CR1 register is updated by hardware and must not be changed by software.
Refer to section 11.3.2 Center-aligned Mode.

The following figure shows some center-aligned PWM waveforms in an example, where:

• TIMx_ARR = 8
• PWM mode 1
• The flag is set when the counter counts down corresponding to the center-aligned mode
1 selected for CMS=01 in TIMx_CR1 register.

546141

0 1 2 3 4 5 65 7 8 7 6

1

0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

CMS=01
CMS=10
CMS=11

CMS =10 or 11

CMS =01
CMS =10
CMS =11

1

CMS=01
CMS=10
CMS=11

CMS=01
CMS=10
CMS=11

5 4 3 2 1 0 1

CCRx=7

OCxREF

CCxIF

Counter register

Figure 111. Center-aligned PWM Waveforms (ARR = 8)

Hints in center-aligned mode:
• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR
bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at
the same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:
– The direction is not updated if the user writes a value in the counter greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter
was counting up, it will continue to count up.

www.mm32mcu.com 233/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

– The direction is updated if the user writes 0 or write the TIMx_ARR value in
the counter but no Update Event UEV is generated

• The safest way to use center-alignedmode is to generate an update by software (setting
the UG bit in the TIMx_EGR register) just before starting the counter and not to write
the counter while it is running.

12.3.10 One-pulse mode
One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output comparemode or PWMmode. Select One-pulsemode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration
must be:

• In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)
• In downcounting: CNT > CCRx

296813

t DELAY
t PULSE

t
0

TIM1_ARR

TIM1_CCR1

OC1

OC1REF

TI2

C
o

u
n

te
r

Figure 112. Example of One Pulse Mode

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

www.mm32mcu.com 234/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

• Map TI2FP2 to TI2 by writing CC2S = ’01’ in the TIMx_CCMR1 register.
• TI2FP2 must detect a rising edge, write CC2P = ’0’ in the TIMx_CCER register.
• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS = ’110’
in the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ’110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by the value written in the compare registers (taking into
account the clock frequency and the counter prescaler)

• The tDELAY is defined by the value written in the TIMx_CCR1 register.
• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let us say the user wants to build a waveform with a transition from ’0’ to ’1’ when a
compare match occurs and a transition from ‘1’to ‘0’when the counter reaches
the auto-reload value. To do this, enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=’1’in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case the compare value must be written in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to‘0’in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

The user only wants one pulse (Single mode), so ’1’must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls
over from the auto-reload value back to 0).

Particular case: OCx fast enable
In One-pulse mode, the edge detection on TIx input sets the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If the user wants to output a waveform with the minimum delay, the OCxFE bit in the
TIMx_CCMRx register must be set. Then OCxRef (and OCx) are forced in response to
the stimulus, without taking in account the comparison. Its new level is the same as if a
compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or
PWM2 mode.

12.3.11 Clearing the OCxREF signal on an external event
The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to‘1’).
The OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the OCxREF signal can be connected to the output of a comparator to be

www.mm32mcu.com 235/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

used for current handling. In this case, the ETR must be configured as follow:

• The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to‘00’.

• The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set
to‘0’.

• The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be config-
ured according to the user needs.

The following Figure shows the behavior of the OCxREF signal when the ETRF Input
becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx
is programmed in PWM mode.

079702

(CCRx)

ETRF

OCxREF

(OCxCE='0')

OCxREF

(OCxCE='1')

OCREF_CLR OCREF_CLR

counter(CNT)

becomes high still high

Figure 113. Clearing TIMx OCxREF

12.3.12 Encoder interface mode
To select Encoder Interface mode write SMS=‘001’in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS=’010’if it is counting on TI1 edges only and
SMS=’011’if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming theCC1P andCC2P bits in the TIMx_CCER
register. When needed, the user can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Assuming
that the counter is enabled (CEN bit in TIMx_CR1 register written to‘1) in the following
table, it is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input
filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not
filtered and not inverted). The sequence of transitions of the two inputs is evaluated and
generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

www.mm32mcu.com 236/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in
the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So
user must configure TIMx_ARR before starting. In the same way, the capture, compare,
prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction
of the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction corresponds to the rotation direction of the connected sensor.
The following table summarizes the possible combinations, assuming TI1 and TI2 do not
switch at the same time.

Table 41. Counting Direction Versus Encoder Signals

Active edge
Level on opposite signal (TI1FP1 for

TI2, TI2FP2 for TI1)

TI1FP1 signal TI1FP2 signal
Rising Falling Rising Falling

Counting on TI1 only
High Down Up No Count No Count

Low Up Down No Count No Count

Counting on TI2 only
High No Count No Count Up Down

Low No Count No Count Down Up

Counting on TI1 and TI2
High Down Up Up Down

Low Up Down Down Up

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The following figure gives an example of counter operation, showing count signal genera-
tion and direction control. It also shows how input jitter is compensated where both edges
are selected. This might occur if the sensor is positioned near to one of the switching
points.

For this example, we assume that the configuration is the following:

• CC1S=’01’(TIMx_CCMR1 register, TI1FP1 mapped on TI1).
• CC2S=’01’(TIMx_CCMR2 register, TI1FP2 mapped on TI2).
• CC1P=’0’, (TIMx_CCER register, IC1FP1 non-inverted, IC1FP1=TI1).
• C2P= ’0’ (TIMx_CCER register, IC2FP2 non-inverted, IC2FP2=TI2).
• SMS= ’011’ (TIMx_SMCR register, all inputs are active on both rising and falling edges).
• CEN= ’1’ (TIMx_CR1 register, Counter enabled).

www.mm32mcu.com 237/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

119663

TI1

TI2

forward forwardjitterjitter backward

up updown

counter

Figure 114. Example of Counter Operation in Encoder Mode

The following figure gives an example of counter behavior when IC1FP1 polarity is inverted
(same configuration as above except CC1P=1).

002625

TI1

TI2

forward forwardjitterjitter backward

down downup

counter

Figure 115. Example of Encoder Interface Mode with Inverted Polarity IC1FP1

The timer, when configured in Encoder Interface mode provides information on the sen-
sor’s current position.The user can obtain dynamic information (speed, acceleration,
deceleration) by measuring the period between two encoder events using a second timer
configured in capture mode. The output of the encoder which indicates the mechanical
zero can be used for this purpose. Depending on the time between two events, the counter
can also be read at regular times. This can be done by latching the counter value into a
third input capture register if available (then the capture signal must be periodic and can be

www.mm32mcu.com 238/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

generated by another timer). When available, it is also possible to read its value through
a DMA request generated by a real-time clock.

12.3.13 Timer input XOR function
The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected
to the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and
TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input cap-
ture. An example of this feature used to interface Hall sensors is given in section 11.3.18.

12.3.14 Timers and external trigger synchronization
The TIMx timer can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode
The counter and its prescaler can be reinitialized in response to an event on a trigger
input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV
is generated. Then, all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

• In the following example, the upcounter is cleared in response to a rising edge on TI1
input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter dura-
tion (in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so the user does not need to configure it. The CC1S
bits select the input capture source only, i.e. CC1S = 01 in the TIMx_CCMR1 register.
Write CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edges
only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled depending on the TIE (interrupt enable) and TDE (DMA
enable) bits in TIMx_DIER register.

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

www.mm32mcu.com 239/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

729416

33323130 00 01 02 0336 00 01 0234 35 03

TI1

UG

Counter clock = CK_CNT = CK_PSC

TIF

Counter register

Figure 116. Control Circuit in Reset Mode

Slave mode: Gated mode
The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low level on TI1. Configure the input filter duration (in
this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler
is not used for triggering, so the user does not need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register. In gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level

The counter starts counting on the internal clock as long as TI1 is low and stops as soon
as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter
starts or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

704741

3433323130 35 36 37 38

Write TIF = 0

TI1

CNT_EN

TIF

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 117. Control Circuit in Gated Mode

www.mm32mcu.com 240/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Slave mode: Trigger mode
The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter dura-
tion (in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC2S
bits are only configured to select CC2P=1 in TIMx_CCER register, so as to validate the
polarity (and detect low level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and
the TIF flag is set.

The delay between the rising edge on TI2 and the actual stop of the counter is due to the
resynchronization circuit on TI2 input.

991811

TI2

CNT_EN

TIF

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 118. Control Circuit in Trigger Mode

Slave mode: External clock mode 2 + trigger mode
The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input (in reset mode, gated mode
or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of
TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

• Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:
– ETF = 0000: no filter
– ETPS = 00: prescaler disabled
– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external
clock mode 2.

www.mm32mcu.com 241/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

• Configure the channel 1 as follows, to detect rising edges on T1:
– IC1F=0000: no filter.
– The capture prescaler is not used for triggering and does not need to be con-
figured.

– CC1S=01 in TIMx_CCMR1 register to select only the input capture source.
– CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edge
only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts
on ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter
is due to the resynchronization circuit on ETRP input.

262859

34 35 36

TI1

CEN/CNT_EN

TIF

ETR

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 119. Control Circuit in External Clock Mode 2 + Trigger Mode

12.3.15 Timer synchronization
The TIMx timers are linked together internally for timer synchronization or chaining. When
one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another Timer configured in Slave Mode.

The following figure presents an overview of the trigger selection and the master mode
selection blocks.

www.mm32mcu.com 242/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Using one timer as prescaler for another timer

115977

MMS

UEV

SMS

CK_PSCITR0

TS

TRGO1

TIMER1 TIMER 2

Clock

Prescaler Counter Prescaler Counter

Master

mode

control

slave

mode

control

input trigger

selection

Figure 120. Master/Slave Timer Example

For example, the user can configure Timer 1 to act as a prescaler for Timer 2 (see the
above figure). To do this:

• Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each
update event UEV. If you write MMS=010 in the TIM1_CR2 register, a rising edge is
output on TRGO1 each time an update event is generated.

• To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in
slave mode using ITR1 as internal trigger. You select this through the TS bits in the
TIM2_SMCR register (writing TS=000).

• Then you put the slave mode controller in external clock mode 1 (write SMS=111 in
the TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the
periodic Timer 1 trigger signal (which corresponds to the Timer 1 counter overflow).

• Finally, both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

Note: If OCx is selected on Timer 1 as trigger output (MMS=1xx), its rising edge is used to clock

the counter of Timer 2.

Using one timer to enable another timer
In this example, we control the enable of Timer 2 with the output compare 1 of Timer 1.
Refer to the following figure for connections. Timer 2 counts on the divided internal clock
only when OC1REF of Timer 1 is high. Both counter clock frequencies are divided by 3
by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

• Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM1_CR2 register).

• Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=001 in the TIM2_SMCR

www.mm32mcu.com 243/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

register).
• Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).
• Enable Timer 2 by writing‘1 in the CEN bit (TIM2_CR1 register).
• Enable Timer 1 by writing‘1 in the CEN bit (TIM1_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer 2

counter enable signal.

949443

FEFC FD FF

CK_INT

TIMER1-OC1REF

TIMER1-CNT

TIMER2-CNT

TIMER2-TIF

Write TIF = 0

Figure 121. Gating Timer 2 with OC1REF of Timer 1

In the example in the above figure, the Timer 2 counter and prescaler are not initialized
before being started. So they start counting from their current value. It is possible to start
from a given value by resetting both timers before starting Timer 1. You can then write any
value you want in the timer counters. The timers can easily be reset by software using
the UG bit in the TIMx_EGR registers.

In the next example, we synchronize Timer 1 and Timer 2. Timer 1 is the master and
starts from 0. Timer 2 is the slave and starts from 0xE7. The prescaler ratio is the same
for both timers. Timer 2 stops when Timer 1 is disabled by writing ‘0 to the CEN bit in
the TIM1_CR1 register:

• Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM1_CR2 register).

• Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).
• Reset Timer 1 by writing‘1 in UG bit (TIM1_EGR register).
• Reset Timer 2 by writing‘1 in UG bit (TIM2_EGR register).
• Initialize Timer 2 to 0xE7 by writing‘0xE7’in the Timer 2 counter (TIM2_CNT).
• Enable Timer 2 by writing‘1 in the CEN bit (TIM2_CR1 register).
• Start Timer 1 by writing‘1 in the CEN bit (TIM1_CR1 register).
• Stop Timer 1 by writing‘0 in the CEN bit (TIM1_CR1 register).

www.mm32mcu.com 244/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

381843

00 01 0275

00 E8 E9AB E7

CK_INT

TIMER1-CEN = CNT_EN

TIMER1-CNT_INIT

TIMER1-CNT

TIMER2-CNT

TIMER2-CNT_INIT

TIMER2 write CNT

TIMER2-TIF

Write TIF = 0

Figure 122. Gating Timer 2 with Enable of Timer 1

Using one timer to start another timer
In this example, we set the enable of Timer 2 with the update event of Timer 1. Refer to
the following figure for connections. Timer 2 starts counting from its current value (which
can be nonzero) on the divided internal clock as soon as the update event is generated
by Timer 1.

When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter
counts until we write ’0’ to the CEN bit in the TIM2_CR1 register. Both counter clock
frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

• Configure Timer 1mastermode to send its Update Event (UEV) as trigger output (MMS=010
in the TIM1_CR2 register).

• Configure the Timer 1 period (TIM1_ARR registers).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in trigger mode (SMS=110 in TIM2_SMCR register).
• Start Timer 1 by writing ’1’ in the CEN bit (TIM1_CR1 register)

www.mm32mcu.com 245/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

227169

FF 01 02FD

46 4845 47

Write TIF = 0

FE 00

CK_INT

TIMER1_UEV

TIMER1_CNT

TIMER2_CNT

TIMER2_CEN = CNT_EN

TIMER2_TIF

Figure 123. Triggering Timer 2 with Update of Timer 1

As in the previous example, the user can initialize both counters before starting counting.
The following figure shows the behavior with the same configuration as ’0’ but in trigger
mode instead of gated mode (SMS=110 in the TIM2_SMCR register).

449102

00 01 0275

00 E8 E9CD EAE7

CK_INTCK_INT

TIMER1-CEN = CNT_EN

TIMER1-CNT_INIT

TIMER1-CNT

TIMER2-CNT

TIMER2-CNT_INIT

TIMER2-CNT_INIT

TIMER2-TIF

Write TIF = 0

Figure 124. Triggering Timer 2 with Enable of Timer 1

Using one additional timer as prescaler for another timer
In this example, we use Timer 1 as the prescaler for Timer 2. The configuration is as
follows:

• Configure Timer 1 in master mode, togenerate the update event (UEV) as the trigger
output (MMS=010 in the TIM1_CR2 register). Then, output a periodic signal in case of
each counter overflow.

• Configure the Timer 1 period (TIM1_ARR registers).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in the external clock mode (write SMS=111 in the TIM2_SMCR reg-

www.mm32mcu.com 246/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

ister).
• Start Timer 2 by writing ’1’ in the CEN bit (TIM1_CR2 register)
• Start Timer 1 by writing ’1’ in the CEN bit (TIM1_CR1 register).

Starting 2 timers synchronously in response to an external trigger
In this example, we set the enable of timer 1 when its TI1 input rises, and the enable of
Timer 2 with the enable of Timer 1. To ensure the counters are aligned, Timer 1 must be
configured in Master/Slave mode (slave with respect to TI1, master with respect to Timer
2):

• Configure Timer 1 master mode to send its Enable as trigger output (MMS=001 in the
TIM1_CR2 register).

• Configure Timer 1 slavemode to get the input trigger fromTI1 (TS=100 in the TIM1_SMCR
register).

• Configure Timer 1 in trigger mode (SMS=110 in the TIM1_SMCR register).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in trigger mode (SMS=110 in the TIM2_SMCR register).

When a rising edge occurs on TI1 (Timer 1), both counters starts counting synchronously
on the internal clock and both TIF flags are set. Note: In this example both timers are initialized
before starting (by setting their respective UG bits). Both counters starts from 0, but you can easily

insert an offset between them by writing any of the counter registers (TIMx_CNT). You can see that

the master/slave mode insert a delay between CNT_EN and CK_PSC on timer 1.

753049

00 01 0702 03 04 05 06 08 09

00 01 0702 03 04 05 06 08 09

CK_INT

TIMER 1-TI1

TIMER 1-CEN = CNT_EN

TIMER 1-CK_PSC

TIMER1-CNT

TIMER1-TIF

TIMER2-CEN = CNT_EN

TIMER2 - CK_PSC

TIMER2-CNT

TIMER2-TIF

Figure 125. Triggering Timer 1 and 2 with Timer 1 TI1 input

12.3.16 Debug mode
When the microcontroller enters debug mode (CPU core - halted), the TIMx counter either
continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in

www.mm32mcu.com 247/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

DBG module. For more details, refer to ”Debug” sections.

12.4 TIMx register description

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

Table 42. Summary of TIMx Register

Offset Acronym Register Name Reset Section

0x00 TIMx_CR1 Control register 1 0x00000000 section 12.4.1

0x04 TIMx_CR2 Control register 2 0x00000000 section 12.4.2

0x08 TIMx_SMCR Slave mode control register 0x00000000 section 12.4.3

0x0C TIMx_DIER DMA /interrupt enable register 0x00000000 section 12.4.4

0x10 TIMx_SR Status register 0x00000000 section 12.4.5

0x14 TIMx_EGR Event generation register 0x00000000 section 12.4.6

0x18 TIMx_CCMR1 Capture/compare mode register 1 0x00000000 section 12.4.7

0x1C TIMx_CCMR2 Capture/compare mode register 2 0x00000000 section 12.4.8

0x20 TIMx_CCER Capture/compare enable register 0x00000000 section 12.4.9

0x24 TIMx_CNT Counter 0x00000000 section 12.4.10

0x28 TIMx_PSC Prescaler 0x00000000 section 12.4.11

0x2C TIMx_ARR Auto-reload register 0x00000000 section 12.4.12

0x34 TIMx_CCR1 Capture/compare register 1 0x00000000 section 12.4.13

0x38 TIMx_CCR2 Capture/compare register 2 0x00000000 section 12.4.14

0x3C TIMx_CCR3 Capture/compare register 3 0x00000000 section 12.4.15

0x40 TIMx_CCR4 Capture/compare register 4 0x00000000 section 12.4.16

0x48 TIMx_DCR DMA control register 0x00000000 section 12.4.17

0x4C TIMx_DMAR DMA address in continuous mode 0x00000000 section 12.4.18

12.4.1 Control register 1(TIMx_CR1)
Offset address: 0x00

Reset value: 0x0000

123456789 01112131415 10

rwrwrwrwrwrwrwrwrw rw

CKD ARPE CMS DIR OPM URS UDIS CENReserved

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.

www.mm32mcu.com 248/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

9: 8 CKD rw 0x00 Clock division
The 2 bits indicates the division ratio between the timer
clock (CK_INT) frequency and the dead-time and sam-
pling clock used by the dead-time generators and the dig-
ital filters (ETR, TIx).
00: tDTS = tCK_INT
01: tDTS = 2 x tCK_INT
10: tDTS = 4 x tCK_INT
11: Reserved, do not program this value

7 ARPE rw 0x00 Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

6: 5 CMS rw 0x00 Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down
depending on the direction bit (DIR).
01: Center-aligned mode 1. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set both when the counter is counting up or down.
Note: It is not allowed to switch from edge-aligned mode to

center-aligned mode as long as the counter is enabled (CEN=1).

4 DIR rw 0x00 Direction
0: Counter used as upcounter
1: Counter used as downcounter
Note: This bit is read only when the timer is configured in Center-

aligned mode or Encoder mode.

3 OPM rw 0x00 One pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clear-
ing the bit CEN)

www.mm32mcu.com 249/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

2 URS rw 0x00 Update request source
This bit is set and cleared by software to select the UEV
event sources.
0: Any of the following events generates an update inter-
rupt or DMA request if enabled.These events can be:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update
interrupt or DMA request if enabled.

1 UDIS rw 0x00 Update disable
This bit is set and cleared by software to enable/disable
UEV event generation.
0: UEV enabled. The Update (UEV) event is generated
by one of the following events:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller,
buffered registers are then loaded with their preload val-
ues
1: UEV disabled. The Update event is not generated,
shadow registers keep their value (ARR, PSC, CCRx).
However the counter and the prescaler are reinitialized if
the UG bit is set or if a hardware reset is received from the
slave mode controller.

0 CEN rw 0x00 Counter enable
0: Counter disabled
1: Counter enabled
Note: External clock, gated mode and encoder mode can work

only if the CEN bit has been previously set by software. How-

ever, trigger mode can set the CEN bit automatically by hard-

ware.

12.4.2 Control register 2(TIMx_CR2)
Offset address: 0x04

Reset value: 0x0000

123456789 01112131415 10

rwrwrwrwrw

Reserved TI1S MMS CCDS Reserved

www.mm32mcu.com 250/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.
7 TI1S rw 0x00 TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to
the TI1 input (XOR combination)

6: 4 MMS rw 0x00 Master mode selection
These bits allow to select the information to be sent in mas-
ter mode to slave timers for synchronization (TRGO). The
combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is
used as trigger output (TRGO). If the reset is generated by
the trigger input (slave mode controller configured in reset
mode) then the signal on TRGO is delayed compared to
the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used
as trigger output (TRGO). It is useful to start several timers
at the same time or to control a window in which a slave
timer is enable. The Counter Enable signal is generated
by a logic OR between CEN control bit and the trigger in-
put when configured in gated mode. When the Counter
Enable signal is controlled by the trigger input, there is a
delay on TRGO, except if the master/slave mode is se-
lected (see the MSM bit description in TIMx_SMCR regis-
ter).
010: Update - The update event is selected as trigger out-
put (TRGO). For instance, amaster timer can then be used
as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive
pulse when the CC1IF flag is to be set (even if it was al-
ready high), as soon as a capture or a compare match
occurred (TRGO).
100: Compare - OC1REF signal is used as trigger output
(TRGO)
101: Compare - OC2REF signal is used as trigger output
(TRGO)
110: Compare - OC3REF signal is used as trigger output
(TRGO)
111: Compare - OC4REF signal is used as trigger output
(TRGO)

3 CCDS rw 0x00 Capture/compare DMA selection
0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

www.mm32mcu.com 251/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

2: 0 Reserved Reserved, always read as 0.

12.4.3 Slave mode control register(TIMx_SMCR)
Offset address: 0x08

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrw rw

ETP ECE ETPS ETF MSM TS OCCS SMS

rw

Bit Field Type Reset Description

15 ETP rw 0x00 External trigger polarity
This bit selects whether ETR or inverted ETR is used for
trigger operations.
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

14 ECE rw 0x00 External clock enable
This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked
by any active edge on the ETRF signal.
Note 1: Setting the ECE bit has the same effect as selecting
external clock mode 1 with TRGI connected to ETRF (SMS=111
and TS=111).
Note 2: It is possible to simultaneously use external clock mode
2 with the following slave modes: reset mode, gated mode and
trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).

Note 3: If external clock mode 1 and external clock mode 2 are

enabled at the same time, the external clock input is ETRF.

13: 12 ETPS rw 0x00 External trigger prescaler
External trigger signal ETRP frequency must be at most
1/4 of TIMxCLK frequency. A prescaler can be enabled to
reduce ETRP frequency. It is useful when inputting fast
external clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

www.mm32mcu.com 252/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

11: 8 ETF rw 0x00 External trigger filter
This bit-field then defines the frequency used to sample
ETRP signal and the length of the digital filter applied to
ETRP. The digital filter is made of an event counter in
which N consecutive events are needed to validate a tran-
sition on the output:
0000: No filter, sampling is done at fDTS.
0001: sampling frequency fSAMPLING=fCK_INT, N = 2
0010: sampling frequency fSAMPLING=fCK_INT, N = 4
0011: sampling frequency fSAMPLING=fCK_INT, N = 8
0100: sampling frequency fSAMPLING=fDTS/2, N = 6
0101: sampling frequency fSAMPLING=fDTS/2, N = 8
0110: sampling frequency fSAMPLING=fDTS/4, N = 6
0111: sampling frequency fSAMPLING=fDTS/4, N = 8
1000: sampling frequency fSAMPLING=fDTS/8, N = 6
1001: sampling frequency fSAMPLING=fDTS/8, N = 8
1010: sampling frequency fSAMPLING=fDTS/16, N = 5
1011: sampling frequency fSAMPLING=fDTS/16, N = 6
1100: sampling frequency fSAMPLING=fDTS/16, N = 8
1101: sampling frequency fSAMPLING=fDTS/32, N = 5
1110: sampling frequency fSAMPLING=fDTS/32, N = 6
1111: sampling frequency fSAMPLING=fDTS/32, N = 8

7 MSM rw 0x00 Master/slave mode
0: No action
1: The effect of an event on the trigger input (TRGI) is de-
layed to allow a perfect synchronization between the cur-
rent timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external
event.

www.mm32mcu.com 253/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

6: 4 TS rw 0x00 Trigger selection
This bit-field selects the trigger input to be used to synchro-
nize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1(ITR1)
010: Internal Trigger 2(ITR2)
011: Internal Trigger 3(ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2(TI2FP2)
111: External Trigger input (ETRF)
See the following table for more details on ITRx.
Note: These bits must be changed only when they are not used

(e.g. when SMS=000) to avoid wrong edge detections at the

transition.

3 OCCS rw 0x00 Output compare clear selection
In PWM mode, clear the comparator output
1: Comparator output as clear signal
0: External trigger signal as clear signal

www.mm32mcu.com 254/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

2: 0 SMS rw 0x00 Slave mode selection
When external signals are selected the active edge of the
trigger signal (TRGI) is linked to the polarity selected on
the external input (refer to Input Control register and Con-
trol Register description).
000: Slavemode disabled - if CEN =‘1’then the prescaler
is clocked directly by the internal clock.
001: Encoder mode 1 - Counter counts up/down on
TI2FP1 edge depending on TI1FP2 level.
010: Encoder mode 2 - Counter counts up/down on
TI1FP2 edge depending on TI2FP1 level.
011: Encoder mode 3 - Counter counts up/down on both
TI1FP1 and TI2FP2 edges depending on the level of the
other input.
100: Reset Mode - Rising edge of the selected trigger in-
put (TRGI) reinitializes the counter and generates an up-
date of the registers.
101: Gated Mode - The counter clock is enabled when the
trigger input (TRGI) is high. The counter stops (but is not
reset) as soon as the trigger input becomes low. Both start
and stop of the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of
the trigger TRGI (but it is not reset). Only the start of the
counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected
trigger input (TRGI) clock the counter.
Note: The gated mode must not be used if TI1F_EN is selected

as the trigger input (TS= ’100’). Indeed, TI1F_ED outputs 1 pulse

for each transition on TI1F, whereas the gated mode checks the

level of the trigger signal.

Table 43. TIMx Internal Trigger Connection

Slave timer ITR0(TS = 000) ITR1(TS = 001) ITR2(TS = 010) ITR3(TS = 011)

TIM3 TIM1 TIM2 x x

12.4.4 DMA/interrupt enable register(TIMx_DIER)
Offset address: 0x0C

Reset value: 0x0000

www.mm32mcu.com 255/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

123456789 01112131415 10

rwrwrwrwrwrwrwrwrwrwrw rw

Res. TDE Res. CC4DE UDE Res. TIE Res. CC4IE UIECC3DE CC2DE CC1DE CC3IE CC2IE CC1IE

Bit Field Type Reset Description

15 Reserved Reserved, always read as 0.
14 TDE rw 0x00 Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

13 Reserved Reserved, always read as 0.
12 CC4DE rw 0x00 Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled
1: CC4 DMA request enabled

11 CC3DE rw 0x00 Capture/Compare 3 DMA request enable
0: CC3 DMA request disabled
1: CC3 DMA request enabled

10 CC2DE rw 0x00 Capture/Compare 2 DMA request enable
0: CC2 DMA request disabled
1: CC2 DMA request enabled

9 CC1DE rw 0x00 Capture/Compare 1 DMA request enable
0: CC1 DMA request disabled
1: CC1 DMA request enabled

8 UDE rw 0x00 Update DMA request enable
0: Update DMA request disabled
1: Update DMA request enabled

7 Reserved Reserved, always read as 0.
6 TIE rw 0x00 Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

5 Reserved Reserved, always read as 0.
4 CC4IE rw 0x00 Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled
1: CC4 interrupt enabled

3 CC3IE rw 0x00 Capture/Compare 3 interrupt enable
0: CC3 interrupt disabled
1: CC3 interrupt enabled

2 CC2IE rw 0x00 Capture/Compare 2 interrupt enable
0: CC2 interrupt disabled
1: CC2 interrupt enabled

1 CC1IE rw 0x00 Capture/Compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled

www.mm32mcu.com 256/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

0 UIE rw 0x00 Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

12.4.5 Status register(TIMx_SR)
Offset address: 0x10

Reset value: 0x0000

123456789 01112131415 10

rc_w0rc_w0rc_w0rc_w0

Res. CC4OF Res. TIF Res. CC4IF UIFCC3OF CC2OF CC1OF CC3IF CC2IF CC1IF

rc_w0 rc_w0rc_w0rc_w0rc_w0rc_w0

Bit Field Type Reset Description

15: 13 Reserved Reserved, always read as 0.
12 CC4OF rc_w0 0x00 Capture/Compare 4 overcapture flag

Refer to CC1OF description.
11 CC3OF rc_w0 0x00 Capture/Compare 3 overcapture flag

Refer to CC1OF description.
10 CC2OF rc_w0 0x00 Capture/Compare 2 overcapture flag

Refer to CC1OF description.
9 CC1OF rc_w0 0x00 Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding
channel is configured in input capture mode. It is cleared
by software by writing it to‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1
register while CC1IF flag was already set.

8: 7 Reserved Reserved, always read as 0.
6 TIF rc_w0 0x00 Trigger interrupt flag

This flag is set by hardware on trigger event (active edge
detected on TRGI input when the slave mode controller is
enabled in all modes but gated mode, both edges in case
gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

5 Reserved Reserved, always read as 0.
4 CC4IF rc_w0 0x00 Capture/Compare 4 interrupt flag

Refer to CC1IF description.
3 CC3IF rc_w0 0x00 Capture/Compare 3 interrupt flag

Refer to CC1IF description.
2 CC2IF rc_w0 0x00 Capture/Compare 2 interrupt flag

Refer to CC1IF description.

www.mm32mcu.com 257/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

1 CC1IF rc_w0 0x00 Capture/Compare 1 interrupt flag
If channel CC1 is configured as output:
This flag is set by hardware when the counter matches
the compare value, with some exception in center-aligned
mode (refer to the CMS bits in the TIMx_CR1 register de-
scription). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the con-
tent of the TIMx_CCR1 register.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by
software or by reading the TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1
register (An edge has been detected on IC1 which
matches the selected polarity)

0 UIF rc_w0 0x00 Update interrupt flag
This bit is set by hardware on an update event. It is cleared
by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware
when the registers are updated:
- At overflow or underflow regarding the repetition counter
value (update if repetition counter= 0) and if the UDIS=0
in the TIMx_CR1 register.
–When CNT is reinitialized by software using the UG
bit in TIMx_EGR register, if URS=0 and UDIS=0 in the
TIMx_CR1 register.
–When CNT is reinitialized by a trigger event (refer to the
description of synchronization control register), if URS=0
and UDIS=0 in the TIMx_CR1 register.

12.4.6 Event generation register (TIMx_EGR)
Offset address: 0x14

Reset value: 0x0000

123456789 01112131415 10

wwwww

TG Res. CC4G CC3G CC2G CC1G UG

w

Res.

Bit Field Type Reset Description

15: 7 Reserved Reserved, always read as 0.

www.mm32mcu.com 258/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

6 TG w 0x00 Trigger generation
This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related inter-
rupt or DMA transfer can occur if enabled.

5 Reserved Reserved, always read as 0.
4 CC4G w 0x00 Capture/Compare 4 generation

Refer to CC1G description.
3 CC3G w 0x00 Capture/Compare 3 generation

Refer to CC1G description.
2 CC2G w 0x00 Capture/Compare 2 generation

Refer to CC1G description.
1 CC1G w 0x00 Capture/Compare 1 generation

This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1: If
channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request
is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in
TIMx_CCR1 register. The CC1IF flag is set, the cor-
responding interrupt or DMA request is sent if enabled.
The CC1OF flag is set if the CC1IF flag was already high.

0 UG w 0x00 Update generation
This bit can be set by software, it is automatically cleared
by hardware.
0: No action
1: Reinitialize the counter and generate an update of
the registers. Note that the prescaler counter is cleared
too (anyway the prescaler factor is not affected). The
counter is cleared if the center-aligned mode is selected or
if DIR=0 (upcounting), otherwise, it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

12.4.7 Capture/compare mode register 1(TIMx_CCMR1)
Offset address: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The

www.mm32mcu.com 259/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So the user must take care that the same
bit can have a different meaning for the input stage and for the output stage.

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

OC2M OC2PE OC2FE

CC2S

OC1CE OC1M

IC1F

OC1PE OC1FE

IC1PSC

CC1S

IC2PSCIC2F

OC2CE

Output compare mode:

Bit Field Type Reset Description

15 OC2CE rw 0x00 Output compare 2 clear enable
14: 12 OC2M rw 0x00 Output compare 2 mode
11 OC2PE rw 0x00 Output compare 2 preload enable
10 OC2FE rw 0x00 Output compare 4 fast enable
9: 8 CC2S rw 0x00 Capture/Compare 2 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on
TI2
10: CC2 channel is configured as input, IC2 is mapped on
TI1
11: CC2 channel is configured as input, IC2 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF

(CC2E =‘0’in TIMx_CCER).

7 OC1CE rw 0x00 Output compare 1 clear enable
0: OC1Ref is not affected by the ETRF Input
1: OC1Ref is cleared as soon as a High level is detected
on ETRF input

www.mm32mcu.com 260/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

6: 4 OC1M rw 0x00 Output compare 1 mode
These bits define the behavior of the output reference
signal OC1REF from which OC1 and OC1N are derived.
OC1REF is active high whereas OC1 and OC1N active
level depends on CC1P and CC1NP bits.
000: Frozen - The comparison between the output com-
pare register TIMx_CCR1 and the counter TIMx_CNT has
no effect on the outputs
001: Set channel 1 to active level on match. OC1REF
signal is forced high when the counter TIMx_CNTmatches
the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF
signal is forced low when the counter TIMx_CNT matches
the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when
TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as
long as TIMx_CNT<TIMx_CCR1
otherwise inactive. In downcounting, channel 1 is inactive
(OC1REF=‘0’) as long as TIMx_CNT>TIMx_CCR1 oth-
erwise active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is in-
active as long as TIMx_CNT<TIMx_CCR1otherwise ac-
tive. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 otherwise inactive.
Note 1: These bits can not be modified as long as LOCK level 3
has been programmed (LOCK bits in TIMx_BDTR register) and
CC1S=’00’(the channel is configured in output).

Note 2: In PWM mode 1 or 2, the OCREF level changes only

when the result of the comparison changes or when the output

compare mode switches from“frozen”mode to“PWM”mode.

www.mm32mcu.com 261/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

3 OC1PE rw 0x00 Output compare 1 preload enable
0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1
can be written at anytime, the new value is taken in ac-
count immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write
operations access the preload register. TIMx_CCR1
preload value is loaded in the active register at each up-
date event.
Note 1: These bits can not be modified as long as LOCK level 3
has been programmed (LOCK bits in TIMx_BDTR register) and
CC1S=’00’(the channel is configured in output).

Note 2: The PWM mode can be used without validating

the preload register only in one pulse mode (OPM bit set in

TIMx_CR1 register). Else the behavior is not guaranteed.

2 OC1FE rw 0x00 Output compare 1 fast enable
This bit is used to accelerate the effect of an event on the
trigger in input on the CC output.
0: CC1 behaves normally depending on counter and
CCR1 values even when the trigger is ON. The minimum
delay to activate CC1 output when an edge occurs on the
trigger input is 5 clock cycles.
1: An active edge on the trigger input acts like a compare
match on CC1 output. Then, OC is set to the compare
level independently from the result of the comparison. De-
lay to sample the trigger input and to activate CC1 output
is reduced to 3 clock cycles. OCFE acts only if the channel
is configured in PWM1 or PWM2 mode.

1: 0 CC1S rw 0x00 Capture/Compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E = ’0’ in TIMx_CCER).

Input capture mode:

www.mm32mcu.com 262/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

15: 12 IC2F rw 0x00 Input capture 2 filter
11: 10 IC2PSC rw 0x00 Input capture 2 prescaler
9: 8 CC2S rw 0x00 Capture/Compare 2 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on
TI2
10: CC2 channel is configured as input, IC2 is mapped on
TI1
11: CC2 channel is configured as input, IC2 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF

(CC2E =‘0’in TIMx_CCER).

7: 4 IC1F rw 0x00 Input capture 1 filter
This bit-field defines the frequency used to sample TI1 in-
put and the length of the digital filter applied to TI1. The
digital filter is made of an event counter in which N con-
secutive events are needed to validate a transition on the
output:
0000: No filter, sampling is done at fDTS
1000: sampling frequency fSAMPLING=fDTS/8, N = 6
0001: sampling frequency fSAMPLING=fCK_INT, N = 2
1001: sampling frequency fSAMPLING=fDTS/8, N = 8
0010: sampling frequency fSAMPLING=fCK_INT, N = 4
1010: sampling frequency fSAMPLING=fDTS/16, N = 5
0011: sampling frequency fSAMPLING=fCK_INT, N = 8
1011: sampling frequency fSAMPLING=fDTS/16, N = 6
0100: sampling frequency fSAMPLING=fDTS/2, N = 6
1100: sampling frequency fSAMPLING=fDTS/16, N = 8
0101: sampling frequency fSAMPLING=fDTS/2, N = 8
1101: sampling frequency fSAMPLING=fDTS/32, N = 5
0110: sampling frequency fSAMPLING=fDTS/4, N = 6
1110: sampling frequency fSAMPLING=fDTS/32, N = 6
0111: sampling frequency fSAMPLING=fDTS/4, N = 8
1111: sampling frequency fSAMPLING=fDTS/32, N = 8

www.mm32mcu.com 263/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

3: 2 IC1PSC rw 0x00 Input capture 1 prescaler
This bit-field defines the factor of the prescaler acting on
CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’(TIMx_CCER
register).
00: no prescaler, capture is done each time an edge is
detected on the capture input.
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

1: 0 CC1S rw 0x00 Capture/compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E =‘0’in TIMx_CCER).

12.4.8 Capture/compare mode register 2(TIMx_CCMR2)
Offset address: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

OC4M OC4PE OC4FE

CC4S

OC3CE OC3M

IC3F

OC3PE OC3FE

IC3PSC

CC3S

IC4PSCIC4F

OC4CE

Output compare mode:

Bit Field Type Reset Description

15 OC4CE rw 0x00 Output compare 4 clear enable
14: 12 OC4M rw 0x00 Output compare 4 mode
11 OC4PE rw 0x00 Output compare 4 preload enable
10 OC4FE rw 0x00 Output compare 4 fast enable

www.mm32mcu.com 264/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

9: 8 CC4S rw 0x00 Capture/Compare 4 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on
TI4
10: CC4 channel is configured as input, IC4 is mapped on
TI3
11: CC4 channel is configured as input, IC4 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF

(CC4E =‘0’in TIMx_CCER)

7 OC3CE rw 0x00 Output compare 3 clear enable
6: 4 OC3M rw 0x00 Output compare 3 mode
3 OC3PE rw 0x00 Output compare 3 preload enable
2 OC3FE rw 0x00 Output compare 3 fast enable
1: 0 CC3S rw 0x00 Capture/Compare 3 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on
TI3
10: CC3 channel is configured as input, IC3 is mapped on
TI4
11: CC3 channel is configured as input, IC3 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF

(CC3E =‘0’in TIMx_CCER)

Input capture mode:

Bit Field Type Reset Description

15: 12 IC4F rw 0x00 Input capture 4 filter
11: 10 IC4PSC rw 0x00 Input capture 4 prescaler

www.mm32mcu.com 265/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

9: 8 CC4S rw 0x00 Capture/Compare 4 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on
TI4
10: CC4 channel is configured as input, IC4 is mapped on
TI3
11: CC4 channel is configured as input, IC4 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF

(CC4E =‘0’in TIMx_CCER).

7: 4 IC3F rw 0x00 Input capture 3 filter
3: 2 IC3PSC rw 0x00 Input capture 3 prescaler
1: 0 CC3S rw 0x00 Capture/compare 3 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on
TI4
10: CC3 channel is configured as input, IC3 is mapped on
TI3
11: CC3 channel is configured as input, IC3 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF

(CC3E =‘0’in TIMx_CCER).

12.4.9 Capture/compare enable register(TIMx_CCER)
Offset address: 0x20

Reset value: 0x0000

123456789 01112131415 10

rwrw rwrwrwrw rw rw

Res. CC4P Res.Res.CC4E CC3P CC3E CC2P CC2E CC1P CC1ERes.

Bit Field Type Reset Description

15: 14 Reserved Reserved, always read as 0.
13 CC4P rw 0x00 Capture/Compare 4 output polarity

Refer to CC1P description.
12 CC4E rw 0x00 Capture/Compare 4 output enable

Refer to CC1E description.

www.mm32mcu.com 266/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

11: 10 Reserved Reserved, always read as 0.
9 CC3P rw 0x00 Capture/Compare 3 output polarity

Refer to CC1P description.
8 CC3E rw 0x00 Capture/Compare 3 output enable

Refer to CC1E description.
7: 6 Reserved Reserved, always read as 0.
5 CC2P rw 0x00 Capture/Compare 2 output polarity

Refer to CC1P description.
4 CC2E rw 0x00 Capture/Compare 2 output enable

Refer to CC1E description.
3: 2 Reserved Reserved, always read as 0.
1 CC1P rw 0x00 Capture/Compare 1 output polarity

CC1 channel is configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel is configured as input:
This bit selects whether IC1 or inverted IC1 is used for
trigger or capture operations.
0: non-inverted: capture is done on a rising edge of IC1.
When used as external trigger, IC1 is non-inverted.
1: inverted: capture is done on a falling edge of IC1. When
used as external trigger, IC1 is inverted
Note: This bit can not be modified as long as LOCK level 3 or 2

has been programmed (LOCK bits in TIMx_BDTR register).

0 CC1E rw 0x00 Capture/Compare 1 output enable
CC1 channel is configured as output:
0: Off - OC1 is not active. OC1 level is then function of
MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits.
1: On - OC1 signal is output on the corresponding output
pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and
CC1NE bits.
CC1 channel is configured as input:
This bit determines if a capture of the counter value can
actually be done into the input capture/compare register 1
(TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Table 44. Output Control Bit for Standard OCx Channels

CCxE bit OCx output state

0 Output Disabled (OCx = 0, OCx_EN = 0)

1 OCx = OCxREF + Polarity, OCx_EN = 1

www.mm32mcu.com 267/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Note: The state of the external I/O pins connected to the standard OCx channels depends on the

OCx channel state and the GPIO and AFIO registers.

12.4.10 Counter(TIMx_CNT)
Offset address: 0x24

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

Bit Field Type Reset Description

15: 0 CNT rw 0x0000 Counter value

12.4.11 Prescaler(TIMx_PSC)
Offset address: 0x28

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

PSC

Bit Field Type Reset Description

15: 0 PSC rw 0x0000 Prescaler value
The counter clock frequency (CK_CNT) is equal to fCK_PSC
/(PSC + 1).
PSC contains the value to be loaded in the active prescaler
register at each update event (including when the counter
is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in ”reset mode”)

12.4.12 Auto-reload register(TIMx_ARR)
Offset address: 0x2C

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

ARR

www.mm32mcu.com 268/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

15: 0 ARR rw 0x0000 Prescaler value
ARR is the value to be loaded in the actual auto-reload
register.
Refer to section 13.3.1 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.

12.4.13 Capture/compare register 1(TIMx_CCR1)
Offset address: 0x34

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR1

Bit Field Type Reset Description

15: 0 CCR1 rw 0x0000 Capture/Compare 1 value
If CC1 channel is configured as output:
CCR1 is the value to be loaded in the actual cap-
ture/compare 1 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR1 register (bit OC1PE). Otherwise the
preload value is copied in the active capture/compare 1
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC1 output.
If CC1 channel is configured as input:
CCR1 contains the counter value transferred by the last
input capture 1 event (IC1).

12.4.14 Capture/compare register2(TIMx_CCR2)
Offset address: 0x38

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR2

www.mm32mcu.com 269/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

15: 0 CCR2 rw 0x0000 Capture/Compare 2 value
If CC2 channel is configured as output:
CCR2 contains the value to be loaded in the actual cap-
ture/compare 2 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR2 register (bit OC2PE). Otherwise the
preload value is copied in the active capture/compare 2
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC2 output.
If CC2 channel is configured as input:
CCR2 contains the counter value transferred by the last
input capture 2 event (IC2).

12.4.15 Capture/compare register 3(TIMx_CCR3)
Offset address: 0x3C

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR3

Bit Field Type Reset Description

15: 0 CCR3 rw 0x0000 Capture/Compare 3 value
If CC3 channel is configured as output:
CCR3 contains the value to be loaded in the actual cap-
ture/compare 3 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR3 register (bit OC3PE). Otherwise the
preload value is copied in the active capture/compare 3
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC3 output.
If CC3 channel is configured as input:
CCR3 contains the counter value transferred by the last
input capture 3 event (IC3).

12.4.16 Capture/compare register 4(TIMx_CCR4)
Offset address: 0x40

www.mm32mcu.com 270/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR4

Bit Field Type Reset Description

15: 0 CCR4 rw 0x0000 Capture/Compare 4 value
If CC4 channel is configured as output:
CCR4 contains the value to be loaded in the actual cap-
ture/compare 4 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR4 register (bit OC4PE). Otherwise the
preload value is copied in the active capture/compare 4
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC4 output.
If CC4 channel is configured as input:
CCR4 contains the counter value transferred by the last
input capture 4 event (IC4).

12.4.17 DMA control register(TIMx_DCR)
Offset address: 0x48

Reset value: 0x0000

123456789 01112131415 10

rwrwrwrwrwrwrwrwrw rw

DBL Res.Res. DBA

Bit Field Type Reset Description

15: 13 Reserved Reserved, always read as 0.

www.mm32mcu.com 271/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

Bit Field Type Reset Description

12: 8 DBL w 0x00 DMA burst length
This bit field defines the burst transfer in the continuous
mode (the timer detects a burst transfer when a write ac-
cess to the TIMx_DMAR register address is performed),
namely, the number of transfers, in half-word (double
bytes) or bytes.
00000: 1 transfer 00001: 2 transfers
00010: 3 transfers
...... 10001: 18 transfers
Example: Let us consider the following transfer: DBL = 7
and DBA = TIM2_CR1.
- If DBL =7 and DBA = TIM2_CR1 represent the address
of data to be transferred, the transfer address is given by:
(Address of TIMx_CR1) + DBA + (DMA index), where,
DMA index = DBL
TIMx_CR1 address + DBA + 7 is the address of data to be
written or read, so that the transfer is completed to/from
7 registers starting from the TIMx_CR1 address + DBA.
According to the setting of DMA data length, the following
case may occur:
-If the data is set to half word (16 bits), the data will be
transferred to all 7 registers.
-If the data is set to bytes, the data will still be transferred
to all 7 registers: the first register contains the first MSB
byte, the second register contains the first LSB byte, and
so on. Therefore, the user must specify the data width of
DMA transfer for the timer.

7: 5 Reserved Reserved, always read as 0.
4: 0 DBA w 0x00 DMA base address

These bits define the base-address for DMA transfers in
the continuous mode (when write access is done through
the TIMx_DMAR address). DBA is defined as an offset
starting from the address of the TIMx_CR1 register.
00000: TIMx_CR1
00001: TIMx_CR2
00010: TIMx_SMCR
......

12.4.18 DMA address for full transfer(TIMx_DMAR)
Offset address: 0x4C

Reset value: 0x0000

www.mm32mcu.com 272/513

UM_MM32SPIN05x_q_Ver1.19
16-BIT GENERAL-PURPOSE TIMERS (TIMX16 BIT)

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

DMAB

Bit Field Type Reset Description

15: 0 DMAB w 0x0000 DMA register for burst accesses
A write operation to the TIMx_DMAR register will access
the register located at the following address:
TIMx_CR1 address + DBA + DMA index, Where:
‘TIMx_CR1 address’is the address of the control register
1;
‘DBA’is the DMA base address configured in TIMx_DCR
register;
‘DMA index’is the offset automatically controlled by
the DMA transfer, depending on DBL configured in
TIMx_DCR.

www.mm32mcu.com 273/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

13 32-bit general-purpose timers

(TIMx32 Bit)
32-bit general-purpose timers (TIMx32 Bit)

13.1 TIMx introduction

General-purpose timers consist of a 32-bit auto-reload counter driven by a programmable
prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to sev-
eral milliseconds using the timer prescaler and the RCC clock controller prescalers.

TIMx are completely independent, and do not share any resources. They can be synchro-
nized together as described in Section Timer Synchronization.

13.2 TIMx Main features

TIM2 functions include:

• 32-bit up, down, up/down auto-reload register
• 16-bit programmable prescaler allowing dividing (modifing in real time) the counter clock
frequency either by any factor between 1 and 65536.

• Up to 4 independent channels for:
– Input capture
– Output compare
– PWM generation (Edge and Center-aligned Mode)
– One-pulse mode output

• circuit to control the timer with external signals and to interconnect several timers to-
gether.

• Interrupt/DMA generation on the following events:
– Update: counter overflow/underflow, counter initialization (by software or inter-
nal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external
trigger)

– Input capture
– Output compare

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning pur-
poses

www.mm32mcu.com 274/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

• Trigger input for external clock or cycle-by-cycle current management

073662

ITR0
ITR1
ITR2
ITR3

ITR

ETRP

TRGI

TRC

TI1FP1
TI2FP2

ETRF
TRGO

ETR

+/-PSC CK_CNTCK_PSC U

ETRF

IC1PS U

IC2PS

IC3PS

IC4PS

IC1
TI1FP1
TI1FP2

TRC

TI2FP1
TI2FP2

TRC

IC2

IC3

IC4

TRC

TRC

TI1
XOR

TI2

TI3

TIMx_ETR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4 TI4

U

U

U

OC1REF

CC1I

CC2I

OC2REF

OC3REF

CC3I

CC4I

OC4REF

TGI

CC1I

CC2I

CC3I

CC4I

U UI

OC1N

OC1

OC2

TIMx_CH1

OC2N

OC3

OC3N

OC4

TI1F_ED

TI3FP3
TI3FP4

TI4FP3
TI4FP4

TIMx_CH1N

TIMx_CH2

TIMx_CH2N

TIMx_CH3

TIMx_CH3N

TIMx_CH4

Internel Clock(CK_INT)

CLK_TIM from RCC
Trigger

Controller

Slave

Mode

Controller

Encoder

Interface

Polarity Selection & Edge

Detector & Prescaler
Input Filter

to other timers

to DAC/ADC

Reset, Enable, Up/Down, Count

Input Filter &

Edge detector

Input Filter &

Edge detector

Input Filter &

Edge detector

Input Filter &

Edge detector

Prescaler

Prescaler

Prescaler

Prescaler

Prescaler

AutoReload Register

CNT Counter

Stop, Clear or Up/Down

Capture/Compare 1 Register

Capture/Compare 2 Register

Capture/Compare 3 Register

Capture/Compare 4 Register

output

control

output

control

output

control

output

control

Preload registers transferred to active registers on U event accroding

to control bit.

Event

Interrupt & DMA output

U

RegNotes:

Figure 126. Block Diagram of general-purpose timer

13.3 TIMx Functional description

13.3.1 Time-base unit
The main block of the programmable general-purpose timer is a 32-bit counter with its
related auto-reload register. The counter can count up, down or both up and down. The
counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running. The time-base unit includes:

• Counter register (TIMx_CNT)
• Prescaler register (TIMx_PSC)

www.mm32mcu.com 275/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

• Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into
the shadow register permanently or at each update event (UEV), depending on the auto-
reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when
the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit
equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation
of the update event is described in details for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when
the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode
controller description to get more details on counter enabling).

Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536.
It is based on a 32-bit counter controlled through a 16-bit register (in the TIMx_PSC reg-
ister). It can be changed on the fly as this control register is buffered. The new prescaler
factor is taken into account at the next update event.

The following figures give some examples of the counter behavior when the prescaler
factor is changed on the fly:

059785

CK_PSC

CEN

 Timer clock = CK_CNT

F7 F8 F9 FA FB FC 00 01 02 03

0 1

10

0 0 0 001 1 1 1

Counter register

Update event(UEV)

Prescaler control register

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 127. Counter Timing Diagram with Prescaler Division Change from 1 to 2

www.mm32mcu.com 276/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

763391

F7 F8 F9 FA FB FC 00 01

0 3

30

0 0 2 201 3 1 3

CK_PSC

CEN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Prescaler control register

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 128. Counter Timing Diagram with Prescaler Division Change from 1 to 4

13.3.2 Counter modes

Upcounting mode
In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in
the TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to
0. However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag bit(UIF
bit in TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload shadow register is updated with the preload value (TIMx_ARR).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

www.mm32mcu.com 277/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

894901

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 129. Counter Timing Diagram, Internal Clock Divided by 1

100720

0034 0035 00000036 0001 0002 0003

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 130. Counter Timing Diagram, Internal Clock Divided by 2

564964

0035 00000036 0001

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 131. Counter Timing Diagram, Internal Clock Divided by 4

www.mm32mcu.com 278/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

372226

1F 20 00

CK_PSC

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 132. Counter Timing Diagram, Internal Clock Divided by N

370803

31 32 33 34 35 36 0500 01 02 03 04 06 07

FF 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload register

Write a new value in TIMx_ARR

Figure 133. Counter Timing Diagram, Update Event When ARPE = 0 (TiMx_ARR Not Preloaded)

www.mm32mcu.com 279/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

874537

F0 F1 F2 F3 F4 F5 0500 01 02 03 04 06 07

F5 36

F5 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 134. Counter Timing Diagram, Update Event When ARPE = 1 (TiMx_ARR Preloaded)

Downcounting mode
In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in
the TIMx_EGR register (by software or by using the slave mode controller).

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of
the prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit
in TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updatedwith the preload value (content of the TIMx_ARR
register).

Note: The auto-reload is updated before the counter is reloaded, so that the next period is the

expected one.

The following figures show some examples of the counter behavior for different clock

www.mm32mcu.com 280/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

frequencies when TIMx_ARR = 0x36.

721721

05 04 03 02 01 00 3136 35 34 33 32 30 2F

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 135. Counter Timing Diagram, Internal Clock Divided by 1

819787

0002 0001 00360000 0035 0034 0033

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 136. Counter Timing Diagram, Internal Clock Divided by 2

213411

0001 00360000 0035

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 137. Counter Timing Diagram, Internal Clock Divided by 4

www.mm32mcu.com 281/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

264550

20 1F 00 36

CK_PSC

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 138. Counter Timing Diagram, Internal Clock Divided by N

367681

05 04 03 02 01 00 3136 35 34 33 32 30 2F

FF 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload register

Write a new value in TIMx_ARR

Figure 139. Counter Timing Diagram, Update Event when Repetition Counter is Not Used

Center-aligned mode (Upcounting/Downcounting))
In center-aligned mode, the counter counts from 0 to the auto-reload value (content of
the TIMx_ARR register)–1, generates a counter overflow event, then counts from the
auto-reload value down to 1 and generates a counter underflow event. Then it restarts
counting from 0.

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter under-
flow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave
mode controller) . In this case, the counter restarts counting from 0, so does the counter
of the prescaler.

TheUEV update event can be disabled by software by setting theUDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the

www.mm32mcu.com 282/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

preload registers. Then, no update event occurs until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
or DMA request is sent). This is to avoid generating both update and capture interrupts
when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag bit(UIF
bit in TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updatedwith the preload value (content of the TIMx_ARR
register).

Note: If the update source is a counter overflow, the auto-reload is updated before the counter is

reloaded, so that the next period is the expected one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

775077

04 03 02 01 00 01 0502 03 04 05 06 04 03

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Counter underflow

Figure 140. Counter Timing Diagram, Internal Clock Divided by 1, TIMx_ARR = 6

www.mm32mcu.com 283/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

824268

0003 0002 00000001 0001 0002 0003

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 141. Counter Timing Diagram, Internal Clock Divided by 2

464735

0034 00360035 0035

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Note: Here, center-aligned mode 2 or 3 is used with an UIF on overflow

Figure 142. Counter Timing Diagram, Internal Clock Divided by 4, TIMx_ARR = 0x36

www.mm32mcu.com 284/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

220046

20 1F 0001

CK_PSC

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 143. Counter Timing Diagram, Internal Clock Divided by N

482632

06 05 04 03 02 01 0500 01 02 03 04 06 07

FD 36

FD 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 144. Counter Timing Diagram, Update Event with ARPE = 1(Counter Underflow)

www.mm32mcu.com 285/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

970767

F7 F8 F9 FA FB FC 3136 35 34 33 32 30 2F

FD 36

FD 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 145. Counter Timing Diagram, Update Event with ARPE = 1(Counter Overflow))

13.3.3 Clock selection
The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT).
• External clock mode1: external input pin (TIx).
• External clock mode2: external trigger input (ETR).
• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for exam-
ple, the user can configure Timer 1 to act as a prescaler for Timer 2.

Internal clock (CK_INT)
If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) andUGbits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN
bit is written to 1, the prescaler is clocked by the internal clock CK_INT.

The following figure shows the behavior of the control circuit and the upcounter in normal
mode, without prescaler.

www.mm32mcu.com 286/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

199864

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_INT

CEN = CNT_EN

UG

Counter register

Counter clock = CK_CNT = CK_PSC

Cnt_INT

Figure 146. Control Circuit in Normal Mode, Internal Clock Divided By 1

External clock source mode 1
This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

356901

CK_PSC

ICF[3:0] CC2P

TS[2:0]

SMS[2:0]ECE

TI2

TIMx_CCMR1 TIMx_CCER

TI2F_Rising

TI2F_Falling

ITRx

TI1F_ED

TI1FP1

TI2FP2

ETRF

001

100

101

110

111

TRGI

ETRF

CK_INT

TIMx_SMCR

TI2F

TI1F

or

or
or

TIMx_SMCR

0

1
Filter

Edge

Detector

encoder

mode

external clock

mode 1

external clock

mode 2

internal clock

mode
(internal clock)

Figure 147. TI2 External Clock Connection Example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’
in the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000). Note: The capture prescaler is not used

for triggering, so there: Tno need to configure it.

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.
4. Select the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR

register.

www.mm32mcu.com 287/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.
6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

518995

TI2

CNT_EN

34 36

TIF

35

Counter clock = CK_CNT = CK_PSC

Counter register

Write TIF = 0

Figure 148. Control Circuit in External Clock Mode 1

External clock source mode 2
This mode is selected by writing ECE = 1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

The following figure gives an overview of the external trigger input block.

www.mm32mcu.com 288/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

132558

CK_PSC

/1,/2,/4,/8

SMS[2:0]ECE

ETR pin
ETR

TRGI

ETRF

CK_INT

TI2F

TI1F

or

or
or

0

1

ETP

ETRP
CK_INT

ETF[3:0]ETPS[1:0]

TIMx_SMCR TIMx_SMCR TIMx_SMCR

TIMx_SMCR

encoder

mode

external clock

mode 1

external clock

mode 2

internal clock

mode

Divider Filter

downcounter

(internal clock)

Figure 149. External Trigger Input Block

For example, to configure the upcounter to count once each 2 rising edges on ETR, use
the following procedure:

• As no filter is needed in this example, write ETF [3:0]=0000 in the TIMx_SMCR register.
• Set the prescaler by writing ETPS [1:0]=01 in the TIMx_SMCR register.
• Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR reg-
ister.

• Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.
• Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to
the resynchronization circuit on the ETRP signal.

www.mm32mcu.com 289/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

052284

34 3635

ETRP

CNT_EN

ETRF

ETR

fCK_INT

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 150. Control Circuit in External Clock Mode 2

13.3.4 Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), including an input stage for capture (with digital filter, multiplexing and
prescaler) and an output stage (with comparator and output control).

The following figures show a capture/compare channel. The input stage samples the
corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with
polarity selection generates a signal (TIxFPx) which can be used as trigger input by the
slave mode controller or as the capture command. It is prescaled before the capture
register (ICxPS).

www.mm32mcu.com 290/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

565511

IC1PS

ICF[3:0] CC1P

ICPS[1:0]

TI1

TIMx_CCMR1
TIMx_CCER

TI1F_Rising

TI1F_Falling
01

10

11

0

1
fDTS

TI1F

0

1

divider

/1,/2,/4,/8
IC1

CC1ECC1S[1:0]

TIMx_CCMR1 TIMx_CCER

TRC

TI2F_Rising

TI2F_Falling
(from channel 2)

(from channel 2)

TI2FP1

TI1FP1

TI1F_ED

Filter

downcounter

Edge

Detector

to the slave mode controller

(from slave mode

 controller)

Figure 151. Capture/Compare Channel (Example: Channel 1 Input Stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

903065

8

CC1S[1]

OC1PE

TIMx_CCMR1UEV

CC1S[1]

CC1S[0]

IC1PS

CC1E

CC1G

TIMx_EGR

read_in_progress

8

capture_transfer
compare_transfer

write_in_progress

CNT > CCR1

CNT = CCR1

CC1S[0]

OC1PE

S

R

S

R

MCU-peripheral Interface

APB Bus

read CCR1L

read CCR1H

input

mode

Capture/Compare Preload Register

Capture/Compare Shadow Register

capture comparator

Counter

write CCR1H

write CCR1L

output

mode

(from time base

unit)

h
ig

h

(i
f
1

6
-b

it
)

lo
w

Figure 152. Capture/Compare Channel 1 Main Circuit

www.mm32mcu.com 291/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

358425

OC1M[2:0]

TIMx_CCMR1

CNT>CCR1

CNT=CCR1

ETRF

OC1ref

0

1

CC1P

TIMx_CCER

CC1E TIMx_CCER

OC1

Output

Mode

Controller

To the master

mode controller
Output

Enable

Circuit

Figure 153. Output Stage of Capture/Compare Channel (Channel 1)

The capture/compare block is made of one preload register and one shadow register.
Write and read always access the preload register. In capture mode, captures are actually
done in the shadow register, which is copied into the preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

13.3.5 Input capture mode
In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch
the value of the counter after a transition detected by the corresponding ICx signal. When
a capture occurs, the corresponding CCxIF flag (TIMx_SR register) is set and an interrupt
or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF
flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF
can be cleared by software by writing it to ’0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written to ’0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input).
Let’s imagine that, when toggling, the input signal is not stable during at most five
internal clock cycles. We must program a filter duration longer than these five clock
cycles. We can validate a transition on TI1 when 8 consecutive samples with the new
level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in
the TIMx_CCMR1 register.

www.mm32mcu.com 292/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

• Configure the input prescaler. In our example, we wish the capture to be performed
at each valid transition, so the prescaler is disabled (write IC1PS bits to ’00’ in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register to ’1’.

• If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER
register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register.

When an input capture occurs:

• TIMx_CCR1 register gets the value of the counter on the active transition.
• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• CC1OF is also set to 1.
• An interrupt is generated depending on the CC1IE bit.
• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the over-
capture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding

CCxG bit in the TIMx_EGR register.

13.3.6 PWM input mode
This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.
• These 2 ICx signals are active on edges with opposite polarity.
• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, the user can measure the period (in TIMx_CCR1 register) and the duty
cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ’0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ’1’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the

www.mm32mcu.com 293/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

TIMx_SMCR register.
• Enable the captures: write the CC1E and CC2E bits to‘1’in the TIMx_CCER register.

789042

0004 0000 0001 0002 0003 0004 0000

0004

0002

TI1

TIMx_CNT

TIMx_CCR1

TIMx_CCR2

IC1 Capture

IC2 Capture

IC2 Capture IC1 Capture

reset counter

pulse width

measurement

period

measurement

Figure 154. Output Stage of Capture/Compare Channel (Channel 1)

The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the
fact that only TI1FP1 and TI2FP2 are connected to the slave mode.

13.3.7 Forced output mode
In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare sig-
nal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by
software, being independent of any comparison between the output compare register and
the counter.

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs to
write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

TheOCxREF signal can be forced low by writing theOCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, in this mode, the comparison between the TIMx_CCRx shadow register and the
counter is still performed and allows the flag to be set. Interrupt and DMA requests can
be sent accordingly. This is described in the output compare mode section below.

13.3.8 Output compare mode
This function is used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the capture/compare register and the counter, the output

www.mm32mcu.com 294/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag bit in the interrupt status register (CCxIF bit in the TIMx_SR register).
• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends aDMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER
register, CCDS bit in the TIMx_CR2 register for the DMA request selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output comparemode, the update event UEV has no effect onOCxREF andOCx output.

The timing resolution is one count of the counter. Output compare mode can also be used
to output a single pulse (in One Pulse mode)

Procedure:

1. Select the counter clock (internal, external, prescaler).
2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be gener-

ated.
4. Select the output mode. For example, the user must write OCxM=011, OCxPE=0,

CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx
preload is not used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the out-
put waveform, provided that the preload register is not enabled (OCxPE=’0’, else
TIMx_CCRx shadow register is updated only at the next update event UEV). An exam-
ple is given in the following figure.

www.mm32mcu.com 295/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

803963

0039 003A 003B B200 B201

003A B201

TIMX_CNT

TIMX_CCR1

OC1REF = OC1

Write B201h in the CC1R register

Match detected on CCR1.

Interrupt generated if enabled

Figure 155. Output Compare Mode (Toggle OC1)

13.3.9 PWM mode
Pulse Width Modulation mode allows generating a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing‘110’(PWM mode 1) or‘111’(PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register
(in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user must initialize all the registers by setting the
UG bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. OCx output is enabled by the CCxE
bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more
details.

In PWM mode (1 or 2), TIMx_CNT and TIM1_CCRx are always compared to determine
whether TIM1_CCRx≤TIM1_CNT or TIM1_CNT≤TIM1_CCRx (depending on the direction
of the counter). However, to comply with the OCREF_CLR (OCxREF can be cleared by
an external event through the ETR signal until the next PWM period), the OCxREF signal
is asserted only:

• When the result of the comparison changes
• When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the period), the OC enabled by the CCxE bit in the TIMx_CCER register. Refer to the

www.mm32mcu.com 296/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

TIMx_CCERx register

This forces the PWM by software while the timer is running. The timer is able to generate
PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the
TIMx_CR1 register.

PWM edge-aligned mode
Upcounting configuration
Upcounting is active when the DIR bit in the TIMx_CR1 register is low.

In the following example, we consider PWMmode 1. The reference PWM signal OCxREF
is high as long as TIMx_CNT < TIMx_CCRx, otherwise it becomes low. If the compare
value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF
is held at‘1’. If the compare value is 0 then OCxRef is held at‘0’. Figure 61 shows
some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

458343

0 1 2 3 4 5 65 7 8 0 1

1

0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

Counter register

Figure 156. Edge-aligned PWM Waveforms (ARR = 8)

Downcounting configuration
Downcounting is active when DIR bit in TIMx_CR1 register is high.

In PWMmode 1, the reference signal OCxRef is low as long as TIMx_CNT > TIMx_CCRx,
otherwise it becomes high. If the compare value in TIMx_CCRx is greater than the auto-
reload value in TIMx_ARR, then OCxREF is held at‘1’. 0% PWM is not possible in this
mode.

PWM center-aligned mode
Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’(all the remaining configurations having the same effect on the OCxRef/OCx signals).

www.mm32mcu.com 297/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

The compare flag is set when the counter counts up, when it counts down or when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in
the TIMx_CR1 register is updated by hardware and must not be changed by software.
Refer to section 11.3.2 Center-aligned Mode.

The following figure shows some center-aligned PWM waveforms in an example, where:

• TIMx_ARR = 8
• PWM mode 1
• The flag is set when the counter counts down corresponding to the center-aligned mode
1 selected for CMS=01 in TIMx_CR1 register.

546141

0 1 2 3 4 5 65 7 8 7 6

1

0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

CMS=01
CMS=10
CMS=11

CMS =10 or 11

CMS =01
CMS =10
CMS =11

1

CMS=01
CMS=10
CMS=11

CMS=01
CMS=10
CMS=11

5 4 3 2 1 0 1

CCRx=7

OCxREF

CCxIF

Counter register

Figure 157. Center-aligned PWM Waveforms (ARR = 8)

Hints in center-aligned mode:
• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR
bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at
the same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:
– The direction is not updated if the user writes a value in the counter greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter
was counting up, it will continue to count up.

www.mm32mcu.com 298/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

– The direction is updated if the user writes 0 or write the TIMx_ARR value in
the counter but no Update Event UEV is generated

• The safest way to use center-alignedmode is to generate an update by software (setting
the UG bit in the TIMx_EGR register) just before starting the counter and not to write
the counter while it is running.

13.3.10 One-pulse mode
One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output comparemode or PWMmode. Select One-pulsemode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration
must be:

• In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)
• In downcounting: CNT > CCRx

296813

t DELAY
t PULSE

t
0

TIM1_ARR

TIM1_CCR1

OC1

OC1REF

TI2

C
o

u
n

te
r

Figure 158. Example of One Pulse Mode

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

www.mm32mcu.com 299/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

• Map TI2FP2 to TI2 by writing CC2S = ’01’ in the TIMx_CCMR1 register.
• TI2FP2 must detect a rising edge, write CC2P = ’0’ in the TIMx_CCER register.
• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS = ’110’
in the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ’110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by the value written in the compare registers (taking into
account the clock frequency and the counter prescaler)

• The tDELAY is defined by the value written in the TIMx_CCR1 register.
• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let us say the user wants to build a waveform with a transition from ’0’ to ’1’ when a
compare match occurs and a transition from ‘1’to ‘0’when the counter reaches
the auto-reload value. To do this, enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=’1’in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case the compare value must be written in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to‘0’in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

The user only wants one pulse (Single mode), so ’1’must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls
over from the auto-reload value back to 0).

Particular case: OCx fast enable
In One-pulse mode, the edge detection on TIx input sets the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If the user wants to output a waveform with the minimum delay, the OCxFE bit in the
TIMx_CCMRx register must be set. Then OCxRef (and OCx) are forced in response to
the stimulus, without taking in account the comparison. Its new level is the same as if a
compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or
PWM2 mode.

13.3.11 Clearing the OCxREF signal on an external event
The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to‘1’).
The OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the OCxREF signal can be connected to the output of a comparator to be

www.mm32mcu.com 300/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

used for current handling. In this case, the ETR must be configured as follow:

• The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to‘00’.

• The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set
to‘0’.

• The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be config-
ured according to the user needs.

The following Figure shows the behavior of the OCxREF signal when the ETRF Input
becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx
is programmed in PWM mode.

079702

(CCRx)

ETRF

OCxREF

(OCxCE='0')

OCxREF

(OCxCE='1')

OCREF_CLR OCREF_CLR

counter(CNT)

becomes high still high

Figure 159. Clearing TIMx OCxREF

13.3.12 Encoder interface mode
To select Encoder Interface mode write SMS=‘001’in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS=’010’if it is counting on TI1 edges only and
SMS=’011’if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming theCC1P andCC2P bits in the TIMx_CCER
register. When needed, the user can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Assuming
that the counter is enabled (CEN bit in TIMx_CR1 register written to‘1) in the following
table, it is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input
filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not
filtered and not inverted). The sequence of transitions of the two inputs is evaluated and
generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

www.mm32mcu.com 301/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in
the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So
user must configure TIMx_ARR before starting. In the same way, the capture, compare,
prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction
of the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction corresponds to the rotation direction of the connected sensor.
The following table summarizes the possible combinations, assuming TI1 and TI2 do not
switch at the same time.

Table 45. Counting Direction Versus Encoder Signals

Active edge
Level on opposite signal (TI1FP1 for

TI2, TI2FP2 for TI1)

TI1FP1 signal TI1FP2 signal
Rising Falling Rising Falling

Counting on TI1 only
High Down Up No Count No Count

Low Up Down No Count No Count

Counting on TI2 only
High No Count No Count Up Down

Low No Count No Count Down Up

Counting on TI1 and TI2
High Down Up Up Down

Low Up Down Down Up

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The following figure gives an example of counter operation, showing count signal genera-
tion and direction control. It also shows how input jitter is compensated where both edges
are selected. This might occur if the sensor is positioned near to one of the switching
points.

For this example, we assume that the configuration is the following:

• CC1S=’01’(TIMx_CCMR1 register, TI1FP1 mapped on TI1).
• CC2S=’01’(TIMx_CCMR2 register, TI1FP2 mapped on TI2).
• CC1P=’0’, (TIMx_CCER register, IC1FP1 non-inverted, IC1FP1=TI1).
• C2P= ’0’ (TIMx_CCER register, IC2FP2 non-inverted, IC2FP2=TI2).
• SMS= ’011’ (TIMx_SMCR register, all inputs are active on both rising and falling edges).
• CEN= ’1’ (TIMx_CR1 register, Counter enabled).

www.mm32mcu.com 302/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

119663

TI1

TI2

forward forwardjitterjitter backward

up updown

counter

Figure 160. Example of Counter Operation in Encoder Mode

The following figure gives an example of counter behavior when IC1FP1 polarity is inverted
(same configuration as above except CC1P=1).

002625

TI1

TI2

forward forwardjitterjitter backward

down downup

counter

Figure 161. Example of Encoder Interface Mode with Inverted Polarity IC1FP1

The timer, when configured in Encoder Interface mode provides information on the sen-
sor’s current position.The user can obtain dynamic information (speed, acceleration,
deceleration) by measuring the period between two encoder events using a second timer
configured in capture mode. The output of the encoder which indicates the mechanical
zero can be used for this purpose. Depending on the time between two events, the counter
can also be read at regular times. This can be done by latching the counter value into a
third input capture register if available (then the capture signal must be periodic and can be

www.mm32mcu.com 303/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

generated by another timer). When available, it is also possible to read its value through
a DMA request generated by a real-time clock.

13.3.13 Timer input XOR function
The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected
to the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and
TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input cap-
ture. An example of this feature used to interface Hall sensors is given in section 11.3.18.

13.3.14 Timers and external trigger synchronization
The TIMx timer can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode
The counter and its prescaler can be reinitialized in response to an event on a trigger
input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV
is generated. Then, all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

• In the following example, the upcounter is cleared in response to a rising edge on TI1
input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter dura-
tion (in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so the user does not need to configure it. The CC1S
bits select the input capture source only, i.e. CC1S = 01 in the TIMx_CCMR1 register.
Write CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edges
only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled depending on the TIE (interrupt enable) and TDE (DMA
enable) bits in TIMx_DIER register.

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

www.mm32mcu.com 304/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

729416

33323130 00 01 02 0336 00 01 0234 35 03

TI1

UG

Counter clock = CK_CNT = CK_PSC

TIF

Counter register

Figure 162. Control Circuit in Reset Mode

Slave mode: Gated mode
The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low level on TI1. Configure the input filter duration (in
this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler
is not used for triggering, so the user does not need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register. In gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level

The counter starts counting on the internal clock as long as TI1 is low and stops as soon
as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter
starts or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

704741

3433323130 35 36 37 38

Write TIF = 0

TI1

CNT_EN

TIF

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 163. Control Circuit in Gated Mode

www.mm32mcu.com 305/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Slave mode: Trigger mode
The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter dura-
tion (in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC2S
bits are only configured to select CC2P=1 in TIMx_CCER register, so as to validate the
polarity (and detect low level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and
the TIF flag is set.

The delay between the rising edge on TI2 and the actual stop of the counter is due to the
resynchronization circuit on TI2 input.

991811

TI2

CNT_EN

TIF

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 164. Control Circuit in Trigger Mode

Slave mode: External clock mode 2 + trigger mode
The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input (in reset mode, gated mode
or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of
TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

• Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:
– ETF = 0000: no filter
– ETPS = 00: prescaler disabled
– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external
clock mode 2.

www.mm32mcu.com 306/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

• Configure the channel 1 as follows, to detect rising edges on T1:
– IC1F=0000: no filter.
– The capture prescaler is not used for triggering and does not need to be con-
figured.

– CC1S=01 in TIMx_CCMR1 register to select only the input capture source.
– CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edge
only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts
on ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter
is due to the resynchronization circuit on ETRP input.

262859

34 35 36

TI1

CEN/CNT_EN

TIF

ETR

Counter clock = CK_CNT = CK_PSC

Counter register

Figure 165. Control Circuit in External Clock Mode 2 + Trigger Mode

13.3.15 Timer synchronization
The TIMx timers are linked together internally for timer synchronization or chaining. When
one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another Timer configured in Slave Mode.

The following figure presents an overview of the trigger selection and the master mode
selection blocks.

www.mm32mcu.com 307/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Using one timer as prescaler for another timer

115977

MMS

UEV

SMS

CK_PSCITR0

TS

TRGO1

TIMER1 TIMER 2

Clock

Prescaler Counter Prescaler Counter

Master

mode

control

slave

mode

control

input trigger

selection

Figure 166. Master/Slave Timer Example

For example, the user can configure Timer 1 to act as a prescaler for Timer 2 (see the
above figure). To do this:

• Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each
update event UEV. If you write MMS=010 in the TIM1_CR2 register, a rising edge is
output on TRGO1 each time an update event is generated.

• To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in
slave mode using ITR1 as internal trigger. You select this through the TS bits in the
TIM2_SMCR register (writing TS=000).

• Then you put the slave mode controller in external clock mode 1 (write SMS=111 in
the TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the
periodic Timer 1 trigger signal (which corresponds to the Timer 1 counter overflow).

• Finally, both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

Note: If OCx is selected on Timer 1 as trigger output (MMS=1xx), its rising edge is used to clock

the counter of Timer 2.

Using one timer to enable another timer
In this example, we control the enable of Timer 2 with the output compare 1 of Timer 1.
Refer to Figure 167 for connections. Timer 2 counts on the divided internal clock only
when OC1REF of Timer 1 is high. Both counter clock frequencies are divided by 3 by the
prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

• Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM1_CR2 register).

• Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=001 in the TIM2_SMCR

www.mm32mcu.com 308/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

register).
• Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).
• Enable Timer 2 by writing‘1 in the CEN bit (TIM2_CR1 register).
• Enable Timer 1 by writing‘1 in the CEN bit (TIM1_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer 2

counter enable signal.

949443

FEFC FD FF

CK_INT

TIMER1-OC1REF

TIMER1-CNT

TIMER2-CNT

TIMER2-TIF

Write TIF = 0

Figure 167. Gating Timer 2 with OC1REF of Timer 1

In the example in the above figure, the Timer 2 counter and prescaler are not initialized
before being started. So they start counting from their current value. It is possible to start
from a given value by resetting both timers before starting Timer 1. You can then write any
value you want in the timer counters. The timers can easily be reset by software using
the UG bit in the TIMx_EGR registers.

In the next example, we synchronize Timer 1 and Timer 2. Timer 1 is the master and
starts from 0. Timer 2 is the slave and starts from 0xE7. The prescaler ratio is the same
for both timers. Timer 2 stops when Timer 1 is disabled by writing ‘0 to the CEN bit in
the TIM1_CR1 register:

• Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM1_CR2 register).

• Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).
• Reset Timer 1 by writing‘1 in UG bit (TIM1_EGR register).
• Reset Timer 2 by writing‘1 in UG bit (TIM2_EGR register).
• Initialize Timer 2 to 0xE7 by writing‘0xE7’in the Timer 2 counter (TIM2_CNT).
• Enable Timer 2 by writing‘1 in the CEN bit (TIM2_CR1 register).
• Start Timer 1 by writing‘1 in the CEN bit (TIM1_CR1 register).
• Stop Timer 1 by writing‘0 in the CEN bit (TIM1_CR1 register).

www.mm32mcu.com 309/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

381843

00 01 0275

00 E8 E9AB E7

CK_INT

TIMER1-CEN = CNT_EN

TIMER1-CNT_INIT

TIMER1-CNT

TIMER2-CNT

TIMER2-CNT_INIT

TIMER2 write CNT

TIMER2-TIF

Write TIF = 0

Figure 168. Gating Timer 2 with Enable of Timer 1

Using one timer to start another timer
In this example, we set the enable of Timer 2 with the update event of Timer 1. Refer to
the following figure for connections. Timer 2 starts counting from its current value (which
can be nonzero) on the divided internal clock as soon as the update event is generated
by Timer 1.

When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter
counts until we write ’0’ to the CEN bit in the TIM2_CR1 register. Both counter clock
frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

• Configure Timer 1mastermode to send its Update Event (UEV) as trigger output (MMS=010
in the TIM1_CR2 register).

• Configure the Timer 1 period (TIM1_ARR registers).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in trigger mode (SMS=110 in TIM2_SMCR register).
• Start Timer 1 by writing ’1’ in the CEN bit (TIM1_CR1 register)

www.mm32mcu.com 310/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

227169

FF 01 02FD

46 4845 47

Write TIF = 0

FE 00

CK_INT

TIMER1_UEV

TIMER1_CNT

TIMER2_CNT

TIMER2_CEN = CNT_EN

TIMER2_TIF

Figure 169. Triggering Timer 2 with Update of Timer 1

As in the previous example, the user can initialize both counters before starting counting.
The following figure shows the behavior with the same configuration as ’0’ but in trigger
mode instead of gated mode (SMS=110 in the TIM2_SMCR register).

449102

00 01 0275

00 E8 E9CD EAE7

CK_INTCK_INT

TIMER1-CEN = CNT_EN

TIMER1-CNT_INIT

TIMER1-CNT

TIMER2-CNT

TIMER2-CNT_INIT

TIMER2-CNT_INIT

TIMER2-TIF

Write TIF = 0

Figure 170. Triggering Timer 2 with Enable of Timer 1

Using one additional timer as prescaler for another timer
In this example, we use Timer 1 as the prescaler for Timer 2. The configuration is as
follows:

• Configure Timer 1 in master mode, togenerate the update event (UEV) as the trigger
output (MMS=010 in the TIM1_CR2 register). Then, output a periodic signal in case of
each counter overflow.

• Configure the Timer 1 period (TIM1_ARR registers).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in the external clock mode (write SMS=111 in the TIM2_SMCR reg-

www.mm32mcu.com 311/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

ister).
• Start Timer 2 by writing ’1’ in the CEN bit (TIM1_CR2 register)
• Start Timer 1 by writing ’1’ in the CEN bit (TIM1_CR1 register).

Starting 2 timers synchronously in response to an external trigger
In this example, we set the enable of timer 1 when its TI1 input rises, and the enable of
Timer 2 with the enable of Timer 1. To ensure the counters are aligned, Timer 1 must be
configured in Master/Slave mode (slave with respect to TI1, master with respect to Timer
2):

• Configure Timer 1 master mode to send its Enable as trigger output (MMS=001 in the
TIM1_CR2 register).

• Configure Timer 1 slavemode to get the input trigger fromTI1 (TS=100 in the TIM1_SMCR
register).

• Configure Timer 1 in trigger mode (SMS=110 in the TIM1_SMCR register).
• Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

• Configure Timer 2 in trigger mode (SMS=110 in the TIM2_SMCR register).

When a rising edge occurs on TI1 (Timer 1), both counters starts counting synchronously
on the internal clock and both TIF flags are set. Note: In this example both timers are initialized
before starting (by setting their respective UG bits). Both counters starts from 0, but you can easily

insert an offset between them by writing any of the counter registers (TIMx_CNT). You can see that

the master/slave mode insert a delay between CNT_EN and CK_PSC on timer 1.

753049

00 01 0702 03 04 05 06 08 09

00 01 0702 03 04 05 06 08 09

CK_INT

TIMER 1-TI1

TIMER 1-CEN = CNT_EN

TIMER 1-CK_PSC

TIMER1-CNT

TIMER1-TIF

TIMER2-CEN = CNT_EN

TIMER2 - CK_PSC

TIMER2-CNT

TIMER2-TIF

Figure 171. Triggering Timer 1 and 2 with Timer 1 TI1 input

13.3.16 Debug mode
When the microcontroller enters debug mode (CPU core - halted), the TIMx counter either
continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in

www.mm32mcu.com 312/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

DBG module. For more details, refer to ”Debug” sections.

13.4 TIMx register description

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

Table 46. Summary of TIMx Register

Offset Acronym Register Name Reset Section

0x00 TIMx_CR1 Control register 1 0x00000000 section 13.4.1

0x04 TIMx_CR2 Control register 2 0x00000000 section 13.4.2

0x08 TIMx_SMCR Slave mode control register 0x00000000 section 13.4.3

0x0C TIMx_DIER DMA /interrupt enable register 0x00000000 section 13.4.4

0x10 TIMx_SR 32 Status register 0x00000000 section 13.4.5

0x14 TIMx_EGR Event generation register 0x00000000 section 13.4.6

0x18 TIMx_CCMR1 Capture/compare mode register 1 0x00000000 section 13.4.7

0x1C TIMx_CCMR2 Capture/compare mode register 2 0x00000000 section 13.4.8

0x20 TIMx_CCER Capture/compare enable register 0x00000000 section 13.4.9

0x24 TIMx_CNT Counter 0x00000000 section 13.4.10

0x28 TIMx_PSC Prescaler 0x00000000 section 13.4.11

0x2C TIMx_ARR Auto-reload register 0x00000000 section 13.4.12

0x34 TIMx_CCR1 Capture/compare register 1 0x00000000 section 13.4.13

0x38 TIMx_CCR2 Capture/compare register 2 0x00000000 section 13.4.14

0x3C TIMx_CCR3 Capture/compare register 3 0x00000000 section 13.4.15

0x40 TIMx_CCR4 Capture/compare register 4 0x00000000 section 13.4.16

0x48 TIMx_DCR DMA control register 0x00000000 section 13.4.17

0x4C TIMx_DMAR DMA address in continuous mode 0x00000000 section 13.4.18

13.4.1 Control register 1(TIMx_CR1)
Offset address: 0x00

Reset value: 0x0000

123456789 01112131415 10

rwrwrwrwrwrwrwrwrw rw

CKD ARPE CMS DIR OPM URS UDIS CENReserved

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.

www.mm32mcu.com 313/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

9: 8 CKD rw 0x00 Clock division
The 2 bits indicates the division ratio between the timer
clock (CK_INT) frequency and the dead-time and sam-
pling clock used by the dead-time generators and the dig-
ital filters (ETR, TIx).
00: tDTS = tCK_INT
01: tDTS = 2 x tCK_INT
10: tDTS = 4 x tCK_INT
11: Reserved, do not program this value

7 ARPE rw 0x00 Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

6: 5 CMS rw 0x00 Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down
depending on the direction bit (DIR).
01: Center-aligned mode 1. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and
down alternatively. Output compare interrupt flags of chan-
nels configured in output (CCxS=00 in TIMx_CCMRx reg-
ister) are set both when the counter is counting up or down.
Note: It is not allowed to switch from edge-aligned mode to

center-aligned mode as long as the counter is enabled (CEN=1).

4 DIR rw 0x00 Direction
0: Counter used as upcounter
1: Counter used as downcounter
Note: This bit is read only when the timer is configured in Center-

aligned mode or Encoder mode.

3 OPM rw 0x00 One pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clear-
ing the bit CEN)

www.mm32mcu.com 314/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

2 URS rw 0x00 Update request source
This bit is set and cleared by software to select the UEV
event sources.
0: Any of the following events generates an update inter-
rupt or DMA request if enabled.These events can be:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update
interrupt or DMA request if enabled.

1 UDIS rw 0x00 Update disable
This bit is set and cleared by software to enable/disable
UEV event generation.
0: UEV enabled. The Update (UEV) event is generated
by one of the following events:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller,
buffered registers are then loaded with their preload val-
ues
1: UEV disabled. The Update event is not generated,
shadow registers keep their value (ARR, PSC, CCRx).
However the counter and the prescaler are reinitialized if
the UG bit is set or if a hardware reset is received from the
slave mode controller.

0 CEN rw 0x00 Counter enable
0: Counter disabled
1: Counter enabled
Note: External clock, gated mode and encoder mode can work

only if the CEN bit has been previously set by software. How-

ever, trigger mode can set the CEN bit automatically by hard-

ware.

13.4.2 Control register 2(TIMx_CR2)
Offset address: 0x04

Reset value: 0x0000

123456789 01112131415 10

rwrwrwrwrw

Reserved TI1S MMS CCDS Reserved

www.mm32mcu.com 315/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.
7 TI1S rw 0x00 TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to
the TI1 input (XOR combination)

6: 4 MMS rw 0x00 Master mode selection
These bits allow to select the information to be sent in mas-
ter mode to slave timers for synchronization (TRGO). The
combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is
used as trigger output (TRGO). If the reset is generated by
the trigger input (slave mode controller configured in reset
mode) then the signal on TRGO is delayed compared to
the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used
as trigger output (TRGO). It is useful to start several timers
at the same time or to control a window in which a slave
timer is enable. The Counter Enable signal is generated
by a logic OR between CEN control bit and the trigger in-
put when configured in gated mode. When the Counter
Enable signal is controlled by the trigger input, there is a
delay on TRGO, except if the master/slave mode is se-
lected (see the MSM bit description in TIMx_SMCR regis-
ter).
010: Update - The update event is selected as trigger out-
put (TRGO). For instance, amaster timer can then be used
as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive
pulse when the CC1IF flag is to be set (even if it was al-
ready high), as soon as a capture or a compare match
occurred (TRGO).
100: Compare - OC1REF signal is used as trigger output
(TRGO)
101: Compare - OC2REF signal is used as trigger output
(TRGO)
110: Compare - OC3REF signal is used as trigger output
(TRGO)
111: Compare - OC4REF signal is used as trigger output
(TRGO)

3 CCDS rw 0x00 Capture/compare DMA selection
0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

www.mm32mcu.com 316/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

2: 0 Reserved Reserved, always read as 0.

13.4.3 Slave mode control register(TIMx_SMCR)
Offset address: 0x08

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrw rw

ETP ECE ETPS ETF MSM TS OCCS SMS

rw

Bit Field Type Reset Description

15 ETP rw 0x00 External trigger polarity
This bit selects whether ETR or inverted ETR is used for
trigger operations.
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

14 ECE rw 0x00 External clock enable
This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked
by any active edge on the ETRF signal.
Note 1: Setting the ECE bit has the same effect as selecting
external clock mode 1 with TRGI connected to ETRF (SMS=111
and TS=111).
Note 2: It is possible to simultaneously use external clock mode
2 with the following slave modes: reset mode, gated mode and
trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).

Note 3: If external clock mode 1 and external clock mode 2 are

enabled at the same time, the external clock input is ETRF.

13: 12 ETPS rw 0x00 External trigger prescaler
External trigger signal ETRP frequency must be at most
1/4 of TIMxCLK frequency. A prescaler can be enabled to
reduce ETRP frequency. It is useful when inputting fast
external clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

www.mm32mcu.com 317/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

11: 8 ETF rw 0x00 External trigger filter
This bit-field then defines the frequency used to sample
ETRP signal and the length of the digital filter applied to
ETRP. The digital filter is made of an event counter in
which N consecutive events are needed to validate a tran-
sition on the output:
0000: No filter, sampling is done at fDTS.
0001: sampling frequency fSAMPLING=fCK_INT, N = 2
0010: sampling frequency fSAMPLING=fCK_INT, N = 4
0011: sampling frequency fSAMPLING=fCK_INT, N = 8
0100: sampling frequency fSAMPLING=fDTS/2, N = 6
0101: sampling frequency fSAMPLING=fDTS/2, N = 8
0110: sampling frequency fSAMPLING=fDTS/4, N = 6
0111: sampling frequency fSAMPLING=fDTS/4, N = 8
1000: sampling frequency fSAMPLING=fDTS/8, N = 6
1001: sampling frequency fSAMPLING=fDTS/8, N = 8
1010: sampling frequency fSAMPLING=fDTS/16, N = 5
1011: sampling frequency fSAMPLING=fDTS/16, N = 6
1100: sampling frequency fSAMPLING=fDTS/16, N = 8
1101: sampling frequency fSAMPLING=fDTS/32, N = 5
1110: sampling frequency fSAMPLING=fDTS/32, N = 6
1111: sampling frequency fSAMPLING=fDTS/32, N = 8

7 MSM rw 0x00 Master/slave mode
0: No action
1: The effect of an event on the trigger input (TRGI) is de-
layed to allow a perfect synchronization between the cur-
rent timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external
event.

www.mm32mcu.com 318/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

6: 4 TS rw 0x00 Trigger selection
This bit-field selects the trigger input to be used to synchro-
nize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1(ITR1)
010: Internal Trigger 2(ITR2)
011: Internal Trigger 3(ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2(TI2FP2)
111: External Trigger input (ETRF)
See the following table for more details on ITRx.
Note: These bits must be changed only when they are not used

(e.g. when SMS=000) to avoid wrong edge detections at the

transition.

3 OCCS rw 0x00 Output compare clear selection
In PWM mode, clear the comparator output
1: Comparator output as clear signal
0: External trigger signal as clear signal

www.mm32mcu.com 319/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

2: 0 SMS rw 0x00 Slave mode selection
When external signals are selected the active edge of the
trigger signal (TRGI) is linked to the polarity selected on
the external input (refer to Input Control register and Con-
trol Register description).
000: Slavemode disabled - if CEN =‘1’then the prescaler
is clocked directly by the internal clock.
001: Encoder mode 1 - Counter counts up/down on
TI2FP1 edge depending on TI1FP2 level.
010: Encoder mode 2 - Counter counts up/down on
TI1FP2 edge depending on TI2FP1 level.
011: Encoder mode 3 - Counter counts up/down on both
TI1FP1 and TI2FP2 edges depending on the level of the
other input.
100: Reset Mode - Rising edge of the selected trigger in-
put (TRGI) reinitializes the counter and generates an up-
date of the registers.
101: Gated Mode - The counter clock is enabled when the
trigger input (TRGI) is high. The counter stops (but is not
reset) as soon as the trigger input becomes low. Both start
and stop of the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of
the trigger TRGI (but it is not reset). Only the start of the
counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected
trigger input (TRGI) clock the counter.
Note: The gated mode must not be used if TI1F_EN is selected

as the trigger input (TS= ’100’). Indeed, TI1F_ED outputs 1 pulse

for each transition on TI1F, whereas the gated mode checks the

level of the trigger signal.

Table 47. TIMx Internal Trigger Connection

Slave timer ITR0(TS = 000) ITR1(TS = 001) ITR2(TS = 010) ITR3(TS = 011)

TIM2 TIM1 x TIM3 x

13.4.4 DMA/interrupt enable register(TIMx_DIER)
Offset address: 0x0C

Reset value: 0x0000

www.mm32mcu.com 320/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

123456789 01112131415 10

rwrwrwrwrwrwrwrwrwrwrw rw

Res. TDE Res. CC4DE UDE Res. TIE Res. CC4IE UIECC3DE CC2DE CC1DE CC3IE CC2IE CC1IE

Bit Field Type Reset Description

15 Reserved Reserved, always read as 0.
14 TDE rw 0x00 Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

13 Reserved Reserved, always read as 0.
12 CC4DE rw 0x00 Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled
1: CC4 DMA request enabled

11 CC3DE rw 0x00 Capture/Compare 3 DMA request enable
0: CC3 DMA request disabled
1: CC3 DMA request enabled

10 CC2DE rw 0x00 Capture/Compare 2 DMA request enable
0: CC2 DMA request disabled
1: CC2 DMA request enabled

9 CC1DE rw 0x00 Capture/Compare 1 DMA request enable
0: CC1 DMA request disabled
1: CC1 DMA request enabled

8 UDE rw 0x00 Update DMA request enable
0: Update DMA request disabled
1: Update DMA request enabled

7 Reserved Reserved, always read as 0.
6 TIE rw 0x00 Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

5 Reserved Reserved, always read as 0.
4 CC4IE rw 0x00 Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled
1: CC4 interrupt enabled

3 CC3IE rw 0x00 Capture/Compare 3 interrupt enable
0: CC3 interrupt disabled
1: CC3 interrupt enabled

2 CC2IE rw 0x00 Capture/Compare 2 interrupt enable
0: CC2 interrupt disabled
1: CC2 interrupt enabled

1 CC1IE rw 0x00 Capture/Compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled

www.mm32mcu.com 321/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

0 UIE rw 0x00 Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

13.4.5 Status register(TIMx_SR)
Offset address: 0x10

Reset value: 0x0000

123456789 01112131415 10

rc_w0rc_w0rc_w0rc_w0

Res. CC4OF Res. TIF Res. CC4IF UIFCC3OF CC2OF CC1OF CC3IF CC2IF CC1IF

rc_w0 rc_w0rc_w0rc_w0rc_w0rc_w0

Bit Field Type Reset Description

15: 13 Reserved Reserved, always read as 0.
12 CC4OF rc_w0 0x00 Capture/Compare 4 overcapture flag

Refer to CC1OF description.
11 CC3OF rc_w0 0x00 Capture/Compare 3 overcapture flag

Refer to CC1OF description.
10 CC2OF rc_w0 0x00 Capture/Compare 2 overcapture flag

Refer to CC1OF description.
9 CC1OF rc_w0 0x00 Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding
channel is configured in input capture mode. It is cleared
by software by writing it to‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1
register while CC1IF flag was already set.

8: 7 Reserved Reserved, always read as 0.
6 TIF rc_w0 0x00 Trigger interrupt flag

This flag is set by hardware on trigger event (active edge
detected on TRGI input when the slave mode controller is
enabled in all modes but gated mode, both edges in case
gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

5 Reserved Reserved, always read as 0.
4 CC4IF rc_w0 0x00 Capture/Compare 4 interrupt flag

Refer to CC1IF description.
3 CC3IF rc_w0 0x00 Capture/Compare 3 interrupt flag

Refer to CC1IF description.
2 CC2IF rc_w0 0x00 Capture/Compare 2 interrupt flag

Refer to CC1IF description.

www.mm32mcu.com 322/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

1 CC1IF rc_w0 0x00 Capture/Compare 1 interrupt flag
If channel CC1 is configured as output:
This flag is set by hardware when the counter matches
the compare value, with some exception in center-aligned
mode (refer to the CMS bits in the TIMx_CR1 register de-
scription). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the con-
tent of the TIMx_CCR1 register.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by
software or by reading the TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1
register (An edge has been detected on IC1 which
matches the selected polarity)

0 UIF rc_w0 0x00 Update interrupt flag
This bit is set by hardware on an update event. It is cleared
by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware
when the registers are updated:
- At overflow or underflow regarding the repetition counter
value (update if repetition counter= 0) and if the UDIS=0
in the TIMx_CR1 register.
–When CNT is reinitialized by software using the UG
bit in TIMx_EGR register, if URS=0 and UDIS=0 in the
TIMx_CR1 register.
–When CNT is reinitialized by a trigger event (refer to the
description of synchronization control register), if URS=0
and UDIS=0 in the TIMx_CR1 register.

13.4.6 Event generation register(TIMx_EGR)
Offset address: 0x14

Reset value: 0x0000

123456789 01112131415 10

wwwww

TG Res. CC4G CC3G CC2G CC1G UG

w

Res.

Bit Field Type Reset Description

15: 7 Reserved Reserved, always read as 0.

www.mm32mcu.com 323/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

6 TG w 0x00 Trigger generation
This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related inter-
rupt or DMA transfer can occur if enabled.

5 Reserved Reserved, always read as 0.
4 CC4G w 0x00 Capture/Compare 4 generation

Refer to CC1G description.
3 CC3G w 0x00 Capture/Compare 3 generation

Refer to CC1G description.
2 CC2G w 0x00 Capture/Compare 2 generation

Refer to CC1G description.
1 CC1G w 0x00 Capture/Compare 1 generation

This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1: If
channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request
is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in
TIMx_CCR1 register. The CC1IF flag is set, the cor-
responding interrupt or DMA request is sent if enabled.
The CC1OF flag is set if the CC1IF flag was already high.

0 UG w 0x00 Update generation
This bit can be set by software, it is automatically cleared
by hardware.
0: No action
1: Reinitialize the counter and generate an update of
the registers. Note that the prescaler counter is cleared
too (anyway the prescaler factor is not affected). The
counter is cleared if the center-aligned mode is selected or
if DIR=0 (upcounting), otherwise, it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

13.4.7 Capture/compare mode register 1(TIMx_CCMR1)
Offset address: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The

www.mm32mcu.com 324/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So the user must take care that the same
bit can have a different meaning for the input stage and for the output stage.

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

OC2M OC2PE OC2FE

CC2S

OC1CE OC1M

IC1F

OC1PE OC1FE

IC1PSC

CC1S

IC2PSCIC2F

OC2CE

Output compare mode:

Bit Field Type Reset Description

15 OC2CE rw 0x00 Output compare 2 clear enable
14: 12 OC2M rw 0x00 Output compare 2 mode
11 OC2PE rw 0x00 Output compare 2 preload enable
10 OC2FE rw 0x00 Output compare 4 fast enable
9: 8 CC2S rw 0x00 Capture/Compare 2 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on
TI2
10: CC2 channel is configured as input, IC2 is mapped on
TI1
11: CC2 channel is configured as input, IC2 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF

(CC2E =‘0’in TIMx_CCER).

7 OC1CE rw 0x00 Output compare 1 clear enable
0: OC1Ref is not affected by the ETRF Input
1: OC1Ref is cleared as soon as a High level is detected
on ETRF input

www.mm32mcu.com 325/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

6: 4 OC1M rw 0x00 Output compare 1 mode
These bits define the behavior of the output reference
signal OC1REF from which OC1 and OC1N are derived.
OC1REF is active high whereas OC1 and OC1N active
level depends on CC1P and CC1NP bits.
000: Frozen - The comparison between the output com-
pare register TIMx_CCR1 and the counter TIMx_CNT has
no effect on the outputs
001: Set channel 1 to active level on match. OC1REF
signal is forced high when the counter TIMx_CNTmatches
the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF
signal is forced low when the counter TIMx_CNT matches
the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when
TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as
long as TIMx_CNT<TIMx_CCR1
otherwise inactive. In downcounting, channel 1 is inactive
(OC1REF=‘0’) as long as TIMx_CNT>TIMx_CCR1 oth-
erwise active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is in-
active as long as TIMx_CNT<TIMx_CCR1otherwise ac-
tive. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 otherwise inactive.
Note 1: These bits can not be modified as long as LOCK level 3
has been programmed (LOCK bits in TIMx_BDTR register) and
CC1S=’00’(the channel is configured in output).

Note 2: In PWM mode 1 or 2, the OCREF level changes only

when the result of the comparison changes or when the output

compare mode switches from“frozen”mode to“PWM”mode.

www.mm32mcu.com 326/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

3 OC1PE rw 0x00 Output compare 1 preload enable
0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1
can be written at anytime, the new value is taken in ac-
count immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write
operations access the preload register. TIMx_CCR1
preload value is loaded in the active register at each up-
date event.
Note 1: These bits can not be modified as long as LOCK level 3
has been programmed (LOCK bits in TIMx_BDTR register) and
CC1S=’00’(the channel is configured in output).

Note 2: The PWM mode can be used without validating

the preload register only in one pulse mode (OPM bit set in

TIMx_CR1 register). Else the behavior is not guaranteed.

2 OC1FE rw 0x00 Output compare 1 fast enable
This bit is used to accelerate the effect of an event on the
trigger in input on the CC output.
0: CC1 behaves normally depending on counter and
CCR1 values even when the trigger is ON. The minimum
delay to activate CC1 output when an edge occurs on the
trigger input is 5 clock cycles.
1: An active edge on the trigger input acts like a compare
match on CC1 output. Then, OC is set to the compare
level independently from the result of the comparison. De-
lay to sample the trigger input and to activate CC1 output
is reduced to 3 clock cycles. OCFE acts only if the channel
is configured in PWM1 or PWM2 mode.

1: 0 CC1S rw 0x00 Capture/Compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E = ’0’ in TIMx_CCER).

Input capture mode:

www.mm32mcu.com 327/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

15: 12 IC2F rw 0x00 Input capture 2 filter
11: 10 IC2PSC rw 0x00 Input capture 2 prescaler
9: 8 CC2S rw 0x00 Capture/Compare 2 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on
TI2
10: CC2 channel is configured as input, IC2 is mapped on
TI1
11: CC2 channel is configured as input, IC2 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF

(CC2E =‘0’in TIMx_CCER).

7: 4 IC1F rw 0x00 Input capture 1 filter
This bit-field defines the frequency used to sample TI1 in-
put and the length of the digital filter applied to TI1. The
digital filter is made of an event counter in which N con-
secutive events are needed to validate a transition on the
output:
0000: No filter, sampling is done at fDTS
1000: sampling frequency fSAMPLING=fDTS/8, N = 6
0001: sampling frequency fSAMPLING=fCK_INT, N = 2
1001: sampling frequency fSAMPLING=fDTS/8, N = 8
0010: sampling frequency fSAMPLING=fCK_INT, N = 4
1010: sampling frequency fSAMPLING=fDTS/16, N = 5
0011: sampling frequency fSAMPLING=fCK_INT, N = 8
1011: sampling frequency fSAMPLING=fDTS/16, N = 6
0100: sampling frequency fSAMPLING=fDTS/2, N = 6
1100: sampling frequency fSAMPLING=fDTS/16, N = 8
0101: sampling frequency fSAMPLING=fDTS/2, N = 8
1101: sampling frequency fSAMPLING=fDTS/32, N = 5
0110: sampling frequency fSAMPLING=fDTS/4, N = 6
1110: sampling frequency fSAMPLING=fDTS/32, N = 6
0111: sampling frequency fSAMPLING=fDTS/4, N = 8
1111: sampling frequency fSAMPLING=fDTS/32, N = 8

www.mm32mcu.com 328/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

3: 2 IC1PSC rw 0x00 Input capture 1 prescaler
This bit-field defines the factor of the prescaler acting on
CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’(TIMx_CCER
register).
00: no prescaler, capture is done each time an edge is
detected on the capture input.
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

1: 0 CC1S rw 0x00 Capture/compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E =‘0’in TIMx_CCER).

13.4.8 Capture/compare mode register 2(TIMx_CCMR2)
Offset address: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

OC4M OC4PE OC4FE

CC4S

OC3CE OC3M

IC3F

OC3PE OC3FE

IC3PSC

CC3S

IC4PSCIC4F

OC4CE

Output compare mode:

Bit Field Type Reset Description

15 OC4CE rw 0x00 Output compare 4 clear enable
14: 12 OC4M rw 0x00 Output compare 4 mode
11 OC4PE rw 0x00 Output compare 4 preload enable
10 OC4FE rw 0x00 Output compare 4 fast enable

www.mm32mcu.com 329/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

9: 8 CC4S rw 0x00 Capture/Compare 4 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on
TI4
10: CC4 channel is configured as input, IC4 is mapped on
TI3
11: CC4 channel is configured as input, IC4 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF

(CC4E =‘0’in TIMx_CCER)

7 OC3CE rw 0x00 Output compare 3 clear enable
6: 4 OC3M rw 0x00 Output compare 3 mode
3 OC3PE rw 0x00 Output compare 3 preload enable
2 OC3FE rw 0x00 Output compare 3 fast enable
1: 0 CC3S rw 0x00 Capture/Compare 3 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on
TI3
10: CC3 channel is configured as input, IC3 is mapped on
TI4
11: CC3 channel is configured as input, IC3 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF

(CC3E =‘0’in TIMx_CCER)

Input capture mode:

Bit Field Type Reset Description

15: 12 IC4F rw 0x00 Input capture 4 filter
11: 10 IC4PSC rw 0x00 Input capture 4 prescaler

www.mm32mcu.com 330/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

9: 8 CC4S rw 0x00 Capture/Compare 4 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on
TI4
10: CC4 channel is configured as input, IC4 is mapped on
TI3
11: CC4 channel is configured as input, IC4 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF

(CC4E =‘0’in TIMx_CCER).

7: 4 IC3F rw 0x00 Input capture 3 filter
3: 2 IC3PSC rw 0x00 Input capture 3 prescaler
1: 0 CC3S rw 0x00 Capture/compare 3 selection

This bit-field defines the direction of the channel (in-
put/output) as well as the input pin.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on
TI4
10: CC3 channel is configured as input, IC3 is mapped on
TI3
11: CC3 channel is configured as input, IC3 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through the TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF

(CC3E =‘0’in TIMx_CCER).

13.4.9 Capture/compare enable register(TIMx_CCER)
Offset address: 0x20

Reset value: 0x0000

123456789 01112131415 10

rwrw rwrwrwrw rw rw

Res. CC4P Res.Res.CC4E CC3P CC3E CC2P CC2E CC1P CC1ERes.

Bit Field Type Reset Description

15: 14 Reserved Reserved, always read as 0.
13 CC4P rw 0x00 Capture/Compare 4 output polarity

Refer to CC1P description.
12 CC4E rw 0x00 Capture/Compare 4 output enable

Refer to CC1E description.

www.mm32mcu.com 331/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

11: 10 Reserved Reserved, always read as 0.
9 CC3P rw 0x00 Capture/Compare 3 output polarity

Refer to CC1P description.
8 CC3E rw 0x00 Capture/Compare 3 output enable

Refer to CC1E description.
7: 6 Reserved Reserved, always read as 0.
5 CC2P rw 0x00 Capture/Compare 2 output polarity

Refer to CC1P description.
4 CC2E rw 0x00 Capture/Compare 2 output enable

Refer to CC1E description.
3: 2 Reserved Reserved, always read as 0.
1 CC1P rw 0x00 Capture/Compare 1 output polarity

CC1 channel is configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel is configured as input:
This bit selects whether IC1 or inverted IC1 is used for
trigger or capture operations.
0: non-inverted: capture is done on a rising edge of IC1.
When used as external trigger, IC1 is non-inverted.
1: inverted: capture is done on a falling edge of IC1. When
used as external trigger, IC1 is inverted
Note: This bit can not be modified as long as LOCK level 3 or 2

has been programmed (LOCK bits in TIMx_BDTR register).

0 CC1E rw 0x00 Capture/Compare 1 output enable
CC1 channel is configured as output:
0: Off - OC1 is not active. OC1 level is then function of
MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits.
1: On - OC1 signal is output on the corresponding output
pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and
CC1NE bits.
CC1 channel is configured as input:
This bit determines if a capture of the counter value can
actually be done into the input capture/compare register 1
(TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Table 48. Output Control Bit for Standard OCx Channels

CCxE bit OCx output state

0 Output Disabled (OCx = 0, OCx_EN = 0)

1 OCx = OCxREF + Polarity, OCx_EN = 1

www.mm32mcu.com 332/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Note: The state of the external I/O pins connected to the standard OCx channels depends on the

OCx channel state and the GPIO and AFIO registers.

13.4.10 Counter(TIMx_CNT)
Offset address: 0x24

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

171819202122232425 162728293031 26

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

Bit Field Type Reset Description

31: 16 CNT rw 0x0000 High counter value
15: 0 CNT rw 0x0000 Low counter value

13.4.11 Prescaler(TIMx_PSC)
Offset address: 0x28

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

PSC

Bit Field Type Reset Description

15: 0 PSC rw 0x0000 Prescaler value
The counter clock frequency (CK_CNT) is equal to fCK_PSC
/(PSC + 1).
PSC contains the value to be loaded in the active prescaler
register at each update event (including when the counter
is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in ”reset mode”)

13.4.12 Auto-reload register(TIMx_ARR)
Offset address: 0x2C

Reset value: 0x0000

www.mm32mcu.com 333/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

ARR

171819202122232425 162728293031 26

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

ARR

Bit Field Type Reset Description

31: 16 ARR rw 0x0000 High auto-reload value
15: 0 ARR rw 0x0000 Low auto-reload value

ARR is the value to be loaded in the actual auto-reload
register.
Refer to section 13.3.1 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.

13.4.13 Capture/compare register 1(TIMx_CCR1)
Offset address: 0x34

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR1

171819202122232425 162728293031 26

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR1

Bit Field Type Reset Description

31: 16 CCR1 rw 0x0000 High Capture/Compare 1 value
15: 0 CCR1 rw 0x0000 Low Capture/Compare 1 value

If CC1 channel is configured as output:
CCR1 is the value to be loaded in the actual cap-
ture/compare 1 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR1 register (bit OC1PE). Otherwise the
preload value is copied in the active capture/compare 1
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC1 output.
If CC1 channel is configured as input:
CCR1 contains the counter value transferred by the last
input capture 1 event (IC1).

www.mm32mcu.com 334/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

13.4.14 Capture/compare register2(TIMx_CCR2)
Offset address: 0x38

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR2

171819202122232425 162728293031 26

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR2

Bit Field Type Reset Description

31: 16 CCR2 rw 0x0000 High Capture/Compare 2 value
15: 0 CCR2 rw 0x0000 Low Capture/Compare 2 value

If CC2 channel is configured as output:
CCR2 contains the value to be loaded in the actual cap-
ture/compare 2 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR2 register (bit OC2PE). Otherwise the
preload value is copied in the active capture/compare 2
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC2 output.
If CC2 channel is configured as input:
CCR2 contains the counter value transferred by the last
input capture 2 event (IC2).

13.4.15 Capture/compare register 3(TIMx_CCR3)
Offset address: 0x3C

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR3

171819202122232425 162728293031 26

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR3

Bit Field Type Reset Description

31: 16 CCR3 rw 0x0000 High Capture/Compare 3 value

www.mm32mcu.com 335/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

15: 0 CCR3 rw 0x0000 Low Capture/Compare 3 value
If CC3 channel is configured as output:
CCR3 contains the value to be loaded in the actual cap-
ture/compare 3 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR3 register (bit OC3PE). Otherwise the
preload value is copied in the active capture/compare 3
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC3 output.
If CC3 channel is configured as input:
CCR3 contains the counter value transferred by the last
input capture 3 event (IC3).

13.4.16 Capture/compare register 4(TIMx_CCR4)
Offset address: 0x40

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR4

171819202122232425 162728293031 26

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR4

Bit Field Type Reset Description

31: 16 CCR4 rw 0x0000 High Capture/Compare 4 value
15: 0 CCR4 rw 0x0000 Low Capture/Compare 4 value

If CC4 channel is configured as output:
CCR4 contains the value to be loaded in the actual cap-
ture/compare 4 register (preload value).
The written value is transferred to the current register
immediately if the preload feature is not selected in
the TIMx_CCMR4 register (bit OC4PE). Otherwise the
preload value is copied in the active capture/compare 4
register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC4 output.
If CC4 channel is configured as input:
CCR4 contains the counter value transferred by the last
input capture 4 event (IC4).

www.mm32mcu.com 336/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

13.4.17 DMA control register(TIMx_DCR)
Offset address: 0x48

Reset value: 0x0000

123456789 01112131415 10

wwwwwwwww w

DBL Res.Res. DBA

Bit Field Type Reset Description

15: 13 Reserved Reserved, always read as 0.
12: 8 DBL w 0x00 DMA burst length

This bit field defines the burst transfer in the continuous
mode (the timer detects a burst transfer when a write ac-
cess to the TIMx_DMAR register address is performed),
namely, the number of transfers, in half-word (double
bytes) or bytes.
00000: 1 transfer 00001: 2 transfers
00010: 3 transfers
...... 10001: 18 transfers
Example: Let us consider the following transfer: DBL = 7
and DBA = TIM2_CR1.
- If DBL =7 and DBA = TIM2_CR1 represent the address
of data to be transferred, the transfer address is given by:
(Address of TIMx_CR1) + DBA + (DMA index), where,
DMA index = DBL
TIMx_CR1 address + DBA + 7 is the address of data to be
written or read, so that the transfer is completed to/from
7 registers starting from the TIMx_CR1 address + DBA.
According to the setting of DMA data length, the following
case may occur:
-If the data is set to half word (16 bits), the data will be
transferred to all 7 registers.
-If the data is set to bytes, the data will still be transferred
to all 7 registers: the first register contains the first MSB
byte, the second register contains the first LSB byte, and
so on. Therefore, the user must specify the data width of
DMA transfer for the timer.

7: 5 Reserved Reserved, always read as 0.

www.mm32mcu.com 337/513

UM_MM32SPIN05x_q_Ver1.19
32-BIT GENERAL-PURPOSE TIMERS (TIMX32 BIT)

Bit Field Type Reset Description

4: 0 DBA w 0x00 DMA base address
These bits define the base-address for DMA transfers in
the continuous mode (when write access is done through
the TIMx_DMAR address). DBA is defined as an offset
starting from the address of the TIMx_CR1 register.
00000: TIMx_CR1
00001: TIMx_CR2
00010: TIMx_SMCR
......

13.4.18 DMA address for full transfer(TIMx_DMAR)
Offset address: 0x4C

Reset value: 0x0000

123456789 01112131415 10

w wwwwwwwwwwwwww w

DMAB

Bit Field Type Reset Description

15: 0 DMAB w 0x0000 DMA register for burst accesses
A write operation to the TIMx_DMAR register will access
the register located at the following address:
TIMx_CR1 address + DBA + DMA index, Where:
‘TIMx_CR1 address’is the address of the control register
1;
‘DBA’is the DMA base address configured in TIMx_DCR
register;
‘DMA index’is the offset automatically controlled by
the DMA transfer, depending on DBL configured in
TIMx_DCR.

www.mm32mcu.com 338/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

14 Basic timer(TIM14)

Basic timer(TIM14)

14.1 TIM14 introduction

Basic timer TIM14 consist of a 16-bit auto-reload counter driven by a programmable
prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to sev-
eral milliseconds using the timer prescaler and the RCC clock controller prescalers.

TIM14 are completely independent, and do not share any resources.

14.2 TIM14 Main features
• 16-bit auto-reload register
• 16-bit programmable prescaler allowing dividing (modifing in real time) the counter clock
frequency either by any factor between 1 and 65536.

• Independent channels for:
– Input capture
– Output compare
– PWM generation (Edge Mode)

• Interrupt/DMA generation on the following events:
– Update: counter overflow, counter initialization (by software)
– Input capture
– Output compare

www.mm32mcu.com 339/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

667481

CNT counter+/-

U
UI

U

PSC

prescaler
C1I

IC1PS
U

IC1 OC1REF

CC1I

OC1
TIMx _CH1

TIMx_CH1

Internal clock(CK_INT)

CK_PSC CK_CNT

TI1FP1TI1

U

Reg

Auto-reload register

Capture / Compare 1 registerPrescaler
Input filter &

edge selector

enable, counting

stop, clear

Output

control

Preload registers transferred to active registers on U event accroding to control bit.Notes:

Event

Interrupt & DMA output

Trigger

controller

Figure 172. Block Diagram of basic timer

14.3 TIM14 Functional description

14.3.1 Time-base unit
The main block of the programmable basic timer is a 16-bit counter with its related auto-
reload register. The counter can count up. The counter clock can be divided by a prescaler.The
counter, the auto-reload register and the prescaler register can be written or read by soft-
ware. This is true even when the counter is running. The time-base unit includes:

• Counter register (TIMx_CNT)
• Prescaler register (TIMx_PSC)
• Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event
UEV, depending on the auto-reload preload enable bit (ARPE) in the TIM14_CR1 register.
The update event is sent when the counter reaches the overflow value and if the UDIS bit
equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation
of the update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when
the counter enable bit (CEN) in TIM14_CR1 register is set (refer also to the slave mode
controller description to get more details on counter enabling).

Note: The actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

www.mm32mcu.com 340/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536.
It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC regis-
ter). It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.

The following figures give some examples of the counter behavior when the prescaler ratio
is changed on the fly.

059785

CK_PSC

CEN

 Timer clock = CK_CNT

F7 F8 F9 FA FB FC 00 01 02 03

0 1

10

0 0 0 001 1 1 1

Counter register

Update event(UEV)

Prescaler control register

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 173. Counter Timing Diagram with Prescaler Division Change from 1 to 2

763391

F7 F8 F9 FA FB FC 00 01

0 3

30

0 0 2 201 3 1 3

CK_PSC

CEN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Prescaler control register

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 174. Counter Timing Diagram with Prescaler Division Change from 1 to 4

14.3.2 Counter modes

www.mm32mcu.com 341/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Upcounting mode
In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIM14_ARR register), then restarts from 0 and generates a counter overflow event.

Setting the UG bit in the TIM14_EGR register also generates an updateevent.

The UEV event can be disabled by software by setting the UDIS bit in the TIM14_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to
0. However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection)
in TIM14_CR1 register is set, setting the UG bit generates an update event UEV but
withoutsetting the UIF flag (thus no interrupt is sent). This is to avoid generating both
update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit
in TIM14_SR register) is set (depending on the URS bit):

• The auto-reload shadow register is updated with the preload value (TIM14_ARR).
• The buffer of the prescaler is reloaded with the preload value (content of the TIM14_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIM14_ARR=0x36.

894901

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 175. Counter Timing Diagram, Internal Clock Divided by 1

www.mm32mcu.com 342/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

100720

0034 0035 00000036 0001 0002 0003

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 176. Counter Timing Diagram, Internal Clock Divided by 2

564964

0035 00000036 0001

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 177. Counter Timing Diagram, Internal Clock Divided by 4

372226

1F 20 00

CK_PSC

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Figure 178. Counter Timing Diagram, Internal Clock Divided by N

www.mm32mcu.com 343/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

370803

31 32 33 34 35 36 0500 01 02 03 04 06 07

FF 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload register

Write a new value in TIMx_ARR

Figure 179. Counter Timing Diagram, Update Event When ARPE=0 (TIM14_ARR Not Preloaded)

874537

F0 F1 F2 F3 F4 F5 0500 01 02 03 04 06 07

F5 36

F5 36

CK_PSC

CNT_EN

Timer clock = CK_CNT

Counter register

Update event(UEV)

Counter overflow

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 180. Counter Timing Diagram, Update Event When ARPE=1 (TIM14_ARR Preloaded)

14.3.3 Repetition counter
Time-base unit describes how the update event (UEV) is generated with respect to the
counter overflows. It is actually generated only when the repetition counter has reached
zero, which is very useful to generate PWM signal.

This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx cap-
ture/compare registers in compare mode) every N counter overflows. N represents the
value in TIMx_RCR repetition counter register, which diminishs in case of any following
condition:

www.mm32mcu.com 344/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

• At each counter overflow in upcounting mode

The repetition counter is an auto-reload type; the repetition rate is maintained as defined
by the TIMx_RCR register value. When the update event is generated by software (by
setting the UG bit in TIMx_EGR register) or by hardware through the slavemode controller,
it occurs immediately whatever the value of the repetition counter is and the repetition
counter is reloaded with the content of the TIMx_RCR register.

505243

TIMX_CNT

TIMX_RCR=0 UEV

UEVTIMX_RCR=1

UEVTIMX_RCR=2

UEVTIMX_RCR=3

UEV

TIMX_RCR=3

UEV

(by SW)

Counter

Edge-allgned mode

Upcoun!ng

and

re-synchroniza!on

Update Event: Preload registers transferred to ac!ve registers and update

 interrupt generated.

Figure 181. Example of Update Rates in Different Modes and Different TIMx_PCR
Register Settings

14.3.4 Clock source
The counter clock is provided by the Internal clock (CK_INT) source.

The CEN (in the TIM14_CR1 register) and UG bits (in the TIM14_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared

www.mm32mcu.com 345/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the
internal clock CK_INT.

The following figure shows the behavior of the control circuit and the upcounter in normal
mode, without prescaler.

199864

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_INT

CEN = CNT_EN

UG

Counter register

Counter clock = CK_CNT = CK_PSC

Cnt_INT

Figure 182. Control Circuit in Normal Mode, Internal Clock Divided By 1

14.3.5 Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), an input stage for capture (with digital filter, multiplexing and prescaler)
and an output stage (with comparator and output control).

The following figures show a capture/compare channel. The input stage samples the
corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with
polarity selection generates a signal (TIxFPx) which can be used as trigger input by the
slave mode controller or as the capture command. It is prescaled before the capture
register (ICxPS).

565511

IC1PS

ICF[3:0] CC1P

ICPS[1:0]

TI1

TIMx_CCMR1
TIMx_CCER

TI1F_Rising

TI1F_Falling
01

10

11

0

1
fDTS

TI1F

0

1

divider

/1,/2,/4,/8
IC1

CC1ECC1S[1:0]

TIMx_CCMR1 TIMx_CCER

TRC

TI2F_Rising

TI2F_Falling
(from channel 2)

(from channel 2)

TI2FP1

TI1FP1

TI1F_ED

Filter

downcounter

Edge

Detector

to the slave mode controller

(from slave mode

 controller)

Figure 183. Capture/Compare Channel (Example: Channel 1 Input Stage)

www.mm32mcu.com 346/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

The output stage generates an intermediate waveform which is then used for reference:
OCxREF (active high). The polarity acts at the end of the chain.The output stage gener-
ates an intermediate waveform which is then used for reference: OCxREF (active high).
The polarity acts at the end of the chain.

903065

8

CC1S[1]

OC1PE

TIMx_CCMR1UEV

CC1S[1]

CC1S[0]

IC1PS

CC1E

CC1G

TIMx_EGR

read_in_progress

8

capture_transfer
compare_transfer

write_in_progress

CNT > CCR1

CNT = CCR1

CC1S[0]

OC1PE

S

R

S

R

MCU-peripheral Interface

APB Bus

read CCR1L

read CCR1H

input

mode

Capture/Compare Preload Register

Capture/Compare Shadow Register

capture comparator

Counter

write CCR1H

write CCR1L

output

mode

(from time base

unit)

h
ig

h

(i
f
1

6
-b

it
)

lo
w

Figure 184. Capture/Compare Channel 1 Main Circuit

358425

OC1M[2:0]

TIMx_CCMR1

CNT>CCR1

CNT=CCR1

ETRF

OC1ref

0

1

CC1P

TIMx_CCER

CC1E TIMx_CCER

OC1

Output

Mode

Controller

To the master

mode controller
Output

Enable

Circuit

Figure 185. Output Stage of Capture/Compare Channel (Channel 1)

The capture/compare block is made of one preload register and one shadow register.
Write and read always access the preload register. In capture mode, captures are actually
done in the shadow register, which is copied into the preload register.

www.mm32mcu.com 347/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

14.3.6 Input capture mode
In Input capture mode, the Capture/Compare Registers (TIM14_CCRx) are used to latch
the value of the counter after a transition detected by the corresponding ICx signal. When
a capture occurs, the corresponding CCXIF flag (TIM14_SR register) is set and an in-
terrupt or a DMA request can be sent if they are enabled. If a capture occurs while the
CCxIF flag was already high, then the over-capture flag CCxOF (TIM14_SR register) is
set. CCxIF can be cleared by software by writing it to ’0’ or by reading the captured data
stored in the TIM14_CCRx register. CCxOF is cleared when written to ’0’.

The following example shows how to capture the counter value in TIM14_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: TIM14_CCR1 must be linked to the TI1 input, so write the
CC1S bits to 01 in the TIM14_CCR1 register. As soon as CC1S becomes different
from 00, the channel is configured in input and the TIM14_CCR1 register becomes
read-only.

2. Program the needed input filter duration with respect to the signal connected to the
timer (by programming ICxF bits in the TIM14_CCMRx register if the input is a TIx
input). Let’s imagine that, when toggling, the input signal is not stable during at must
five internal clock cycles. We must program a filter bandwidth longer than these five
clock cycles. We can validate a transition on TI1 when 8 consecutive samples with
the new level have been detected (sampled at fDTS frequency). Then write IC1F bits
to 0011 in the TIM14_CCMR1 register.

3. Select the edge of the active transition on the TI1 channel by writing CC1P bit and
CC1NP bit to 0 in the TIM14_CCER register (rising edge).

4. Configure the input prescaler. In our example, we wish the capture to be performed
at each valid transition, so the prescaler is disabled (write IC1PS bits to ’00’ in the
TIM14_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in
the TIM14_CCER register to ’1’.

6. If needed, enable the related interrupt request by setting theCC1IE bit in the TIM14_DIER
register, and/or the DMA request by setting the CC1DE bit in the TIM14_DIER register.

When an input capture occurs:

• The TIM14_CCR1 register gets the value of the counter on the active transition. CC1IF
flag is set (interrupt flag). CC1IF is not cleared if at least two consecutive captures
occurred. CC1OF is also set to 1.

• An interrupt is generated depending on the CC1IE bit.

In order to handle the overcapture, it is recommended to read the data before the over-
capture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC (input compare) interrupt DMA request can be generated by software by setting the corre-

www.mm32mcu.com 348/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

sponding CCxG bit in the TIM14_EGR register.

14.3.7 Forced output mode
In output mode (CCxS bits = 00 in the TIM14_CCMRx register), each output compare sig-
nal (OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCxREF/OCx) to its active level, the user just needs to
write 101 in the OCxM bits in the corresponding TIM14_CCMRx register. Thus OCxREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level. OCxREF signal
can be forced low by writing the OCxM bits to 100 in the TIM14_CCMRx register.

In this mode, the comparison between the TIM14_CCRx shadow register and the counter
is still performed and allows the flag to be set. Interrupt requests can be sent accordingly.
This is described in the output compare mode section below.

14.3.8 Output compare mode
This function is used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

1. Assigns the corresponding output pin to a programmable value defined by the out-
put compare mode (OCxM bits in the TIM14_CCMRx register) and the output polarity
(CCxP bit in the TIM14_CCER register). The output pin can keep its level (OCxM=000),
be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on
match.

2. Sets a flag in the interrupt status register (CCxIF bit in the TIM14_SR register).
3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the

TIM14_DIER register).

The TIM14_CCRx registers can be programmed with or without preload registers using
the OCxPE bit in the TIM14_CCMRx register. In output compare mode, the update event
UEV has no effect on OCxREF and OCx output. The timing precision is one count of the
counter. Output compare mode can also be used to output a single pulse (in One-pulse
mode).

Procedure:

• Select the counter clock (internal, external, prescaler).
• Write the desired data in the TIM14_ARR and TIM14_CCRx registers.
• Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be gener-
ated.

• Select the output mode:
– Write OCxM=011 to toggle OCx output pin when CNT matches CCRx
– Write OCxPE = 0 to disable preload register

www.mm32mcu.com 349/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

– Write CCxP = 0 to select active high polarity
– Write CCxE =1 to enable the output

• Enable the counter by setting the CEN bit in the TIM14_CR1 register.

The TIM14_CCRx register can be updated at any time by software to control the out-
put waveform, provided that the preload register is not enabled (OCxPE=’0’, else
TIM14_CCRx shadow register is updated only at the next update event UEV). An example
is given in the following figure.

803963

0039 003A 003B B200 B201

003A B201

TIMX_CNT

TIMX_CCR1

OC1REF = OC1

Write B201h in the CC1R register

Match detected on CCR1.

Interrupt generated if enabled

Figure 186. Output Compare Mode, Toggle on OC1

14.3.9 PWM mode
Pulse Width Modulation mode allows generating a signal with a frequency determined
by the value of the TIM14_ARR register and a duty cycle determined by the value of the
TIM14_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’(PWM mode 1) or ‘111’(PWM mode 2) in the OCxM bits in
the TIM14_CCMRx register. The corresponding preload register must be enabled by set-
ting the OCxPE bit in the TIM14_CCMRx register, and eventually the auto-reload preload
register (in upcounting mode) by setting the ARPE bit in the TIM14_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user must initialize all the registers by setting the
UG bit in the TIM14_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIM14_CCER register.
It can be programmed as high or low. OCx output is enabled by the CCxE bit in the
TIM14_CCER register. Refer to the TIM14_CCERx register description for more details.

In PWMmode (1 or 2), TIM14_CNT and TIM14_CCRx are always compared to determine
whether TIM14_CNT ≤ TIMx_CCRx.

www.mm32mcu.com 350/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

The upcounting timer is only able to generate PWM in edge-aligned mode.

PWM edge-aligned mode
In the following example, we consider PWMmode 1. The reference PWM signal OCxREF
is high as long as TIM14_CNT < TIM14_CCRx else it becomes low. If the compare value
in TIM14_CCRx is greater than the auto-reload value (in TIM14_ARR) then OCxREF is
held at ‘1. If the compare value is 0 then OCxREF is held at ‘0. The following figure
shows some edge-aligned PWM waveforms in an example where TIM14_ARR=8.

458343

0 1 2 3 4 5 65 7 8 0 1

1

0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

Counter register

Figure 187. Edge-aligned PWM Waveforms (ARR=8)

14.3.10 Debug mode
When the microcontroller enters debug mode (CortexTM-M0 halted), the TIM14 counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module.

14.4 TIM14 register description

Table 49. Summary of TIM14 Register

Offset Acronym Register Name Reset Section

0x00 TIM14_CR1 Control register 1 0x00000000 section 14.4.1

0x0C TIM14_DIER Interrupt enable register 0x00000000 section 14.4.2

0x10 TIM14_SR Status register 0x00000000 section 14.4.3

0x14 TIM14_EGR Event generation register 0x00000000 section 14.4.4

0x18 TIM14_CCMR1 Capture/compare mode register 1 0x00000000 section 14.4.5

www.mm32mcu.com 351/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Offset Acronym Register Name Reset Section

0x20 TIM14_CCER Capture/compare enable register 0x00000000 section 14.4.6

0x24 TIM14_CNT Counter 0x00000000 section 14.4.7

0x28 TIM14_PSC Prescaler 0x00000000 section 14.4.8

0x2C TIM14_ARR Auto-reload register 0x00000000 section 14.4.9

0x30 TIM14_RCR Repetition counter register 0x00000000 section 14.4.10

0x34 TIM14_CCR1 Capture/compare register 1 0x00000000 section 14.4.11

14.4.1 Control register 1(TIM14_CR1)
Offset address: 0x00

Reset value: 0x0000

123456789 01112131415 10

rwrwrwrwrw rw

 CKD ARPE Reserved URS UDIS CENReserved

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.
9: 8 CKD rw 0x00 Clock division

The 2 bits indicates the division ratio between the timer
clock (CK_INT) frequency and the dead-time and sam-
pling frequency used by the dead-time generators and the
digital filters (ETR, TIx).
00: tDTS = tCK_INT
01: tDTS = 2 x tCK_INT
10: tDTS = 4 x tCK_INT
11: Reserved, do not program this value

7 ARPE rw 0x00 Auto-reload preload enable
0: TIM14_ARR register is not buffered
1: TIM14_ARR register is buffered

6: 3 Reserved Reserved, always read as 0.
2 URS rw 0x00 Update request source

This bit is set and cleared by software to select the UEV
event sources.
0: Any of the following events generates an update inter-
rupt (UEV) if enabled.
- Counter overflow
- Setting the UG bit
- Update generation through the slave mode controller
1: Only counter overflow generates an update interrupt
(UEV) if enabled.

www.mm32mcu.com 352/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Bit Field Type Reset Description

1 UDIS rw 0x00 Update disable
This bit is set and cleared by software to enable/disable
UEV event generation.
0: UEV enabled. The Update (UEV) event is generated
by one of the following events:
- Counter overflow
- Setting the UG bit
1: UEV disabled. The Update event is not generated,
shadow registers keep their value (ARR, PSC, CCRx).
However the counter and the prescaler are reinitialized if
the UG bit is set.

0 CEN rw 0x00 Counter enable
0: Counter disabled.
1: Counter enabled.

14.4.2 Interrupt enable register(TIM14_DIER)
Offset address: 0x0C

Reset value: 0x0000

123456789 01112131415 10

rw rw

UIECC1IEReserved

Bit Field Type Reset Description

15:2 Reserved Reserved, always read as 0.
1 CC1IE rw 0x00 Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

0 UIE rw 0x00 Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

14.4.3 Status register(TIM14_SR)
Offset address: 0x10

Reset value: 0x0000

123456789 01112131415 10

Reserved UIFCC1OF CC1IF

rc_w0 rc_w0rc_w0

Reserved

www.mm32mcu.com 353/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.
9 CC1OF rc_w0 0x00 Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding
channel is configured in input capture mode 1. It is cleared
by software by writing it to‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIM14_CCR1
register while CC1IF flag was already set.

8: 2 Reserved Reserved, always read as 0.
1 CC1IF rc_w0 0x00 Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the
compare value. It is cleared by software.
0: No match
1: The content of the counter TIM14_CNT matches the
content of the TIM14_CCR1 register.
If the content of TIM14_CCR1 is greater than that of
TIM14_ARR, CC1IF flag becomes high in case of counter
overflow.
If channel CC1 is configured as input: This bit is set by
hardware on a capture. It is cleared by software or by
reading the TIM14_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIM14_CCR1
register (An edge has been detected on IC1 which
matches the selected polarity)

0 UIF rc_w0 0x00 Update interrupt flag
This bit is set by hardware on an update event. It is cleared
by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware
when the registers are updated:
- At overflow regarding the counter value and if the UDIS=0
in the TIM14_CR1 register.
–When timer is reinitialized by software using the UG bit
in TIM14_EGR register, and if URS=0 and UDIS=0 in the
TIM14_CR1 register.

14.4.4 Event generation register(TIM14_EGR)
Offset address: 0x14

Reset value: 0x0000

www.mm32mcu.com 354/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

123456789 01112131415 10

w

CC1G UG

w

Reserved

Bit Field Type Reset Description

15: 2 Reserved Reserved, always read as 0.
1 CC1G w 0x00 Capture/Compare 1 generation

This bit is set by software in order to generate a cap-
ture/compare event, it is automatically cleared by hard-
ware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt is sent if en-
abled.
If channel CC1 is configured as input:
The current value of the counter is captured in
TIM14_CCR1 register. The CC1IF flag is set, the
corresponding interrupt is sent if enabled. The CC1OF
flag is set if the CC1IF flag was already high.

0 UG w 0x00 Update generation
This bit can be set by software, it is automatically cleared
by hardware.
0: No action
1: Reinitialize the counter and generates an update event.
Note that the prescaler counter is cleared too (anyway the
prescaler ratio is not affected). The counter is cleared.

14.4.5 Capture/compare mode register 1(TIM14_CCMR1)
Offset address: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So the user must take care that the same
bit can have a different meaning for the input stage and for the output stage.

123456789 01112131415 10

rwrwrwrwrwrwrw rw

Res. OC1M

 IC1F

OC1PE OC1FE

 IC1PSC

 CC1SReserved

www.mm32mcu.com 355/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Output compare mode:

Bit Field Type Reset Description

15:7 Reserved Reserved, always read as 0.
6: 4 OC1M rw 0x00 Output compare 1 mode

These bits define the behavior of the output reference sig-
nal OC1REF from which OC1 are derived. OC1REF is
active high whereas OC1 active level depends on CC1P
bit.
000: Frozen - The comparison between the output com-
pare register TIM14_CCR1 and the counter TIM14_CNT
has no effect on OC1REF
001: Set channel 1 to active level on match. OC1REF sig-
nal is forced high when the counter TIM14_CNT matches
the capture/compare register 1 (TIM14_CCR1).
010: Set channel 1 to inactive level on match. OC1REF
signal is forced low when the counter TIM14_CNT
matches the capture/compare register 1 (TIM14_CCR1).
011: Toggle - OC1REF toggles when
TIM14_CNT=TIM14_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - Channel 1 is active as long as
TIM14_CNT < TIM14_CCR1 else inactive.
111: PWM mode 2 - Channel 1 is inactive as long as
TIM14_CNT < TIM14_CCR1 else active.
In PWM mode 1 or 2, the OCREF level changes only when the

result of the comparison changes or when the output compare

mode switches from“frozen”mode to“PWM”mode.

3 OC1PE rw 0x00 Output compare 1 preload enable
0: Preload register on TIM14_CCR1 disabled.
TIM14_CCR1 can be written at anytime, the new
value is taken in account immediately.
1: Preload register on TIM14_CCR1 enabled. Read/Write
operations access the preload register. TIM14_CCR1
preload value is loaded in the active register at each up-
date event.
Note: The PWM mode can be used without validating the

preload register only in one pulse mode (OPM bit set in

TIM14_CR1 register). Else the behavior is not guaranteed.

www.mm32mcu.com 356/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Bit Field Type Reset Description

2 OC1FE rw 0x00 Output compare 1 fast enable
This bit is used to accelerate the effect of an event on the
trigger in input on the CC output.
0: CC1 behaves normally depending on counter and
CCR1 values even when the trigger is ON. The minimum
delay to activate CC1 output when an edge occurs on the
trigger input is 5 clock cycles.
1: An active edge on the trigger input acts like a compare
match on CC1 output. Then, OC is set to the compare
level independently from the result of the comparison. De-
lay to sample the trigger input and to activate CC1 output
is reduced to 3 clock cycles. OCFE acts only if the channel
is configured in PWM1 or PWM2 mode.

1: 0 CC1S rw 0x00 Capture/Compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: Reserved
11: Reserved
Note: CC1S bits are writable only when the channel is OFF

(CC1E = ’0’ in TIM14_CCER).

Input capture mode:

Bit Field Type Reset Description

15:8 Reserved Reserved, always read as 0.

www.mm32mcu.com 357/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Bit Field Type Reset Description

7: 4 IC1F rw 0x00 Input capture 1 filter
This bit-field defines the frequency used to sample TI1 in-
put and the length of the digital filter applied to TI1. The
digital filter is made of an event counter in which N con-
secutive events are needed to validate a transition on the
output:
0000: No filter, sampling is done at fDTS
1000: Sampling frequency fSAMPLING=fDTS/8, N = 6
0001: Sampling frequency fSAMPLING=fCK_INT, N = 2
1001: Sampling frequency fSAMPLING=fDTS/8, N = 8
0010: Sampling frequency fSAMPLING=fCK_INT, N = 4
1010: Sampling frequency fSAMPLING=fDTS/16, N = 5
0011: Sampling frequency fSAMPLING=fCK_INT, N = 8
1011: Sampling frequency fSAMPLING=fDTS/16, N = 6
0100: Sampling frequency fSAMPLING=fDTS/2, N = 6
1100: Sampling frequency fSAMPLING=fDTS/16, N = 8
0101: Sampling frequency fSAMPLING=fDTS/2, N = 8
1101: Sampling frequency fSAMPLING=fDTS/32, N = 5
0110: Sampling frequency fSAMPLING=fDTS/4, N = 6
1110: Sampling frequency fSAMPLING=fDTS/32, N = 6
0111: Sampling frequency fSAMPLING=fDTS/4, N = 8
1111: Sampling frequency fSAMPLING=fDTS/32, N = 8

3: 2 IC1PSC rw 0x00 Input capture 1 prescaler
This bit-field defines the ratio of the prescaler acting on
CC1 input (IC1).
The prescaler is reset as soon as CC1E= ’0’
(TIM14_CCER register).
00: no prescaler, capture is done each time an edge is
detected on the capture input.
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

1: 0 CC1S rw 0x00 Capture/compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: Reserved
11: Reserved
Note: CC1S bits are writable only when the channel is OFF

(CC1E = ’0’ in TIM14_CCER)

www.mm32mcu.com 358/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

14.4.6 Capture/compare enable register(TIM14_CCER)
Offset address: 0x20

Reset value: 0x0000

123456789 01112131415 10

rw rw

Reserved CC1NP CC1P CC1ERes.

rw

Bit Field Type Reset Description

15: 4 Reserved Reserved, always read as 0.
3 CC1NP rw 0x00 Capture/Compare 1 complementary output Polarity

If CC1 is configured as an output, CC1NP shall be cleared,
namely, CC1NP= 0;
If channel CC1 is configured as an input, the polarity of
TI1FP1 is jointly controlled by CC1NP and CC1P. See
CC1P description for details.

2 Reserved Reserved, always read as 0.
1 CC1P rw 0x00 Capture/Compare 1 output polarity

CC1 channel is configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel is configured as input:
CC1P/CC1NP bit (IC1 or inverted IC1) is used to select
the polarity of TI1FP1 and TI2FP1 as trigger or capture.
00: non-inverted/rising edge: capture is done on a ris-
ing edge of TIxFP1 (capture mode), and TIxFP1 is non-
inverted;
01: inverted/falling edge: capture is done on a falling edge
of TIxFP1 (capture mode), and TIxFP1 is inverted;
10: Reserved, this configuration is not used
11: non-inverted/rising and falling edges: capture is done
on rising and falling edges of TIxFP1 (capture mode), and
TIxFP1 is non-inverted;
Note: This bit is not writable as soon as LOCK level 2 or 3

has been programmed (LOCK bits in TIMx_BDTR register) and

CC1S= ’00’ (the channel is configured in output).

www.mm32mcu.com 359/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Bit Field Type Reset Description

0 CC1E rw 0x00 Capture/Compare 1 output enable
CC1 channel is configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output
pin
CC1 channel is configured as input: This bit determines if
a capture of the counter value can actually be done into
the TIM14_CCR1 register or not.
0: Capture disabled.
1: Capture enabled.

Table 50. Output Control Bit for Standard OCx Channels

CCxE bit OCx output state

0 Output Disabled(OCx = 0, OCx_EN = 0)

1 OCx = OCxREF + Polarity, OCx_EN = 1

Note: The state of the external I/O pins connected to the standard OCx channels depends on the

OCx channel state and the GPIO register.

14.4.7 Counter(TIM14_CNT)
Offset address: 0x24

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

Bit Field Type Reset Description

15: 0 CNT rw 0x0000 counter value

14.4.8 Prescaler(TIM14_PSC)
Offset address: 0x28

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

PSC

www.mm32mcu.com 360/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Bit Field Type Reset Description

15: 0 PSC rw 0x0000 Prescaler value
The counter clock frequency (CK_CNT) is equal to fCK_PSC
/ (PSC + 1).
PSC contains the value to be loaded in the current
prescaler register at each update event.

14.4.9 Auto-reload register(TIM14_ARR)
Offset address: 0x2C

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

ARR

Bit Field Type Reset Description

15: 0 ARR rw 0x0000 Auto-reload value
ARR is the value to be loaded in the actual auto-reload
register. Refer to time-base unit sections for more details
about ARR update and behavior.
The counter is blocked while the auto-reload value is null.

14.4.10 Repetition counter register(TIM14_RCR)
Offset address: 0x30

Reset value: 0x0000

123456789 01112131415 10

REPReserved

rwrwrwrwrwrw rwrw

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.

www.mm32mcu.com 361/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM14)

Bit Field Type Reset Description

7: 0 REP rw 0x00 Repetition counter value
These bits allow the user to set up the update rate of the
compare registers (i.e. periodic transfers from preload to
active registers) when preload registers are enable, as
well as the update interrupt generation rate, if this interrupt
is enable.
Each time the REP_CNT related upcounter reaches zero,
an update event is generated and it restarts counting from
REP value. As REP_CNT is reloaded with REP value
only at the repetition update event U_RC, any write to the
TIMx_RCR register is not taken in account until the next
repetition update event. It means in PWM edge-aligned
mode (REP + 1) corresponds to the number of PWM peri-
ods.

14.4.11 Capture/compare register 1(TIM14_CCR1)
Offset address: 0x34

Reset value: 0x0000

123456789 01112131415 10

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CCR1

Bit Field Type Reset Description

15: 0 CCR1 rw 0x0000 Capture/Compare 1 value
If CC1 channel is configured as output:
CCR1 is the value to be loaded in the actual cap-
ture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not se-
lected in the TIM14_CCMR1 register (bit OC1PE). Else
the preload value is copied in the active capture/compare
1 register when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIM14_CNT and signaled on OC1 output.
If CC1 channel is configured as input:
CCR1 contains the counter value transferred by the last
input capture 1 event (IC1).

www.mm32mcu.com 362/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

15 Basic timer(TIM16/17)

Basic timer(TIM16/17)

15.1 TIM16/17 introduction

The basic timer TIM16/17 consists of a 16-bit auto-reload counter driven by a programmable
prescaler. It has multiple purposes, including measuring pulse width (input capture) of in-
put signal or generating output waveform (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to sev-
eral milliseconds using the timer prescaler and the RCC clock controller prescalers.

The basic timer (TIM16/17) is completely independent, sharing no resource.

15.2 Main features
• 16-bit up auto-reload register
• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536.

• 1 independent channel for:
– Input capture
– Output compare
– PWM generation (edge-aligned mode)
– One-pulse mode output

• Complementary output of programmable dead time
• Repetition counter to update the timer registers only after a given number of cycles of
the counter

• Break input to put the timer’s output signals in reset state or in a known state
• Interrupt/DMA generation on the following events:

– Update: counter overflow
– Input capture
– Output compare
– Break signal input

www.mm32mcu.com 363/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

999664

TIMx_CH1

Internal clock(CK_INT)

U

TIMx_CH1N

Counter Enbale(CEN)

 +/- CNT counter

TIMx_CH1

TIMx_BKIN

TI1

BRK BI

IC1

C1I

CK_PSC CK_CNT

IC1PSTI1FP1

CC1I

OC1REF

DTG register

UI

OC1

OC1N

DTG

PSC

prescaler

U

U

U

Reg

REP register

Input filter &

edge selector
Prescaler

Polarity selection

Clock failure event from clock controller

Auto-reload register

Capture / Compare 1 register

Repetition

counter

Repetition

counter

Stop, clear or up/down

output

control

Notes:

Event

Interrupt and DMA output

Preload register transferred to active registers on U event accroding to control bit.

Figure 188. Basic Timers TIM16 and TIM17 Block Diagram

15.3 Functional description

15.3.1 Time-base unit
Themain block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter can count up, down or both up and down. The counter clock can
be divided by a prescaler. The counter, the auto-reload register and the prescaler register
can be written or read by software. This is true even when the counter is running. The
time-base unit includes:

• Counter register (TIMx_CNT)
• Prescaler register (TIMx_PSC)
• Auto-reload register (TIMx_ARR)
• Repetition counter register (TIMx_RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into
the shadow register permanently or at each update event (UEV), depending on the auto-
reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when
the counter overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in details for each configuration.

www.mm32mcu.com 364/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

The counter is clocked by the prescaler output CK_CNT, which is enabled only when
the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode
controller description to get more details on counter enabling).

Note: The actual counter enable signal is set 1 clock cycle after CEN.

Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536.
It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC reg-
ister). It can be changed on the fly as this control register is buffered. The new prescaler
ratio is taken into account at the next update event.

The following figure gives some examples of the counter behavior when the prescaler ratio
is changed on the fly:

741411

CK_PSC

CEN

F7 F8 F9 FA FB FC 00 01 02 03

0 1

10

0 0 0 001 1 1 1

Timer clock = CK_CNT

Counter register

Prescaler control register

Update event(UEV)

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 189. Counter Timing Diagram with Prescaler Division Change from 1 to 2

www.mm32mcu.com 365/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

994427

CK_PSC

CEN

F7 F8 F9 FA FB FC 00 01

0 3

30

0 0 2 201 3 1 3

Timer clock = CK_CNT

Counter register

Prescaler control register

Update event(UEV)

Prescaler buffer

Prescaler counter

Write a new value in TIMx_PSC

Figure 190. Counter Timing Diagram with Prescaler Division Change from 1 to 4

15.3.2 Counting unit

Upcounting mode
In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is re-
peated for the number of times programmed in the repetition counter register (TIMx_RCR).
Else, the update event is generated at each counter overflow. An update event can be
generated at each counter overflow or by setting the UG bit in the TIMx_EGR register (by
software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to
0. However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generat-
ing both update and capture interrupts when clearing the counter on the capture event.
When an update event occurs, all the registers are updated and the update flag (UIF bit
in TIMx_SR register) is set (depending on the URS bit).

• The repetition counter is reloaded with the content of TIMx_RCR register.
• The auto-reload shadow register is updated with the preload value (TIMx_ARR).
• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

www.mm32mcu.com 366/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

902323

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_INT

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update interrupt flag(UIF)

Update event(UEV)

Figure 191. Counter Timing Diagram, Internal Clock Divided by 1

241716

0034 0035 00000036 0001 0002 0003

CK_INT

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update interrupt flag(UIF)

Update event(UEV)

Figure 192. Counter Timing Diagram, Internal Clock Divided by 2

664226

0035 00000036 0001

CK_INT

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update interrupt flag(UIF)

Update event(UEV)

Figure 193. Counter Timing Diagram, Internal Clock Divided by 4

www.mm32mcu.com 367/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

948833

1F 20 00

CK_INT

Timer clock = CK_CNT

Counter register

Counter overflow

Update interrupt flag(UIF)

Update event(UEV)

Figure 194. Counter Timing Diagram, Internal Clock Divided by N

618172

31 32 33 34 35 36 0500 01 02 03 04 06 07

FF 36

CK_INT

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update interrupt flag(UIF)

Update event(UEV)

Auto-reload register

Write a new value in TIMx_ARR

Figure 195. Counter Timing Diagram, Update Event When APRE=0 (TIMx_ARR Not Preloaded)

www.mm32mcu.com 368/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

006973

F0 F1 F2 F3 F4 F5 0500 01 02 03 04 06 07

F5 36

F5 36

CK_INT

CNT_EN

Timer clock = CK_CNT

Counter register

Counter overflow

Update event(UEV)

Update interrupt flag(UIF)

Auto-reload preload register

Auto-reload shadow register

Write a new value in TIMx_ARR

Figure 196. Counter Timing Diagram, Update Event When APRE=1 (TIMx_ARR Preloaded)

15.3.3 Repetition counter
Time-base unit describes how the update event (UEV) is generated with respect to the
counter overflows. It is actually generated only when the repetition counter has reached
zero, which is very useful to generate PWM signal.

This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx cap-
ture/compare registers in compare mode) every N counter overflow, where N is the value
in the TIMx_RCR repetition counter register.

The repetition counter is decremented:

At each counter overflow in upcounting mode, the repetition counter is auto-reloaded;
the repetition rate is maintained as defined by the TIMx_RCR register value. When the
update event is generated by software (by setting the UG bit in TIMx_EGR register) or
by hardware through the slave mode controller, it occurs immediately whatever the value
of the repetition counter is and the repetition counter is reloaded with the content of the
TIMx_RCR register.

www.mm32mcu.com 369/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

505243

TIMX_CNT

TIMX_RCR=0 UEV

UEVTIMX_RCR=1

UEVTIMX_RCR=2

UEVTIMX_RCR=3

UEV

TIMX_RCR=3

UEV

(by SW)

Counter

Edge-allgned mode

Upcoun!ng

and

re-synchroniza!on

Update Event: Preload registers transferred to ac!ve registers and update

 interrupt generated.

Figure 197. Example of Update Rates in Different Modes and Different TIMx_PCR
Register Settings

15.3.4 Clock source
The counter clock can be provided by the following clock sources:

• Internal clock(CK_INT).

Internal clock source(CK_INT)
If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared auto-
matically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

www.mm32mcu.com 370/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

The following figure shows the behavior of the control circuit and the upcounter in normal
mode, without prescaler.

977915

31 32 33 34 35 36 0500 01 02 03 04 06 07

CK_INT

CEN = CNT_EN

UG

CNT_INIT

Timer clock = CK_CNT = CK_PSC

Counter register

Figure 198. Control Circuit in Normal Mode, Internal Clock Divided By 1

15.3.5 Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), an input stage for capture (with digital filter, multiplexing and prescaler)
and an output stage (with comparator and output control). The following figures give an
overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can
be used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

www.mm32mcu.com 371/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

699822

IC1PS

ICF[3:0] CC1P

ICPS[1:0]

TI1

TIMx_CCMR1
TIMx_CCER

TI1F_Rising

TI1F_Falling
01

10

11

0

1
fDTS

TI1F

0

1

divider

/1,/2,/4,/8
IC1

CC1ECC1S[1:0]

TIMx_CCMR1 TIMx_CCER

TRC

TI2F_Rising

TI2F_Falling
(from channel 2)

(from channel 2)

TI2FP1

TI1FP1

TI1F_ED

to the slave mode controller

(from slave mode

 controller)

Filter

downcounter

Edge

Detector

Figure 199. Capture/Compare Channel (Example: Channel 1 Input Stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxREF (active high). The polarity acts at the end of the chain.

097990

MCU-peripheral interface

APB Bus

8

CC1S[1]

OC1PE

TIMx_CCMR1UEV

read CCR1L

read CCR1H

CC1S[1]

CC1S[0]

IC1PS

CC1E

CC1G

TIMx_EGR

read_in_progress

8

capture_transfer
compare_transfer

write_in_progress

CNT > CCR1

CNT = CCR1

Write CCR1H

Write CCR1L

CC1S[0]

OC1PE

S

R

S

RCapture/Compare Preload Register

Capture/Compare Shadow Register

input

mode

Capture Comparator

output

mode

(from time

base unit)

Counter

(i
f
1

6
-b

it
)

H
ig

h

L
o

w

Figure 200. Capture/Compare Channel 1 Main Circuit

www.mm32mcu.com 372/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

264837

ETRF

OC1CE OC1M[3:0]

TIM1_CCMR1 TIM1_BDTR

DTG[7:0] CC1NE CC1E

TIM1_CCER

CC1NP

TIM1_CCER

MOE OSSI

TIM1_BDTR

OSSR

CNT>CCR1

CNT=CCR1

OCxREF

OC5REF

OC1REF
OC1REFC

OC1DT

OC1DTN

‘0’

‘0’(1)

x0
01
11

11
10
0X

0

1

0

1

CC1P

TIM1_CCER

OC1

OC1N

CC1NE CC1E TIM1_CCER

Output

mode

controller

Output

selector
Dead-time

generator

To the master mode controller

Output

enable

circuit

Output

enable

circuit

Figure 201. Output Stage of Capture/Compare Channel (Channel 1)

The capture/compare block is made of one preload register and one shadow register.
Write and read always access the preload register. In capture mode, captures are actually
done in the shadow register, which is copied into the preload register. In compare mode,
the content of the preload register is copied into the shadow register which is compared
to the counter.

15.3.6 Input capture mode
In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch
the value of the counter after a transition detected by the corresponding ICx signal. When
a capture occurs, the corresponding CCxIF flag (TIMx_SR register) is set and an interrupt
or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF
flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set, CCxIF
can be cleared by software by writing it to 0 or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written to 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises.

Procedures:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TM1_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input).
Let’s imagine that, when toggling, the input signal is not stable during at must five

www.mm32mcu.com 373/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

internal clock cycles. We must program a filter bandwidth longer than these five clock
cycles. We can validate a transition on TI1 when 8 consecutive samples with the new
level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in
the TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

• Configure the input prescaler. In our example, we wish the capture to be performed
at each valid transition, so the prescaler is disabled (write IC1PS bits to ’00’ in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register to ’1’.

• If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER
register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.
• C1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the CC1IF flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.
• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the over-
capture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding

CCxG bit in the TIMx_EGR register.

15.3.7 Forced output mode
In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCxREF/OCx) to its active level, the user just needs to
write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCxREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

TheOCxREF signal can be forced low by writing theOCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, in this mode, the comparison between the TIMx_CCRx shadow register and the
counter is still performed and allows the flag to be set. Interrupt and DMA requests can
be sent accordingly. This is described in the output compare mode section below.

www.mm32mcu.com 374/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

15.3.8 Output compare mode
This function is used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCxM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).
• Generates an interrupt if the corresponding interrupt mask is set (CCxIE bit in the
TIMx_DIER register).

• Sends aDMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER
register, CCDS bit in the TIMx_CR2 register for the DMA request selection).

The TIMx_CCRx registers can be programmed with or without preload registers using
the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event
UEV has no effect on OCxREF and OCx output. The timing precision is one count of the
counter. Output compare mode can also be used to output a single pulse (in One-pulse
mode).

Procedure:

• Select the counter clock (internal, external, prescaler).
• Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
• Set the CCxIE bit if an interrupt request is to be generated.
• Select the output mode:

– Write OCxM=011 to toggle OCx output pin when CNT matches CCRx
– Write OCxPE = 0 to disable preload register
– Write CCxP = 0 to select active high polarity
– Write CCxE = 1 to enable OCx

• Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the out-
put waveform, provided that the preload register is not enabled (OCxPE=’0’, else
TIMx_CCRx shadow register is updated only at the next update event UEV). An exam-
ple is given in the following figure.

www.mm32mcu.com 375/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

655133

0039 003A 003B B200 B201

003A B201

TIMX_CNT

TIMX_CCR1

OC1REF=OC1

Write B201h in the CCC1R register

Match detected on CCR1

Interrupt generated if enabled

Figure 202. Output Compare Mode, Toggle on OC1

15.3.9 PWM mode
Pulse Width Modulation mode allows generating a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing‘110’(PWM mode 1) or‘111’(PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register
(in upcounting mode) by setting the ARPE bit in the TIMx_CR1 register. As the preload
registers are transferred to the shadow registers only when an update event occurs, before
starting the counter, the user must initialize all the registers by setting the UG bit in the
TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. OCx output is enabled by CCxE,
CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers). Refer to
the TIMx_CCER register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤TIMx_CNT or TIMx_CNT ≤TIMx_CCRx (depending on the direction
of the counter). The timer is able to generate PWM in edge-alignedmode or center-aligned
mode, depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

Upcounting configuration
Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Section:
Upcounting Mode. In the following example, we consider PWM mode 1. The reference
PWM signal OCxREF is high as long as TIMx_CNT <TIMx_CCRx else it becomes low.
If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR)
then OCxREF is held at ’1’. If the compare value is 0 then OCxREF is held at ’0’. Fig-
ure 203 shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8.

www.mm32mcu.com 376/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

202517

0 1 2 3 4 5 65 7 8 0 1

1

0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

Counter register

Figure 203. Edge-aligned PWM Waveforms (ARR=8)

15.3.10 Complementary outputs and dead-time insertion
The basic timers (TIM16/17) can output two complementary signals and manage the
switching-off and the switching-on instants of the outputs. This time is generally known as
dead-time and it has to be adjusted, depending on the devices connected to the outputs
and their characteristics (intrinsic delays of level-shifters, delays due to power switches).

User can select the polarity of the outputs (main output OCx or complementary OCxN)
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Ta-
ble 52 Output Control Bits for Complementary OCx and OCxN Channels with Break Fea-
ture for more details. In particular, the dead-time is activated when switching to the IDLE
state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if
the break circuit is present. Each channel is provided with a 10-bit dead-time generator.
From a reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and
OCxN are active high:

• The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

• The OCxN output signal is opposite with the reference signal except for the rising edge,
which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the corre-
sponding pulse is not generated.

www.mm32mcu.com 377/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (We suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1).

570898

OCxN

OCx

OCxREF

delay

delay

Figure 204. Complementary Output with Dead-time Insertion

554467

OCxN

OCx

OCxREF

delay

Figure 205. Dead-time Waveforms with Delay Greater Than the Negative Pulse

817039

OCxN

OCx

OCxREF

delay

Figure 206. Dead-time Waveforms with Delay Greater Than the Positive Pulse

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to section 15.4.13: TIM16/17 Break and Dead-
time Register (TIMx_BDTR) for delay calculation.

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx

www.mm32mcu.com 378/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.

This allows the user to send a specific waveform (such as PWM or static active level)
on one output while the complementary remains at its inactive level. Other possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes

active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxREF. On the

other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes active when

OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low.

15.3.11 Using the break function
When using the break function, the output enable signals and inactive levels are modified
according to additional control bits (MOE, OSSI andOSSR bits in the TIMx_BDTR register,
OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs
cannot be set both to active level at a given time. Refer to Table 52 Output Control Bits
for Complementary OCx and OCxN Channels with Break Feature for more details. The
break source can be either the break input pin or a clock failure event, generated by the
Clock Security System (CSS), from the Reset Clock Controller. When exiting from reset,
the break circuit is disabled and the MOE bit is low. User can enable the break function by
setting the BKE bit in the TIMx_BDTR register. The break input polarity can be selected
by configuring the BKP bit in the same register. BKE and BKP can be modified at the
same time. The delay of 1 APB clock period occurs before writing BKE and BKP bits.
Therefore, the written bits can be read after one APB clock period.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control
bit (accessed in the TIMx_BDTR register). It results in some delays between the asyn-
chronous and the synchronous signals. In particular, if MOE is written to 1 whereas it
was low, a delay (dummy instruction) must be inserted before reading it correctly. This is
because the user writes an asynchronous signal, but reads a synchronous signal.

When a break occurs (selected level on the break input):

• The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

• Each output channel is drivenwith the level programmed in theOISx bit in the TIMx_CR2
register as soon as MOE=0. If OSSI=0 then the timer releases the enable output else
the enable output remains high.

• In case of complementary output:
– The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.

– If the timer clock is still present, then the dead-time generator is reactivated in

www.mm32mcu.com 379/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

order to drive the outputs with the level programmed in the OISx and OISxN
bits after a dead-time. Even in this case, OCx and OCxN cannot be driven
to their active level together. Note that because of the resynchronization on
MOE, the dead-time duration is a bit longer than usual (around 2 ck_tim clock
cycles).

– If OSSI=0 then the timer releases the enable outputs else the enable outputs
remain or become high as soon as one of the CCxE or CCxNE bits is high.

• The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be gen-
erated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if the
BDE bit in the TIMx_DIER register is set.

• If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event UEV. This can be used to perform a regulation, for instance.
Else, MOE remains low until it is written to‘1’again. In this case, it can be used for
security and the break input can be connected to an alarm from power drivers, thermal
sensors or any security components.

Note: The break input is acting on level. Thus, the MOE cannot be set while the break input is active

(neither automatically nor by software). In the meantime, the status flag BIF cannot be cleared.

The break can be generated by the BRK input which has a programmable polarity and an
enable bit BKE in the TIMx_BDTR Register.

In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows freezing the
configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). The user can choose
from three levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer
to section 15.4.13: Break and Dead-time Register (TIM16/17_BDTR). The LOCK bits can
be written only once after an MCU reset.

The following figure shows an example of behavior of the outputs in response to a break:

www.mm32mcu.com 380/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

199280

OCxN

OCx

OCxREF

(OCxN not implemented, CCxP=0,OISx=1)

(
OCx

OCx
(

OCx
(

OCx

(CCxE=1,CCxP=0,OISx=1,CCxNE=0,CCxNP=0,OISxN=0)

(CCxE=1,CCxP=0,OISx=0,CCxNE=1,CCxNP=0,OISxN=1)

OCxN

OCx

(CCxE=1,CCxP=0,OISx=1,CCxNE=1,CCxNP=1,OISxN=1)

OCx

OCxN
(CCxE=1,CCxP=0,OISx=0,CCxNE=0,CCxNP=0,OISxN=1)

OCx

OCxN

OCx

OCxN
(CCxE=1,CCxP=0,CCxNE=0,CCxNP=0,OISx=OISxN=0 or OISx=OISxN=1)

BREAK(MOE)

OCxN not implemented, CCxP=0,OISx=0)

OCxN not implemented, CCxP=1,OISx=1)

OCxN not implemented, CCxP=1,OISx=0)

delay delay delay

delay delay delay

delay

delay

Figure 207. Output Behavior in Response to A Break

15.3.12 One-pulse mode
One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter
to be started in response to a stimulus and to generate a pulse with a programmable
length after a programmable delay. Starting the counter can be controlled through the
slave mode controller. Generating the waveform can be done in output compare mode
or PWM mode. Select One-pulse mode by setting the OPM bit in the TIMx_CR1 register.
This makes the counter stop automatically at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration
must be:

• In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

www.mm32mcu.com 381/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

408060

OC1

TI2

OC1REF

tDELAY
tPULSE

t
0

TIM1_ARR

TIM1_CCR1

C
o
u
n
te
r

Figure 208. Example of One Pulse Mode

For example the user may want to generate a positive pulse on OC1 with a length of
tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input
pin.

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 to TI2 by writing CC2S=’01’in the TIMx_CCMR1 register.
• TI2FP2 must detect a rising edge, write CC2P=’0’in the TIMx_CCER register.
• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’
in the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to‘110’in the TIMx_SMCR register
(trigger mode).

• The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler)

• The tDELAY is defined by the value written in the TIMx_CCR1 register.
• tPULSE is defined by the differrence between the auto-load value and the comparison
value (TIMx_ARR - TIMx_CCR1).

• Let us say the user wants to build a waveform with a transition from‘0’to‘1’when
a compare match occurs and a transition from‘1’to‘0’when the counter reaches
the auto-reload value. To do this, enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=’1’in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case the compare value must be written in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by modifying the UG bit and wait
for external trigger event on TI2. CC1P is written to‘0’in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.The user
only wants one pulse (Single mode), so ’1’must be written in the OPM bit in the TIMx_CR1

www.mm32mcu.com 382/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

register to stop the counter at the next update event (when the counter rolls over from the
auto-reload value back to 0). The repetition mode can be selected by setting OPM =‘0’
in TIMx_CR1 register.

15.3.13 Debug mode
When the microcontroller enters debug mode (CortexTM-M0 halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module.

15.4 Register description

Table 51. TIM16/17 Register Overview

Offset Acronym Register Name Reset Section

0x00 TIM16/17_CR1 TIM16/17 control register 1 0x00000000 section 15.4.1

0x04 TIM16/17_CR2 TIM16/17 control register 2 0x00000000 section 15.4.2

0x0C TIM16/17_DIER TIM16/17 interrupt enable register 0x00000000 section 15.4.3

0x10 TIM16/17_SR TIM16/17 status register 0x00000000 section 15.4.4

0x14 TIM16/17_EGR TIM16/17 event generation register 1 0x00000000 section 15.4.5

0x18 TIM16/17_CCMR1 TIM16/17 capture/compare mode register

1

0x00000000 section 15.4.6

0x20 TIM16/17_CCER TIM16/17 capture/compare enable regis-

ter

0x00000000 section 15.4.7

0x24 TIM16/17_CNT TIM16/17 counter 0x00000000 section 15.4.8

0x28 TIM16/17_PSC TIM16/17 prescaler register 0x00000000 section 15.4.9

0x2C TIM16/17_ARR TIM16/17 auto-reload register 0x00000000 section 15.4.10

0x30 TIM16/17_RCR TIM16/17 repetition counter register 0x00000000 section 15.4.11

0x34 TIM16/17_CCR1 TIM16/17 capture/compare register 1 0x00000000 section 15.4.12

0x44 TIM16/17_BDTR TIM16/17 break and dead-time register 0x00000000 section 15.4.13

0x48 TIM16/17_DCR TIM16/17 DMA control register 0x00000000 section 15.4.14

0x4C TIM16/17_DMAR TIM16/17 full transfer address register 0x00000000 section 15.4.15

15.4.1 TIM16/17 control register 1(TIM16/17_CR1)
Offset address: 0x00

Reset value: 0x0000

123456789 01112131415 10

Reserved ARPE UDISURSOPM CENCKD Reserved

rwrwrwrwrwrw rw

www.mm32mcu.com 383/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.
9: 8 CKD rw 0x00 Clock division

The 2 bits indicates the division ratio between the timer
clock (CK_INT) frequency and the sampling frequency
used by the digital filters (ETR, TIx).
00: tDTS = tCK_INT
01: tDTS = 2 x tCK_INT
10: tDTS = 4 x tCK_INT
11: Reserved

7 ARPE rw 0x00 Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

6: 4 Reserved Reserved, always read as 0.
3 OPM rw 0x00 One pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clear-
ing the bit CEN)

2 URS rw 0x00 Update request source
This bit is set and cleared by software to select the UEV.
0: Any of the following events generate an update interrupt
or DMA request if enabled.These events can be:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update
interrupt or DMA request if enabled.

1 UDIS rw 0x00 Update disable
This bit is set and cleared by software to enable/disable
UEV event generation.
0: UEV enabled. The Update (UEV) event is generated
by one of the following events:
- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
Buffered registers are then loaded with their preload val-
ues
1: UEV disabled. The Update event is not generated,
shadow registers keep their value (ARR, PSC, CCRx).
However, the counter and the prescaler are reinitialized
if the UG bit is set or if a hardware reset is received from
the slave mode controller.

www.mm32mcu.com 384/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

0 CEN rw 0x00 Counter enable
0: Counter disabled
1: Counter enabled.
In the one pulse mode, CEN is automatically cleared when
an update event occurs.
Note: External clock, gated mode and encoder mode can work

only if the CEN bit has been previously set by software. How-

ever, trigger mode can set the CEN bit automatically by hard-

ware.

15.4.2 TIM16/17 control register 2(TIM16/17_CR2)
Offset address: 0x04

Reset value: 0x0000

123456789 01112131415 10

Reserved OIS1N OIS1 CCDS CCUS Res. CCPCReserved

rwrwrwrw rw

Bit Field Type Reset Description

15:10 Reserved Reserved, always read as 0.
9 OIS1N rw 0x00 Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=1
Note: This bit can not be modified as long as LOCK level 1, 2 or

3 has been programmed (LOCK bits in TIMx_BDTR register).

8 OIS1 rw 0x00 Output Idle state 1 (OC1 output)
0: OC1=0 (after a dead-time if OC1N is implemented)
when MOE=0.
1: OC1=1 (after a dead-time if OC1N is implemented)
when MOE=1.
Note: This bit can not be modified as long as LOCK level 1, 2 or

3 has been programmed (LOCK bits in TIMx_BDTR register).

7:4 Reserved Reserved, always read as 0.
3 CCDS rw 0x00 Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

www.mm32mcu.com 385/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

2 CCUS rw 0x00 Capture/compare control update selection
0: When capture/compare control bits are preloaded
(CCPC=1), they are updated by setting the COMG bit only.
1: Capture/compare control bits are preloaded (CCPC =
1), they are updated only when COMG bit is set or rising
edge is generated in TRGI.
Note: This bit acts only on channels that have a complementary

output.

1 Reserved Reserved, always read as 0.
0 CCPC rw 0x00 Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after hav-
ing been written, they are updated only when COM is set
Note: This bit acts only on channels that have a complementary

output.

15.4.3 TIM16/17 interrupt enable register (TIM16/17_DIER)
Offset address: 0x0C

Reset value: 0x0000

123456789 01112131415 10

Res.BIE UIE
CC1

DE UDE
COM

IE

CC1

 IEReserved Reserved

rwrwrwrwrw rw

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.
9 CC1DE rw 0x00 CC1 DMA request enabled

0: CC1 DMA request disabled
1: CC1 DMA request enabled

8 UDE rw 0x00 Update DMA request enable
0: Update DMA request disabled
1: Update DMA request enabled

7 BIE rw 0x00 Break interrupt enable
0: Break interrupt disabled
1: Break interrupt enabled

6 Reserved Reserved, always read as 0.
5 COMIE rw 0x00 COM interrupt enable

0: COM interrupt disabled
1: COM interrupt enabled

4: 2 Reserved Reserved, always read as 0.
1 CC1IE rw 0x00 Capture/compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

www.mm32mcu.com 386/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

0 UIE rw 0x00 Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

15.4.4 TIM16/17 interrupt enable register(TIM16/17_SR)
Offset address: 0x10

Reset value: 0x0000

123456789 01112131415 10

Reserved Reserved
CC1

OF
BIFRes. TIF

COM

IF

CC1

IF UIF

rc_w0rc_w0rc_w0rc_w0 rc_w0rc_w0

Bit Field Type Reset Description

15: 10 Reserved Reserved, always read as 0.
9 CC1OF rc_w0 0x00 Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding
channel is configured in input capture mode 1.
It is cleared by software by writing it to‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1
register while CC1IF flag was already set.

8 Reserved Reserved, always read as 0.
7 BIF rc_w0 0x00 Break interrupt flag

This flag is set by hardware as soon as the break input
goes active. It can be cleared by software if the break
input is not active.
0: No break event occurred.
1: An active level has been detected on the break input

6 TIF rc_w0 0x00 Trigger interrupt flag
This flag is set by hardware on trigger event (active edge
detected on TRGI input when the slave mode controller is
enabled in all modes but gated mode, both edges in case
gated mode is selected).
It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

www.mm32mcu.com 387/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

5 COMIF rc_w0 0x00 COM interrupt flag
This flag is set by hardware on COM event (when Cap-
ture/compare Control bits - CCxE, CCxNE, OCxM - have
been updated). It is cleared by software.
0: No COM event occurred.
1: COM interrupt pending.

4: 2 Reserved Reserved, always read as 0.
1 CC1IF rc_w0 0x00 Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the
compare value. It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the con-
tent of the TIMx_CCR1 register.
If the content of TIMx_CCR1 is greater than that of
TIMx_ARR, CC1IF flag becomes high in case of counter
overflow.
If channel CC1 is configured as input:
This bit is set by hardware on an update event. It is cleared
by software or by reading TIMx_CCR1.
0: No input capture occurred
1: The counter value has been captured (copied) in
TIMx_CCR1 register (An edge has been detected on IC1
which matches the selected polarity)

0 UIF rc_w0 0x00 Update interrupt flag
This bit is set by hardware on an update event. It is cleared
by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware
when the registers are updated:
- The update event is generated at overflow regarding the
repetition counter value (update if repetition counter= 0)
and if the UDIS=0 in the TIMx_CR1 register.
- The update event is generated if URS=0 and UDIS=0 in
the TIMx_CR1 register and CNT is reinitialized by setting
UG bit in TIMx_EGR register through software.
- The update event is generated when CNT is reinitial-
ized by a trigger event, and if URS=0 and UDIS=0 in the
TIMx_CR1 register.

15.4.5 TIM16/17 event generation register 1(TIM16/17_EGR)
Offset address: 0x14

www.mm32mcu.com 388/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Reset value: 0x0000

123456789 01112131415 10

Reserved BG UGCOMG CC1GReservedTG

www ww

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.
7 BG w 0x00 Break generation

This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: A break event is generated. MOET bit is cleared and
TIF in TIMx_SR register is set. Related interrupt or DMA
transfer can occur if enabled.

6 TG w 0x00 Trigger generation
This bit is set by software in order to generate an event, it
is automatically cleared by hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related inter-
rupt or DMA transfer can occur if enabled.

5 COMG w 0x00 Capture/Compare control update generation
This bit can be set by software, it is automatically cleared
by hardware.
0: No action
1: WhenCCPC bit is set, it allows to update CCxE, CCxNE
and OCxM bits
Note: This bit acts only on channels that have a complementary

output.

4:2 Reserved Reserved, always read as 0.
1 CC1G w 0x00 Capture/compare 1 generation

This bit is set by software in order to generate a cap-
ture/compare event, it is automatically cleared by hard-
ware.
0: No action
1: A capture/compare event is generated on channel 1
If channel CC1 is configured as output: CC1IF flag is set,
corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input: The current value
of the counter is captured in TIMx_CCR1 register. The
CC1IF flag is set, the corresponding interrupt or DMA re-
quest is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

www.mm32mcu.com 389/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

0 UG w 0x00 Update generation
This bit can be set by software, it is automatically cleared
by hardware.
0: No action
1: Reinitialize the counter and generates an update of the
registers. Note that the prescaler counter is cleared too
(anyway the prescaler ratio is not affected).

15.4.6 TIM16/17 capture/compare mode register
1(TIM16/17_CCMR1)

Offset address: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So the user must take care that the same
bit can have a different meaning for the input stage and for the output stage.

123456789 01112131415 10

rwrwrwrwrwrwrw rw

CC1S

OC1M
OC1

PE

OC1

FE

IC1F IC1PSC

Res.

Reserved

Output compare mode:

Bit Field Type Reset Description

15: 7 Reserved Reserved, always read as 0.

www.mm32mcu.com 390/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

6: 4 OC1M rw 0x00 Output compare 1 mode
These bits define the behavior of the output reference sig-
nal OC1REF from which OC1 are derived.
OC1REF is active high whereas OC1 and OC1N active
levels depend on CC1P and CC1PN bits respectively.
000: Frozen - The comparison between the output com-
pare register TIMx_CCR1 and the counter TIMx_CNT has
no effect on OC1REF (only applicable to generating time
base).
001: Set channel 1 to active level on match. OC1REF
signal is forced high when the counter TIMx_CNTmatches
the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF
signal is forced low when the counter TIMx_CNT matches
the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when
TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active
as long as TIMx_CNT ＜ TIMx_CCR1 else inactive. In
downcounting, channel 1 is inactive (OC1REF=‘0’) as
long as TIMx_CNT>TIMx_CCR1 else active (OC1REF=’
1’).
111: PWM mode 2 - In upcounting, channel 1 is
inactive as long as TIMx_CNT<TIMx_CCR1 else ac-
tive. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 else inactive.
Note 1: This bit is not writable as soon as LOCK level 3 has been

programmed (LOCK bits in TIMx_BDTR register) and CC1S=

’00’ (the channel is configured in output).

Note 2: In PWM mode 1 or 2, the OCREF level changes only

when the result of the comparison changes or when the output

compare mode switches from“frozen”mode to“PWM”mode.

www.mm32mcu.com 391/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

3 OC1PE rw 0x00 Output compare 1 preload enable
0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1
can be written at anytime, the new value is taken in ac-
count immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write
operations access the preload register. TIMx_CCR1
preload value is transferred to the active register at each
update event.
Note 1: These bits can not be modified as long as LOCK level 3
has been programmed (LOCK bits in TIMx_BDTR register) and
CC1S=00 (the channel is configured in output).

Note 2: The PWM mode can be used without validating

the preload register only in one pulse mode (OPM bit set in

TIMx_CR1 register). Else the behavior is not guaranteed.

2 OC1FE rw 0x00 Output compare 1 fast enable
This bit is used to accelerate the effect of an event on the
trigger in input on the CC output.
0: CC1 behaves normally depending on counter and
CCR1 values even when the trigger is ON. The minimum
delay to activate CC1 output when an edge occurs on the
trigger input is 5 clock cycles.
1: An active edge on the trigger input acts like a compare
match on CC1 output. Then, OC is set to the compare
level independently from the result of the comparison. De-
lay to sample the trigger input and to activate CC1 output
is reduced to 3 clock cycles.
OCFE acts only if the channel is configured in PWM1 or
PWM2 mode.

1: 0 CC1S rw 0x00 Capture/Compare 1 selection
This bit-field defines the direction of the channel (in-
put/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E = ’0’ in TIMx_CCER).

www.mm32mcu.com 392/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Input capture mode:

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.
7: 4 IC1F rw 0x00 Input capture 1 ?lter

This bit-field defines the frequency used to sample TI1 in-
put and the length of the digital filter applied to TI1. The
digital filter is made of an event counter in which N con-
secutive events are needed to validate a transition on the
output:
0000: No filter, sampling is done at fDTS
0001: Sampling frequency fSAMPLING = fCK_INT, N = 2
0010: Sampling frequency fSAMPLING = fCK_INT, N = 4
0011: Sampling frequency fSAMPLING = fCK_INT, N = 8
0100: Sampling frequency fSAMPLING = fDTS, N = 6
0101: Sampling frequency fSAMPLING = fDTS, N = 8
0110: Sampling frequency fSAMPLING = fDTS, N = 6
0111: Sampling frequency fSAMPLING = DTS/4, N = 8
1000: Sampling frequency fSAMPLING = fDTS/8, N = 6
1001: Sampling frequency fSAMPLING = fDTS/8, N = 8
1010: Sampling frequency fSAMPLING = fDTS/16, N = 5
1011: Sampling frequency fSAMPLING = fDTS/16, N = 6
1100: Sampling frequency fSAMPLING = ffDTS/16, N = 8
1101: Sampling frequency fSAMPLING = fDTS/32, N = 5
1110: Sampling frequency fSAMPLING = fDTS/32, N = 6
1111: Sampling frequency fSAMPLING = fDTS/32, N = 8

3: 2 IC1PSC rw 0x00 Input capture 1 prescaler
This bit-field defines the ratio of the prescaler acting on
CC1 input (IC1). The prescaler is reset as soon as
CC1E=’0’(TIMx_CCER register).
00: no prescaler, capture is done each time an edge is
detected on the capture input.
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

www.mm32mcu.com 393/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

1: 0 CC1S rw 0x00 Capture/compare 1
This bit-field defines the direction of the channel (in-
put/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on
TI1
10: CC1 channel is configured as input, IC1 is mapped on
TI2
11: CC1 channel is configured as input, IC1 is mapped on
TRC. This mode is working only if an internal trigger input
is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF

(CC1E = ’0’ in TIMx_CCER).

15.4.7 TIM16/17 Capture/compare enable register(TIM16/17_CCER)
Offset address: 0x20

Reset value: 0x0000

123456789 01112131415 10

Reserved CC1P CC1E
CC1

NP

CC1

NE

rwrwrw rw

Bit Field Type Reset Description

15: 4 Reserved Reserved, always read as 0.
3 CC1NP rw 0x00 Capture/Compare 1 complementary output Polarity

0: OC1N active high
1: OC1N active low

2 CC1NE rw 0x00 Capture/Compare 1 complementary output enable
0: Off - OC1N inactive
1: On - Signal of OC1N output to relevant pin depends on
MOE, OSSI, OSSR, OIS1, OIS1 and CC1E bits.

www.mm32mcu.com 394/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

1 CC1P rw 0x00 Capture/compare 1 output polarity
If channel CC1 is configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel is configured as input:
CC1P/CC1NP bit (IC1 or inverted IC1) is used to select
the polarity of TI1FP1 and TI2FP1 as trigger or capture.
00: non-inverted/rising edge: capture is done on a ris-
ing edge of TIxFP1 (capture mode), and TIxFP1 is non-
inverted;
01: inverted/falling edge: capture is done on a falling edge
of TIxFP1 (capture mode), and TIxFP1 is inverted;
10: Reserved, this configuration is not used
11: non-inverted/rising edge: capture is done on the rising
and falling edges of non-inverted TIxFP1 (capture mode).

0 CC1E rw 0x00 Capture/Compare 1 output enable
CC1 channel is configured as output:
0: Off - OC1 is not active
1: On - OC1N signal output to relevant pin depends on
MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits.
CC1 channel is configured as input:
This bit determines if a capture of the counter value can
actually be done into the input capture/compare register 1
(TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Table 52. Output Control Bits for Complementary OCx and OCxN Channels with Break Feature

Control

bits
Output states(1)

MOE bit OSSI

bit

OSSR

bit

CCxE

bit

CCxNE

bit

OCx OCx output state OCxN output state

1 X

0 0 0 Output Disabled (not driven by

the timer) OCx = 0, OCx_EN =

0

Output Disabled (not driven by

the timer) OCxN = 0, OCxN_EN

= 0

0 0 1 Output Disabled (not driven by

the timer) OCx = 0, OCx_EN =

0

OCxREF + Polarity, OCxN =

OCxREF xor CCxNP, OCxN_EN

= 1

0 1 0 OCxREF + Polarity, OCx =

OCxREF xor CCxP, OCx_EN =

1

Output Disabled (not driven by

the timer) OCxN = 0, OCxN_EN

= 0

www.mm32mcu.com 395/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Control

bits
Output states(1)

MOE bit OSSI

bit

OSSR

bit

CCxE

bit

CCxNE

bit

OCx OCx output state OCxN output state

0 1 1 OCxREF + Polarity + dead-

time, OCx_EN=1

OCxREF (inverted) + Polarity +

dead-time, OCxN_EN = 1

1 0 0 Output Disabled (not driven

by the timer) OCx = CCxP,

OCx_EN = 0

Output Disabled (not driven by

the timer), OCxN = CCxNP,

OCxN_EN = 0

1 0 1 Off-State (output enabled with

inactive state) OCx = CCxP,

OCx_EN = 1

OCxREF + Polarity, OCxN =

OCxREF xor CCxNP, OCxN_EN

= 1

1 1 0 OCxREF + Polarity, OCx =

OCxREF xor CCxP, OCx_EN =

1

Off-State (output enabled with in-

active state) OCxN = CCxNP,

OCxN_EN = 1

1 1 1 OCREF + Polarity + dead-time,

OCx_EN = 1

OCxREF (inverted) + Polarity +

dead-time, OCxN_EN = 1

0

0

X

0 0 Output Disabled (not driven by the timer)

0 0 1 Asynchronously: OCx = CCxP , OCx_EN = 0 , OCxN = CCxNP,

0 1 0 OCxN_EN = 0；

0 1 1 Then if the clock is present: after a dead-time

OCx = OISx , OCxN = OISxN,

Assuming that OISx and OISxN do not correspond to OCx and OCxN both in active state.

1 0 0 Off-State (output enabled with inactive state)

1 0 1 Asynchronously: OCx = CCxP, OCx_EN = 1, OCxN = CCxNP,

1 1 0 OCxN_EN = 1；

1 1 1 Then if the clock is present: after a dead-time

OCx = OISx , OCxN = OISxN,

Assuming that OISx and OISxN do not correspond to OCx and OCxN both in active state.

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN,
CCxP and CCxNP bits must be kept cleared.

Note: The state of the external IO pins connected to the omplementary OCx and OCxN channels

depends on the OCx and OCxN channel states and the GPIO and AFIO registers.

15.4.8 TIM16/17 counter(TIM16/17_CNT)
Offset address: 0x24

Reset value: 0x0000

123456789 01112131415 10

CNT

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

www.mm32mcu.com 396/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

15: 0 CNT rw 0x0000 Counter value

15.4.9 TIM16/17 prescaler register(TIM16/17_PSC)
Offset address: 0x28

Reset value: 0x0000

123456789 01112131415 10

PSC

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 PSC rw 0x0000 Prescaler value
The counter clock frequency (CK_CNT) is equal to fCK_PSC
/(PSC + 1).
PSC contains the value to be loaded in the active prescaler
register at each update event (including when the counter
is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in ”reset mode”)

15.4.10 TIM16/17 auto-reload register(TIM16/17_ARR)
Offset address: 0x2C

Reset value: 0x0000

123456789 01112131415 10

ARR

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 ARR rw 0x0000 Prescaler value
ARR is the value to be loaded in the actual auto-reload
register. Refer to section 15.3.1 for more details about
ARR update and behavior.
The counter is blocked while the auto-reload value is null.

15.4.11 TIM16/17 repetition counter register(TIM16/17_RCR)
Offset address: 0x30

Reset value: 0x0000

123456789 01112131415 10

REPReserved

rwrwrwrwrwrw rwrw

www.mm32mcu.com 397/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

15: 8 Reserved Reserved, always read as 0.
7: 0 REP rw 0x00 Repetition counter value

These bits allow the user to set up the update rate of the
compare registers (i.e. periodic transfers from preload to
active registers) when preload registers are enable, as
well as the update interrupt generation rate, if this interrupt
is enable.
Each time the REP_CNT related upcounter reaches zero,
an update event is generated and it restarts counting from
REP value. As REP_CNT is reloaded with REP value
only at the repetition update event U_RC, any write to the
TIMx_RCR register is not taken in account until the next
repetition update event. It means in PWM mode (REP +
1) corresponds to the number of PWM periods.

15.4.12 TIM16/17 Capture/compare register 1(TIM16/17_CCR1)
Offset address: 0x34

Reset value: 0x0000

123456789 01112131415 10

CCR1

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 0 CCR1 rw 0x0000 Capture/Compare 1 value
If CC1 channel is configured as output:
CCR1 is the value to be loaded in the actual cap-
ture/compare 1 register (preload value). It is loaded per-
manently if the preload feature is not selected in the
TIMx_CCMR1 register (bit OC1PE). Else the preload
value is copied in the active capture/compare 1 reg-
ister when an update event occurs. The active cap-
ture/compare register contains the value to be compared
to the counter TIMx_CNT and signaled on OC1 output.
If CC1 channel is configured as input:
CCR1 contains the counter value transferred by the last
input capture 1 event (IC1).

15.4.13 TIM16/17 break and dead-time register(TIM16/17_BDTR)
Offset address: 0x44

Reset value: 0x0000

www.mm32mcu.com 398/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

123456789 01112131415 10

OSSI DTGMOE AOE BKP BKE OSSR LOCK

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on

the LOCK configuration, it can be necessary to configure all of them during the first write access to

the TIMx_BDTR register.

Bit Field Type Reset Description

15 MOE rw 0x00 Main output enable
This bit is cleared asynchronously by hardware as soon as
the break input is active. It is set by software or automat-
ically depending on the AOE bit. It is acting only on the
channels which are configured in output.
0: OC and OCN outputs are disabled or forced to idle
state.
1: OC and OCN outputs are enabled if their respective en-
able bits are set (CCxE, CCxNE in TIMx_CCER register).
See section 15.4.7: TIM16/17 Capture/compare Enable
Register (TIM16/17_CCER) for more details.

14 AOE rw 0x00 Automatic output enable
0: MOE can be set only by software
1: MOE can be set by software or automatically at the next
update event (if the break input is not be active)
Note: This bit can not be modified as long as LOCK level 1 has

been programmed (LOCK bits in TIMx_BDTR register).

13 BKP rw 0x00 Break polarity
0: Break input BRK is active low
1: Break input BRK is active high
Note 1: This bit can not be modified as long as LOCK level 1 has

been programmed (LOCK bits in TIMx_BDTR register).

Note 2: This bit can only be written after the delay of one APB

clock.

12 BKE rw 0x00 Break enable
0: Break inputs (BRK and CSS clock failure event) dis-
abled
1: Break inputs (BRK and CSS clock failure event) en-
abled
Note 1: This bit can not be modified as long as LOCK level 1 has

been programmed (LOCK bits in TIMx_BDTR register).

Note 2: This bit can only be written after the delay of one APB

clock.

www.mm32mcu.com 399/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

11 OSSR rw 0x00 Off-state selection for Run mode
This bit is used when MOE=1 on channels config-
ured as complementary outputs. OSSR is not imple-
mented if no complementary output is implemented in
the timer. See OC/OCN enable description for more
details (section 15.4.7: capture/compare enable register
(TIMx_CCER)).
0: When inactive, OC/OCN outputs are disabled
(OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are enabled and inac-
tive level is output as soon as CCxE=1 or CCxNE=1, and
then set OC/OCN enable output signal to 1.
Note: This bit can not be modified as long as LOCK level 2 has

been programmed (LOCK bits in TIMx_BDTR register).

10 OSSI rw 0x00 Off-state selection fo Idle mode
This bit is used when MOE=0 on channels configured as
outputs.
See OC/OCN enable description for more details
(section 15.4.7: capture/compare enable register
(TIMx_CCER)).
0: When inactive, OC/OCN outputs are disabled
(OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are enabled and inac-
tive level is output as soon as CCxE=1 or CCxNE=1, and
then set OC/OCN enable output signal to 1
Note: This bit can not be modified as long as LOCK level 2 has

been programmed (LOCK bits in TIMx_BDTR register).

www.mm32mcu.com 400/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

9: 8 LOCK rw 0x00 Lock configuration
These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write-protected.
01: LOCK Level 1 = DTG, BKE, BKP, AOE bits in
TIMx_BDTR register, and OISx/OISxN bits in TIMx_CR2
register can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits
(CCxP/CCxNP bits in TIMx_CCER register, as long as the
related channel is configured in output through the CCxS
bits) as well as OSSR and OSSI bits can no longer be writ-
ten.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits
(OCxM and OCxPE bits in TIMx_CCMRx registers, as
long as the related channel is configured in output through
the CCxS bits) can no longer be written.
Note: The LOCK bits can be written only once after the reset.

Once the TIMx_BDTR register has been written, their content is

frozen until the next reset.

7: 0 DTG rw 0x00 Dead-time generator setup
This bit-field defines the duration of the dead-time inserted
between the complementary outputs. It is assumed that
DT corresponds to this duration.
DTG[7: 5] = 0xx:
DT = (DTG[7: 0] + 1) × tdtg, tdtg = tDTS;
DTG[7: 5] = 10x:
DT = (DTG[5: 0] + 1 + 64) × tdtg, tdtg = 2 × tDTS;
DTG[7: 5] = 110:
DT = (DTG[4: 0] + 1 + 32) × tdtg, tdtg = 8 × tDTS;
DTG[7: 5] = 111:
DT = (DTG[4: 0] + 1 + 32) × tdtg, tdtg = 16 × tDTS;
Example if tDTS = 125ns(8MHz), dead-time possible val-
ues are:
125ns to 15875ns by 125 nS steps;
16µs to 31750ns by 250 nS steps;
32µs to 63µs by 1 µs steps;
64µs to 126µs by 2 µs steps;
Note: This bit-field can not be modified as long as LOCK level

1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR reg-

ister).

15.4.14 TIM16/17 DMA DMA control register(TIM16/17_DCR)
Offset address: 0x48

www.mm32mcu.com 401/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Reset value: 0x0000

123456789 01112131415 10

ReservedReserved DBADBL

rwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15: 13 Reserved Reserved, always read as 0.
12: 8 DBL w 0x00 DMA burst length

This bit field defines the burst transfer in the continuous
mode (the timer detects a burst transfer when a read or
a write access to the TIMx_DMAR register address is per-
formed), namely, the number of transfers:
00000: 1 byte
00001: 2 bytes
00010: 3 bytes
......
......
10001: 18 bytes

7: 5 Reserved Reserved, always read as 0.
4: 0 DBA w 0x00 DMA base address

These bits define the base-address for DMA trans-
fers (when read/write access are done through the
TIMx_DMAR address). DBA is defined as an offset start-
ing from the address.
Example:
00000: TIMx_CR1
00001: TIMx_CR2
00010: TIMx_SMCR
......
Example: To complete the following transfer: DBL = 7 ,
DBA = TIMx_CR1, at this time, the transfer starts from the
address of TIMx_CR1 to/from 7 consecutive registers.

15.4.15 TIM16/17 address for full transfer(TIM16/17_DMAR)
Offset address: 0x4C

Reset value: 0x0000

123456789 01112131415 10

DMAB

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

www.mm32mcu.com 402/513

UM_MM32SPIN05x_q_Ver1.19
BASIC TIMER(TIM16/17)

Bit Field Type Reset Description

15: 0 DMAB w 0x0000 DMA register for burst accesses
A read or write operation to the TIMx_DMAR register ac-
cesses the register located at the following address:
(Address of TIMx_CR1) + (DBA + DMA index) x 4,
where, TIMx_CR1 address is the address of the control
register 1 (TIMx_CR1); DBA is the DMA base address con-
figured in TIMx_DCR register; DMA index is the offset au-
tomatically controlled by the DMA transfer, depending on
DBL configured in TIMx_DCR.

Example of how to use DMA concurrent operation:

In this example, the concurrency function of the timer DMA is used, to transfer the contents
of the CCRx register to the CCRx register in half words. The procedures are as follows:

1. Configure the relevant DMA channels:

(a) The device address of DMA channel is DMAR register address

(b) The memory address of DMA channel covers the RAM buffer address of data
transferred to CCRx register by DMA.

(c) Data transferred = 3 (see the following Note)

(d) Notification mode disabled

2. Configure the DBA and DBL bits of the DCR register: DBL = 3 transfers, DBA = 0xE.
3. Enable TIMx Update DMA Request (set UDE bit in DIER register)
4. Enable TIMx
5. Enable DMA channel

Note: In this example, all CCRx registers are updated all at one time. If the CCRx register needs

to be updated twice, the data transferred shall be 6, and the RAM buffer zone shall contain data1,

data2, data3, data4, data5 and data6. The data is transferred to the CCRx register as follows: in

case of the first DMA update request, data1 is transferred to CCR2, data2 transferred to CCR3,

and data3 transferred to CCR4; data4 is transferred to CCR2 in case of the second DMA update

interrupt request, data5 transferred to CCR3 and data6 transferred to CCR4.

www.mm32mcu.com 403/513

UM_MM32SPIN05x_q_Ver1.19
INDEPENDENT WATCHDOG(IWDG)

16 Independent watchdog(IWDG)

Independent watchdog(IWDG)

16.1 (IWDG introduction)

The devices have two embedded watchdog peripherals which offer a combination of high
safety level, timing accuracy and flexibility of use. Both watchdog peripherals (Indepen-
dent and Window) serve to detect and resolve malfunctions due to software failure, and
to trigger system reset or an interrupt (window watchdog only) when the counter reaches
a given timeout value.

The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI)
and thus stays active even if the main clock fails. The window watchdog (WWDG) clock
is prescaled from the APB1 clock and has a configurable time-window that can be pro-
grammed to detect abnormally late or early application behavior.

The IWDG is best suited to applications which require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy con-
straints. The WWDG is best suited to applications which require the watchdog to react
within an accurate timing window.

16.2 IWDG main features
• Free-running downcounter
• Clocked from an independent RC oscillator (can operate in Standby and Stop modes)
• Reset (if watchdog activated) when the downcounter value of 0x000 is reached

16.3 Functional description

The following figure shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCCCC in the Key register
(IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it
reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR
value is reloaded in the counter and the watchdog reset is prevented.

www.mm32mcu.com 404/513

UM_MM32SPIN05x_q_Ver1.19
INDEPENDENT WATCHDOG(IWDG)

426852

IWDG_PR IWDG_SR IWDG_RLR IWDG_KR

LSI

(40kHz)

1.8 V power

Prescaler register Status register Reload register Key register

8-bit

prescaler

12-bit reload value

12-bit downcounter

IWDG reset

VDD voltage domain

Figure 209. Independent Watchdog Block Diagram

Note: The watchdog function is implemented in the VDD voltage domain, still functional in Stop and

Standby modes.

Table 53. Min/max IWDG Timeout Period (in ms) at 40 kHz (LSI)

Prescaler divider PR [2:0] bits
Min timeout RL[11:0] =

0x000
Max timeout

/4 0 0.1 409.6

/8 1 0.2 819.2

/32 3 0.8 3276.8

/64 4 1.6 6553.6

/128 5 3.2 13107.2

/256 (6 or 7) 6.4 26214.4

Note: These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can

vary between 30 kHz–60 kHz.

In addition, even if the frequency of the oscillator is accurate, the exact timing still depends on the

phase difference between the APB interface clock and the oscillator clock.

As a result, there will always be a complete oscillator period that is uncertain.

16.3.1 Hardware watchdog
If the user activates the ’Hardware Watchdog’ function in the select bit (refer to the section
”Embedded Flash”), the watchdog will automatically run after the system power-on reset; if
the software does not write the corresponding value to the key register before the counter
ends counting, the system reset will occur.

16.3.2 Register access protection
The IWDG_PR and IWDG_RLR registers are write-protected. To modify the values of
these two registers, you must first write 0x5555 to the IWDG_KR register. Writing to this
register with a different value will disrupt the sequence and the registers will be repro-
tected. The reload operation (i.e. writing 0xAAAA) will also activate the write protection.

www.mm32mcu.com 405/513

UM_MM32SPIN05x_q_Ver1.19
INDEPENDENT WATCHDOG(IWDG)

The status register indicates whether the prescaler value and the downcounter are being
updated.

16.3.3 Debug mode
When the microcontroller enters debug mode (CPU core halted), the IWDG counter either
continues to work normally or stops, depending on DBG_IWDG_STOP configuration bit
in DBG module. For more details, refer to sections of debug modules.

16.4 IWDG register description

Table 54. Overview of IWDG Registers

Offset Acronym Register Name Reset Section

0x00 IWDG_KR Key register 0x00000000 section 16.4.1

0x04 IWDG_PR Prescaler register 0x00000000 section 16.4.2

0x08 IWDG_RLR Reload register 0x00000FFF section 16.4.3

0x0C IWDG_SR Status register 0x00000000 section 16.4.4

0x10 IWDG_CR Control register 0x00000000 section 16.4.5

16.4.1 Key register(IWDG_KR)
Offset address: 0x00

Reset value: 0x0000 0000(reset by Standby mode)

171819202122232425 162728293031 26

123456789 01112131415 10

w wwwwwwwwwwwwww w

Reserved

KEY

Bit Field Type Reset Description

31 : 16 Reserved Always read as 0.
15 : 0 KEY w 0x0000 Key value (write only, read 0x0000)

These bits must be written by software at regular intervals
with the key value 0xAAAA, otherwise the watchdog gen-
erates a reset when the counter reaches 0.
Writing the key value 0x5555 to enable access to the
IWDG_PR and IWDG_RLR registers.
Writing the key value 0xCCCC starts the watchdog.

16.4.2 Prescaler register(IWDG_PR)
Offset address: 0x04

www.mm32mcu.com 406/513

UM_MM32SPIN05x_q_Ver1.19
INDEPENDENT WATCHDOG(IWDG)

Reset value: 0x0000 0000(reset by Standby mode)

171819202122232425 162728293031 26

123456789 01112131415 10

rwrw rw

Reserved

Reserved PR

Bit Field Type Reset Description

31 : 3 Reserved Always read as 0.
2 : 0 PR rw 0x00 Prescaler divider

These bits are write access protected. They are written by
software to select the prescaler divider feeding the counter
clock. PVU bit of IWDG_SR must be reset in order to be
able to change the prescaler divider.
000: divider / 4 100: divider / 64
001: divider / 8 101: divider / 128
010: divider / 16 110: divider / 256
011: divider / 32 111: divider / 256
Note: Reading this register returns the prescaler value from the

VDD voltage domain. This value may not be up to date/valid if a

write operation to this register is ongoing. For this reason, the

value read from this register is valid only when the PVU bit in the

IWDG_SR register is reset.

16.4.3 Reload register(IWDG_RLR)
Offset address: 0x08

Reset value: 0x0000 0FFF(reset by Standby mode)

171819202122232425 162728293031 26

123456789 01112131415 10

RL

rwrwrwrwrwrwrwrwrwrwrw rw

Reserved

Reserved

Bit Field Type Reset Description

31 : 12 Reserved Always read as 0.

www.mm32mcu.com 407/513

UM_MM32SPIN05x_q_Ver1.19
INDEPENDENT WATCHDOG(IWDG)

Bit Field Type Reset Description

11 : 0 RL rw 0xFFF Watchdog counter reload value
These bits are write access protected. They are written
by software to define the value to be loaded in the watch-
dog counter each time the value 0xAAAA is written in the
IWDG_KR register. The watchdog counter counts down
from this value. The timeout period is a function of this
value and the clock prescaler.
Note: Reading this register returns the reload value from the

VDD voltage domain. This value may not be up to date/valid if

a write operation to this register is ongoing on this register. For

this reason, the value read from this register is valid only when

the RVU bit in the IWDG_SR register is reset.

16.4.4 Status register(IWDG_SR)
Offset address: 0x0C

Reset value: 0x0000 0000 (not reset by Standby mode)

171819202122232425 162728293031 26

123456789 01112131415 10

r r

Reserved

Reserved PVURVU

Bit Field Type Reset Description

31 : 2 Reserved Always read as 0.
1 RVU r 0x00 Watchdog counter reload value update

This bit is set by hardware to indicate that an update of
the reload value is ongoing. It is reset by hardware when
the reload value update operation is completed in the VDD

voltage domain (takes up to 5 RC 40 kHz cycles). Reload
value can be updated only when RVU bit is reset.

0 PVU r 0x00 Watchdog prescaler value update
This bit is set by hardware to indicate that an update of
the prescaler value is ongoing. It is reset by hardware
when the prescaler update operation is completed in the
VDD voltage domain (takes up to 5 RC 40 kHz cycles).
Prescaler value can be updated only when PVU bit is re-
set.

Note: If several reload values or prescaler values are used by application, it is mandatory to wait

www.mm32mcu.com 408/513

UM_MM32SPIN05x_q_Ver1.19
INDEPENDENT WATCHDOG(IWDG)

until RVU bit is reset before changing the reload value and to wait until PVU bit is reset before

changing the prescaler value. However, after updating the prescaler and/or the reload value it is

not necessary to wait until RVU or PVU is reset before continuing code execution (even in case of

low-power mode entry, the write operation is taken into account and will complete).

16.4.5 IWDG Control register(IWDG_CR)
Offset address: 0x10

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

Reserved
IRQ_

CLR

IRQ_

SEL

rw rw

Bit Field Type Reset Description

31:2 Reserved Always read as 0.
1 IRQ_CLR rw 0x00 IWDG interrupt clear

1: Write 1 clear interrupt
0: No operation

0 IRQ_SEL rw 0x00 IWDG overflow operation selection
1: Interrupt after overflow
0: Reset after overflow

www.mm32mcu.com 409/513

UM_MM32SPIN05x_q_Ver1.19
WINDOW WATCHDOG(WWDG)

17 Window watchdog(WWDG)

Window watchdog(WWDG)

17.1 WWDG introduction

The window watchdog is used to detect the occurrence of a software fault, usually gener-
ated by external interference or by unforeseen logical conditions, which causes the appli-
cation program to abandon its normal sequence. The watchdog circuit generates an MCU
reset on expiry of a programmed time period, unless the program refreshes the contents
of the downcounter before the T6 bit becomes cleared. An MCU reset is also generated if
the 7-bit downcounter value (in the control register) is refreshed before the downcounter
has reached the window register value. This implies that the counter must be refreshed
in a limited window.

17.2 WWDG main features
• Programmable free-running downcounter
• Conditional reset:

– Reset (if watchdog activated) when the downcounter value becomes less than
0x40

– Reset (if watchdog activated) if the downcounter is reloaded outside the win-
dow

• Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the downcounter is equal to 0x40. It is used to reload the counter, thus preventing
WWDG reset.

17.3 Functional description

If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when
the 7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it
initiates a reset. If the software reloads the counter while the counter is greater than the
value stored in the window register, then a reset is generated.

www.mm32mcu.com 410/513

UM_MM32SPIN05x_q_Ver1.19
WINDOW WATCHDOG(WWDG)

055172

- W6 W5 W4 W3 W2 W1 W0

WDGA T6 T5 T4 T3 T2 T1 T0

CMP

Watchdog control register (WWDG_CR)

Watchdog configura"on register (WWDG_CFR)

6-bit downcounter (CNT)

WDG prescaler

(WDGTB)

Comparator

= 1 when

T6:0 > W6:0

Write WWDG_CR

PCLK1

(from RCC clock controller)

RESET

Figure 210. Watchdog Block Diagram

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the
counter value is lower than the window register value. The value to be stored in the
WWDG_CR register must be between 0xFF and 0xC0.

• Enabling the watchdog

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in
the WWDG_CR register, then it cannot be disabled again except by a reset.

• Controlling the downcounter

This downcounter is free-running, counting down even if the watchdog is disabled. When
the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset.

The T[5:0] bits contain the number of increments which represents the time delay before
the watchdog produces a reset. The timing varies between a minimum and a maximum
value due to the unknown status of the prescaler when writing to the WWDG_CR register.

The Configuration register (WWDG_CFR) contains the high limit of the window: To prevent
a reset, the downcounter must be reloadedwhen its value is lower than the window register
value and greater than 0x3F. The above figure describes the window watchdog process.

Another way to reload the counter is to use the early wakeup interrupt (EWI). This interrupt
is enabled by setting the WEI bit in the WWDG_CFR register. It is generated when the
downcounter reaches 0x40, and the corresponding interrupt service routine (ISR) can be
used to load counters, so as to prevent WWDG reset. The interrupt can be cleared by
writing a ’0’ to the WWDG_SR register.

www.mm32mcu.com 411/513

UM_MM32SPIN05x_q_Ver1.19
WINDOW WATCHDOG(WWDG)

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is

cleared).

17.4 How to program the watchdog timeout

The figure below shows the linear relationship (in mS) between the 6-bit count value
loaded into the Watchdog Counter (CNT) and the watchdog delay time. This figure can
be used as a reference for rapid calculation without taking into account time deviations.
If higher precision is required, you can use the calculation formula provided in the figure
below.

Warning: When writing to the WWDG_CR register, always write 1 in the T6 bit to avoid
generating an immediate reset.

www.mm32mcu.com 412/513

UM_MM32SPIN05x_q_Ver1.19
WINDOW WATCHDOG(WWDG)

399420

WDGTB

0

1

2

3

113µS

227µS

455µS

910µS

7.28mS

14.56mS

29.12mS

58.25mS

TPCLK1

TWWDG WWDG

TWWDG = TPCLK1 × 4096 × 2
WDGTB

× (T[5:0]+1) (mS)

T6

T[6:0]CNT downcounter

time

3Fh

W[6:0]

Refresh not allowed Refresh allowed

bit

Reset

The formula to calculate the WWDG timeout value is given by:

Where:

timeout

APB1 clock period measured in ms

Minimum and maximum timeout values at PCLK1=36 MHz

Max. timeout value Min. timeout value

Figure 211. Window Watchdog Timing Diagram

17.5 Debug mode

When the microcontroller enters debug mode (CPU core halted), the WWDG counter ei-
ther continues to work normally or stops, depending onDBG_WWDG_STOP configuration
bit in DBG module. For more details, refer to sections of debug modules.

17.6 WWDG register description

www.mm32mcu.com 413/513

UM_MM32SPIN05x_q_Ver1.19
WINDOW WATCHDOG(WWDG)

Table 55. Overview of WWDG Registers

Offset Acronym Register Name Reset Section

0x00 WWDG_CR Control register 0x0000007F section 17.6.1

0x04 WWDG_CFGR Configuration register 0x0000007F section 17.6.2

0x08 WWDG_SR Status register 0x00000000 section 17.6.3

17.6.1 Control register(WWDG_CR)
Offset address: 0x00

Reset value: 0x0000 007F

rwrw

WDGA T

Reserved

Reserved

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31:8 Reserved Reserved, always read as 0.
7 WDGA rw 0x00 Activation bit

This bit is set by software and only cleared by hardware af-
ter a reset. When WDGA = 1, the watchdog can generate
a reset.
0: Watchdog disabled
1: Watchdog enabled

6:0 T rw 0x7F 7 - bit counter
These bits contain the value of the watchdog counter. It
is decremented every(4096x2WDGTB)PCLK1 cycles.A re-
set is produced when it rolls over from 0x40 to 0x3F (T6
becomes cleared).

17.6.2 Configuration register(WWDG_CFGR)
Offset address: 0x04

Reset value: 0x0000 007F

rwrwrw

WDGTB W

Reserved

Reserved EWI

171819202122232425 162728293031 26

123456789 01112131415 10

www.mm32mcu.com 414/513

UM_MM32SPIN05x_q_Ver1.19
WINDOW WATCHDOG(WWDG)

Bit Field Type Reset Description

31:10 Reserved Reserved, always read as 0.
9 EWI rw 0x00 Early wakeup interrupt

When set, an interrupt occurs whenever the counter
reaches the value 0x40.
This interrupt is only cleared by hardware after a reset.

8:7 WDGTB rw 0x00 Timer base
The time base of the prescaler can be modified as follows:
00: CK Counter Clock (PCLK1 div 4096) div1
01: CK Counter Clock (PCLK1 div 4096) div2
10: CK Counter Clock (PCLK1 div 4096) div4
11: CK Counter Clock (PCLK1 div 4096) div8

6:0 WINDOW rw 0x7F 7-bit window value
These bits contain the window value to be compared to
the downcounter.

17.6.3 Status register(WWDG_SR)
Offset address: 0x08

Reset value: 0x0000 0000

rc_w0

EWIF

Reserved

Reserved

171819202122232425 162728293031 26

123456789 01112131415 10

Bit Field Type Reset Description

31:1 Reserved Reserved, always read as 0.
0 EWIF rc_w0 0x00 Early wakeup interrupt flag

This bit is set by hardware when the counter has reached
the value 0x40. It must be cleared by software by writing
‘0’.
A write of ‘1’has no effect. This bit is also set if the
interrupt is not enabled.

www.mm32mcu.com 415/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

18 Serial peripheral interface(SPI)

Serial peripheral interface(SPI)

18.1 SPI description

The SPI interface is widely used for board-level communication between different devices,
such as the extended serial Flash, ADC, etc. Devices from many IC manufacturers sup-
port the SPI interface.

The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication
with external devices. Applications can communicate by querying status or SPI interrupts.

18.2 Main features
• Fully compatible with Motorola SPI specification
• Support DMA requests
• Full-duplex synchronous transfers on three lines
• 16-bit programmable baud rate generator
• Master or slave operation
• 8-byte FIFO receiving/transmitting
• In master mode, SPI clock reaches pclk/2 (pclk: APB clock); in slave mode, SPI clock
is up to pclk/4

• Programmable clock polarity and phase
• Programmable data sequence, MSB first or LSB first
• Support one-host and multiple-slave operations
• Support simultaneous transmission and reception of 1 ∼ 32-bit data
• In addition to 8-bit data transmission and reception, the remaining 1 ∼ 32-bit data trans-
mission and reception only supports LSB mode, not supporting MSB mode.

• Support 8 transmit buffers and receive buffers for corresponding configuration data bits
(Data size)

• Interrupt drive operation
– The transmitting end is null and the end overflows
– Received data is valid, and data overflows at the receiving end
– Complete reception in SPI master mode, and the transmitting end is null

18.3 Functional description

18.3.1 General
The block diagram of SPI is shown below

www.mm32mcu.com 416/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

020437

APB

Bridge

DMA

Bus

Interface

Logic

Register

Logic

TX

BUFF

ER

Control Logic

Tx shift register

Rx shift register
Baud Rate

Generator

M
a
ster b

lo
c
k

Master /Slave Select

TX shift register

RX shift register

S
lav

e b
lo

ck

RX

BUFF

ER

SPI

Figure 212. SPI Block Diagram

The SPI enables receiving and transmitting 1 ∼ 32-bit data simultaneously. The SPI can be
configured as the slave mode or the master mode in a host environment. Four possible
timing relationships can be selected by configuring the clock polarity CPOL and phase
CPHA. It supports programmable data sequence, i.e. MSB first or LSB first.

The same clock is used for the transmission and reception. Data is clocked on the rising
or falling edge of the clock, latching the data on the opposite valid edge of SCLK. Since
the SPI is used to exchange data, the data must be read after transferring even if the data
is invalid. In SPI mode, the clock and polarity of the master shall be the same as that of
the slave to be communicated.

Usually, the SPI is connected to external devices through four pins:

MOSI: Master Out / Slave In data. This pin can be used to transmit data in master mode
and receive data in slave mode.

SCK: Serial Clock output for SPI masters and input for SPI slaves.

NSS: Slave select. This is an optional pin to select a master/slave device. This pin acts
as a ’chip select’ to let the SPI master communicate with slaves individually and to avoid
contention on the data lines. Slave NSS inputs can be driven by standard IO ports on the
master device. The NSS pin may also be used as an output if enabled and driven low if
the SPI is in master mode. At this time, all NSS pins from devices connected to the Master
NSS pin see a low level.

• MISO: Master In / Slave Out data. This pin can be used to transmit data in slave mode
and receive data in master mode.

• MOSI: Master Out / Slave In data. This pin can be used to transmit data in master mode

www.mm32mcu.com 417/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

and receive data in slave mode.
• SCK: Serial Clock output for SPI masters and input for SPI slaves.
• NSS: Slave select. This is an optional pin to select a master/slave device. This pin acts
as a ’chip select’ to let the SPI master communicate with slaves individually and to avoid
contention on the data lines. Slave NSS inputs can be driven by standard IO ports on
the master device. The NSS pin may also be used as an output if enabled and driven
low if the SPI is in master mode. At this time, all NSS pins from devices connected to
the Master NSS pin see a low level.

An example of interconnections between a single master and a single slave is illustrated
below.

236771

MSBit LSBit MSBit LSBit

8-bit shi� register 8-bit shi� register

SPI clock

generator

Not used if NSS is

managed by so�ware

NSS(1)

SCK SCK

MOSI MOSI

MISO

SlaveMaster

VDD

MISO

NSS (1)

Figure 213. Single Master/Single Slave Application

The MOSI pins are connected together and the MISO pins are connected together. In
this way, data is transferred serially between master and slave (most significant bit (MSB)
first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via the MOSI pin, the slave device responds via the MISO pin. This
implies full-duplex communication with both data out and data in synchronized with the
same clock signal (which is provided by the master device via the SCK pin).

Clock phase and clock polarity
Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPI_CCTL register. The CPOL (clock polarity) bit controls the steady state value
of the clock when no data is being transferred. This bit affects both master and slave
modes. If CPOL is reset, the SCK pin has a low-level idle state, namely, the low level

www.mm32mcu.com 418/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

between two transfers. If CPOL is set, the SCK pin has a high-level idle state, namely,
the high level between two transfers.

If the CPHA (clock phase) bit is set, the first data bit is latched on the second edge on
the SCK (falling edge if the CPOL bit is set; rising edge if the CPOL bit is reset), and the
data bit received is sampled. The SPI changes the serial data during the first SCK clock
transition (when the clock changes in the opposite direction of the idle state) and captures
the data on the next edge.

If the CPHA (clock phase) bit is cleared, the first data bit is latched on the first edge on
the SCK (falling edge if the CPOL bit is reset; rising edge if the CPOL bit is set), and the
data bit received is sampled. The SPI captures the the serial data during the first SCK
clock transition (the clock changes in the opposite direction of the idle state) and the data
is changed on the next edge.

The combination of the CPOL (clock polarity) and CPHA (clock phase) bits selects the
data capture clock edge. Figure 214 shows an SPI transfer with the four combinations of
the CPHA and CPOL bits. The diagram may be interpreted as a master or slave timing
diagram where the SCK pin,the MISO pin, the MOSI pin are directly connected between
the master and the slave device.

High-speed transmission
Considering the sensitivity to board-level delay in high-speed transmission mode, adjust
the time for adjust the time of the transmitting phase and the received samples by setting
TXEDGE and RXEDGE control bits in the SPI_CCTL register.

• In the slave mode, if TXEDGE is 1, the data is immediately sent to the data bus for
high-speed mode (SPBRG = 4); when the bit is 0, the data is sent to the data bus after
a valid clock edge for low-speed mode (SPBRG > 4).

• In master mode, if RXEDGE is 1, the data is sampled in the middle of the transmitted
data bit; when the bit is 0, the data is sampled on the tail clock edge of the transmitted
data bit (for high-speed mode)

1. The SPIEN bit must be cleared to disable the SPI before changing the CPOL/CPHA bit.
2. The master and slave must be configured as the same timing mode.
3. The idle state of SCK must be the same as the polarity specified by the SPI_CCTL register.

When CPOL is 1, the SCK shall be set high in the idle state. When CPOL is 0, SCK shall be
set low in the idle state.

www.mm32mcu.com 419/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

240135

MSBit

MSBit

LSBit

LSBit

CPHA=1

CPHA=0

CPOL = 1

CPOL = 0

MISO
(from master)

MOSI
(from slave)

NSS
(to slave)

CAPTURE STROBE

MSBit

MSBit

LSBit

CPOL = 1

CPOL = 0

(from master)

CAPTURE STROBE

MISO

(from slave)
MOSI

LSBit

(to slave)
NSS

Figure 214. Data Clock Timing Diagram

Data frame format
Data can be shifted out either MSB-first or LSB-first depending on the value of the LSBFE
bit in the SPI_CCTLRegister. Each data frame is 7 or 8 bits long depending on the SPILEN
bit in the SPI_CCTL register. The selected data frame format is applicable to transmission
and/or reception.

In addition, the register SPI_EXTCTL can be configured, with the data frame length of
1 ∼ 32 bits. Configuration is required to during the application: the DW8_32 bit of the
SPI_CCTL register is set to ’0’, and the LSBFE bit of the SPI_CCTL register is set to ’1’

www.mm32mcu.com 420/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

and the SPILEN bit is set to ’1’. In conjunction with DMA data transmission, the data length
of the DMA needs to be configured as 8 bits.

18.3.2 SPI slave mode
In the slave configuration, the serial clock is received on the SCK pin from the master
device. The setting in the SPI_SPBRG register does not affect the data transfer rate.

Procedure
1. Set the SPILEN bit to define 7- or 8-bit data frame format.
2. Select the CPOL and CPHA bits to define one of the four relationships between the

data transfer and the serial clock. For correct data transfer, the CPOL and CPHA bits
must be configured in the same way in the slave device and the master device.

3. The frame format (MSB-first or LSB-first depending on the value of the LSBFE bit in
the SPI_CCTL register) must be the same as the master device.

4. Clear the MDOE bit and set the SPIEN bit, making corresponding pins work in SPI
mode. In this configuration, the MOSI pin is used as the data input, and MISO as data
output.

Transmit sequence
The data byte is parallel-loaded into the transmitting buffer during the write operation.

The transmit sequence begins when the slave device receives the clock signal and the first
data bit appears on its MOSI pin, then the first bit is sent. The remaining bits are loaded
into the shift-register. The TX_INTF flag in the SPI_INTSTAT register is set on the transfer
of data from the transmitting buffer to the shift register, and an interrupt is generated if the
TXIEN bit in the SPI_INTEN register is set.

Receive sequence
For the receiver, when data transfer is complete:

• TheData in shift register is transferred to receiving buffer and theRX_INTF flag (SPI_INTSTAT
register) is set.

• An Interrupt is generated if the RXIEN bit is set in the SPI_INTEN register.

After the last sampling clock edge, the RXNE bit is set, a copy of the data byte received in
the shift register is moved to the receiving buffer. When the SPI_RXREG register is read,
the SPI peripheral returns this buffered value.

18.3.3 SPI master mode
In the master configuration, the serial clock is generated on the SCK pin.

Procedure

1. Define the serial clock baud rate through SPI_SPBRG register.
2. Select the CPOL and CPHA bits to define the phase relation between the data transfer

and the serial clock.
3. Set the SPILEN bit to define 8- or 7-bit data frame format.
4. Configure the LSBFE bit in the SPI_CCTL register to define the frame format.

www.mm32mcu.com 421/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

5. If data is only received and not sent, the SPI_RNDNR register shall be set, and the
bytes to be received shall be defined.

6. The MDOE and SPIEN bits must be set.

In this configuration, the MOSI pin is a data output, the MISO pin is a data input, and NSS
is the select signal output of slave device.

Transmit sequence
The transmit sequence begins when a byte is written in the transmitting buffer. The data
byte is parallel-loaded into the shift register (from the internal bus) during the first bit trans-
mission, and then shifted out serially to the MOSI pin; MSB first or LSB first depends on
the LSBFE bit in the SPI_CCTL register. The TX_INTF flag is set on the transfer of data
from the transmitting buffer to the shift register, and an interrupt is generated if the TXIEN
bit in the SPI_INTEN register is set.

Receive sequence
For the receiver, when data transfer is complete:

• TheData in shift register is transferred to receiving buffer and theRX_INTF flag (SPI_INTSTAT
register) is set.

• An Interrupt is generated if the RXIEN bit is set in the SPI_INTEN register.

After the last sampling clock edge, the RXNE bit is set, a copy of the data byte received in
the shift register is moved to the receiving buffer. When the SPI_RXREG register is read,
the SPI peripheral returns this buffered value.

If only data is received and not transmitted, the RXMATCH_INTF bit is set to ’1’ after
receiving the bytes defined by RXDNR, indicating that all data has been received, and the
clock signal is no longer transmitted in Master mode.

18.3.4 Status flags
For convenient software operation, the application can monitor the state of the SPI bus
with four current status flags and seven interrupt status flags. The current status flag is
read-only and is automatically set and cleared by hardware; the interrupt status flag is set
when an event occurs and generates a CPU interrupt when the interrupt is enabled, and
it can be cleared by software.

The SPI is configured with 8-byte transmit buffer and receive buffer. The CPU enables
reading andwriting 1 or 4 bytes at a time according to the DW8_32-bit setting of SPI_GCTL.
Based on the configuration of DW8_32, the transmit and receive buffers respectively have
one-byte flag or a status flag of valid data.

Table 56. SPI Status

Classification Status flag Buffer and signal status

Interrupt sta-

tus
TX_INTF

According to the DW8_32 setting, there is at least one

space for valid data, enabling writing the transmitting

data register for one time.

www.mm32mcu.com 422/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Interrupt sta-

tus
RX_INTF

According to the DW8_32 setting, there is at least one

space for valid data, enabling reading the transmitting

data register for one time.

Interrupt sta-

tus
UNDERRUN_INTF

Transmitting buffer is null and repeated transmission

occurs

Interrupt sta-

tus
RXOERR_INTF Receiving buffer is non-null and overwritten

Interrupt sta-

tus
RXMATCH_INTF

Non-null, the last data is transferred to the receiving

buffer

Interrupt sta-

tus
RXFULL_INTF Receiving buffer is full and unable to receive new data

Interrupt sta-

tus
TXEPT_INTF Transmitting buffer is null and unable to send data

Current

status
RXAVL_4BYTE

Receiving buffer is loaded with valid data more than

4 bytes

Current

status
TXFULL Transmitting buffer is full

Current

status
TXEPT Transmitting buffer is null

Current

status
RXAVL

The receiving buffer is non-null and enables receiving

at least one byte

When the TXTLF of the SPI_GCTL register is 00, TX_INTF is set when the transmitting buffer

is configured with one or more free data spaces. When TXTLF is 01, TX_INTF is set when the

transmitting buffer is configured with more than half of the free space.

When the RXTLF of the SPI_GCTL register is 00, RX_INTF is set when the receiving buffer is

loaded with one or more valid data. When RXTLF is 01, RX_INTF is set when the receiving buffer

is loaded with more than half of the valid data.

18.3.5 Baud rate setting
The baud rate is the frequency of the generated SCLK, which is typically the division of
PCLK. The BRG is a 16-bit baud rate generator, and the SPBREG register is used to
control the count period of the 16-bit counter.

The desired baud rate and fpclk (frequency of the APB module) are given, and the value
calculated from the formula shown in the table below is set to the SPBRG register. The X
in the table below is equal to the value of the SPBRG register (2 ∼ 65535).

Table 57. Baud Rate Formula

Mode Formula

SPI mode Baud rate = fpclk/X

www.mm32mcu.com 423/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

18.3.6 SPI communication using DMA
To operate at its maximum speed, the SPI needs to be fed with the data for transmission
and the data received on the receive buffer should be read to avoid overrun. To facilitate
the transfers, the SPI features aDMA capability implementing a simple request/acknowledge
protocol.

A DMA access is requested when DMAEN bit in the SPI_GCTL register is enabled. DMA
requests of transmitting buffer and receive buffer are enabled by DMAEN.

• In transmission, a DMA request is issued if TXTLF in SPI_GCTL register is set to 00 and
the transmitting buffer is configured with one or more free data spaces; when TXTLF
is set to 01 and the transmitting buffer is configured with more than half free space, a
DMA request is generated, enabling only one DMA transfer. In the process, the data
size and that of transmitting buffer depend on DW8_32.

• In reception, a DMA transfer request is issued if RXTLF in SPI_GCTL register is set to
00 and the receive buffer is loaded with one or more valid data; when RXTLF is set to
01 and the receive buffer is loaded with more than half valid data, a DMA request is
generated, enabling only one DMA transfer. In the process, the data size and that of
receive buffer depend on DW8_32.

18.4 Register file and memory mapping description

Table 58. Overview of SPI Register

Offset Acronym Register Name Reset Section

0x00 SPI_TXREG Transmit data register 0x00000000 section 18.4.1

0x04 SPI_RXREG Receive data register 0x00000000 section 18.4.2

0x08 SPI_CSTAT Current status register 0x00000001 section 18.4.3

0x0C SPI_INTSTAT Interrupt status register 0x00000000 section 18.4.4

0x10 SPI_INTEN Interrupt enable register 0x00000000 section 18.4.5

0x14 SPI_INTCLR Interrupt clear register 0x00000000 section 18.4.6

0x18 SPI_GCTL Global control register 0x00000004 section 18.4.7

0x1C SPI_CCTL General-purpose control register 0x00000008 section 18.4.8

0x20 SPI_SPBRG Baud rate generator register 0x00000002 section 18.4.9

0x24 SPI_RXDNR Receive data count register 0x00000001 section 18.4.10

0x28 SPI_NSSR Slave chip select register 0x000000FF section 18.4.11

0x2C SPI_EXTCTL Data control register 0x00000008 section 18.4.12

18.4.1 Transmit data register(SPI_TXREG)
Offset address: 0x00

Reset value: 0x0000 0000

www.mm32mcu.com 424/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrw

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

TXREG

TXREG

Bit Field Type Reset Description

31:0 TXREG rw 0x0000
0000

Transmit data register
Valid data bits are controlled by DW8_32.
0: Lower 8 bits active
1:TXREG 31:0 active

18.4.2 Receive data register(SPI_RXREG)
Offset address: 0x04

Reset value: 0x0000 0000

15 1234567891011121314 0

31 1718192021222324252627282930 16

rrrrrrrrrrrrrrrr

r rrrrrrrrrrrrrr r

RXREG

RXREG

Bit Field Type Reset Description

31:0 RXREG r 0x0000
0000

Receive data register
Valid data bits are controlled by DW8_32.
0: Lower 8 bits active
1: RXREG 31:0 active
This register is readable and non-writable.

18.4.3 Current status register(SPI_CSTAT)
Offset address: 0x08

Reset value: 0x0000 0001

www.mm32mcu.com 425/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

15 1234567891011121314 0

rrr r

31 1718192021222324252627282930 16

Reserved

Reserved RXAVLTXFULL TXEPTRXAVL_

4BYTE
RXFADDR TXFADDR

r r r r r r r r

Bit Field Type Reset Description

31:12 Reserved Always read as 0.
11:8 RXFADDR r 0x00 Receive FIFO address
7:4 TXFADDR r 0x00 Transmit FIFO address
3 RXAVL_4BYTE r 0x00 Receive available 4 byte data message

1: Receive buffer is loaded with data more than 4 bytes
0: Receive buffer is loaded with data less than 4 bytes

2 TXFULL r 0x00 Transmitter FIFO full status bit
1: Transmitting buffer full
0: Transmitting buffer not full

1 RXAVL r 0x00 Receive available byte data message
This bit is set when the receiver buffer receives data of one
full byte.
1: Receiver buffer has received a valid byte of data
0: Receiver buffer is null
This bit is read-only and is automatically set and cleared
by hardware.

0 TXEPT r 0x01 Transmitter empty bit
The transmitter buffer and the transmit shift register are
null.
0: The transmitter buffer is non-null
This bit is read-only and is automatically set and cleared
by hardware.

18.4.4 Interrupt status register(SPI_INTSTAT)
Offset address: 0x0C

Reset value: 0x0000 0000

www.mm32mcu.com 426/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

15 1234567891011121314 0

rrrrrr r

31 1718192021222324252627282930 16

Reserved

Reserved TXEPT_

INTF

RXFULL

_INTF

RX

MATCH

_INFT

RXO

ERR_

INFT

UNDE

RRUN

_INTF

RX_

INTF

TX_

INTF

Bit Field Type Reset Description

31:7 Reserved Always read as 0.
6 TXEPT_INTF r 0x00 Transmitter empty interrupt flag bit

This bit is automatically reset by hardware, and can be
cleared by writing TXEPT_ICLR bit in INTCLR register.
1: The transmitter buffer and TX shift register are null
0: The transmitter buffer is non-null
Note: This bit is the interrupt status signal and TXEPT is
the status signal.

5 RXFULL_INTF r 0x00 RX FIFO full interrupt flag bit
This bit is automatically reset by hardware, and can be
cleared by writing RXFULL_ICLR bit in INTCLR register
1: RX buffer full
0: RX buffer not full

4 RXMATCH_
INTF

r 0x00 Receive specified bytes interrupt flag bit(Receive data
match the RXDNR number, the receive process will be
completed and generate the interrupt)
This bit is automatically reset by hardware, and can be
cleared by writing RXMATCH_ICLR bit in INTCLR register.
1: Bytes specified by the RXDNR register are received
0: Bytes specified by the RXDNR register are not received

3 RXOERR_
INTF

r 0x00 Receive overrun error interrupt flag bit
This bit is automatically reset by hardware, and can be
cleared by writing RXOERR_ICLR bit in INTCLR register.
1: Overrun error
0: No overrun error

2 UNDERRUN_
INTF

r 0x00 SPI underrun interrupt flag bit
This bit is automatically reset by hardware, and can be
cleared by writing UNDERRUN_ICLR bit in INTCLR regis-
ter.
1: Underrun error
0: No underrun error

www.mm32mcu.com 427/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Bit Field Type Reset Description

1 RX_INTF r 0x00 Receive data available interrupt flag bit
This bit is automatically reset by hardware, and can be
cleared by writing RX_ICLR bit in INTCLR register.
This bit is set when the receiver buffer receives data of one
full byte.
1: Receiver buffer has received valid data
0: Receiver buffer is null

0 TX_INTF r 0x00 Transmit FIFO available interrupt flag bit (sending data of
one byte)
This bit is automatically reset by hardware, and can be
cleared by writing TX_ICLR bit in INTCLR register.
1: Transmitter buffer enabled
0: Transmitter buffer disabled

18.4.5 Interrupt enable register(SPI_INTEN)
Offset address: 0x10

Reset value: 0x0000 0000

15 1234567891011121314 0

rwrwrwrwrwrw rw

31 1718192021222324252627282930 16

Reserved

Reserved TXEPT_

IEN

RXFULL

_IEN

RX

MATCH

_IEN

RXO

ERR_

IEN

UNDE

RRUN

_IEN

RX_

IEN

TX_

IEN

Bit Field Type Reset Description

31:7 Reserved Always read as 0.
6 TXEPT_IEN rw 0x00 Transmit empty interrupt enable bit

1: Interrupt enabled
0: Interrupt disabled

5 RXFULL_IEN rw 0x00 Receive FIFO full interrupt enable bit
1: Interrupt enabled
0: Interrupt disabled

4 RXMATCH_
IEN

rw 0x00 Receive data complete interrupt enable bit
1: Interrupt enabled
0: Interrupt disabled

3 RXOERR_
IEN

rw 0x00 Overrun error interrupt enable bit
1: Interrupt enabled
0: Interrupt disabled

www.mm32mcu.com 428/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Bit Field Type Reset Description

2 UNDERRUN_
IEN

rw 0x00 Transmitter underrun interrupt enable bit(SPI slave mode
only)
1: Interrupt enabled
0: Interrupt disabled

1 RX_IEN rw 0x00 Receive FIFO interrupt enable bit
1: Interrupt enabled
0: Interrupt disabled

0 TX_IEN rw 0x00 Transmit FIFO empty interrupt enable bit
1: Interrupt enabled
0: Interrupt disabled

18.4.6 Interrupt clear register
Offset address: 0x14

Reset value: 0x0000 0000

15 1234567891011121314 0

wwwwww r

31 1718192021222324252627282930 16

Reserved

Reserved TXEPT_

ICLR

RXFULL

_ICLR

RX

MATCH

_ICLR

RXO

ERR_

ICLR

UNDE

RRUN

_ICLR

RX_

ICLR

TX_

ICLR

Bit Field Type Reset Description

31:7 Reserved Always read as 0.
6 TXEPT_ICLR w 0x00 Transmitter empty interrupt clear bit

1: Interrupt cleared
0: Interrupt not cleared

5 RXFULL_ICLR w 0x00 Receiver buffer full interrupt clear bit
1: Interrupt cleared
0: Interrupt not cleared

4 RXMATCH_
ICLR

w 0x00 Receive completed interrupt clear bit
1: Interrupt cleared
0: Interrupt not cleared

3 RXOERR_
ICLR

w 0x00 Overrun error interrupt clear bit
1: Interrupt cleared
0: Interrupt not cleared

2 UNDERRUN_
ICLR

w 0x00 Transmitter underrun interrupt clear bit (SPI slave mode
only)
1: Interrupt cleared
0: Interrupt not cleared

www.mm32mcu.com 429/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Bit Field Type Reset Description

1 RX_ICLR w 0x00 Receive interrupt clear bit
1: Interrupt cleared
0: Interrupt not cleared

0 TX_ICLR r 0x00 Transmitter FIFO empty interrupt clear bit
1: Interrupt cleared
0: Interrupt not cleared

18.4.7 Global control register(SPI_GCTL)
Offset address: 0x18

Reset value: 0x0000 0004

15 1234567891011121314 0

rwrwrwrwrwrwrwrwrwrwrwrw rw

31 1718192021222324252627282930 16

Reserved

Reserved DW8_

32
NSS DMAEN TXTLF RXTLF RXEN TXEN MODE INTEN SPIENNSS

TOG

Bit Field Type Reset Description

31:13 Reserved Always read as 0.
12 NSSTOG rw 0x00 Slave select toggle

1：NSS toggle after transmit
0：NSS not toggle after transmit
note: only work in master mode

11 DW8_32 rw 0x00 Valid byte or double-word data select signal
0: Lower 8 bits active
1: 32-bit data active
Note: When using CPU or DMA, access data in the spec-
ified format.

10 NSS rw 0x00 NSS select signal that from software or hardware
0: Controlled by the NSSR register value
1: Automatically controlled by hardware during data trans-
mission

9 DMAEN rw 0x00 DMA access mode enable
0: DMA mode disabled
1: DMA mode enabled

www.mm32mcu.com 430/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Bit Field Type Reset Description

8:7 TXTLF rw 0x00 TX FIFO trigger level bit
00: The DMA request or transmit interrupt request is gen-
erated if the transmitting buffer is configured with 1 or more
free data spaces.
01: The DMA request or transmit interrupt request is gen-
erated if the transmitting buffer is configured with more
than half free spaces.
1x: Reserved
Note: If DW8_32 is 0, one data space represents 1 byte;
when it is 1, a data space represents 4 bytes.

6:5 RXTLF rw 0x00 RX FIFO trigger level bit
00: The DMA request or receive interrupt request is gen-
erated if the receive buffer is loaded with 1 or more valid
data.
01: The DMA request or receive interrupt request is gen-
erated if the receive buffer is loaded with more than half
valid data.
1x: Reserved
Note: If DW8_32 is 0, one valid data represents 1 byte;
when it is 1, one valid data represents 4 bytes.

4 RXEN rw 0x00 Receive enable bit
1: Reception enabled
0: Reception disabled and RX buffer cleared
Note: txen must be set to 0 when the SPI only runs in
master receive mode.

3 TXEN rw 0x00 Transmit enable bit
1: Transmission enabled
0: Transmission disabled and TX buffer cleared
Note: Transmission and receiving are completed simulta-
neously in master mode.

2 MODE rw 0x01 Master mode bit
1: Master mode (serial clock generated by internal BRG)
0: Slave mode (serial clock from external master)

1 INTEN rw 0x00 SPI interrupt enable bit
1: SPI interrupt enabled
0: SPI interrupt disabled

0 SPIEN rw 0x00 SPI select bit
0: SPI disabled (reset state)
1: SPI enabled

18.4.8 General-purpose control register(SPI_CCTL)
Offset address: 0x1C

www.mm32mcu.com 431/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Reset value: 0x0000 0008

15 1234567891011121314 0

rwrwrwrwrwrwrw rw

31 1718192021222324252627282930 16

Reserved

Reserved
TX

EDGE

RX

EDGE

LSB

FE
CPOL

CPH

ASEL

SPI

LEN
CPHAHISPD

Bit Field Type Reset Description

31:8 Reserved Always read as 0.
7 HISPD rw 0x00 High speed slave mode

1：SPI is working in high speed
0：SPI is working in high speed
only working in slave mode

6 CPHASEL rw 0x00 CPHA polarity select
1：CPHA is 0, The first data bit is sampled from the second
clock edge
0：CPHA is 0, The first data bit is sampled from the first
clock edge

5 TXEDGE rw 0x00 Transmit data edge select (slave mode)
1: Data is immediately sent to the data bus
when the high-speed mode is available (SPBRG = 4).
0: The data is sent to the data bus after a valid clock edge
when the low-speed mode is available (SPBRG > 4).

4 RXEDGE rw 0x00 Receive data edge select (master mode)
1: Sample data at the tail clock edge of the transmit data
bit (for high speed mode)
0: Intermediate sample data in the transmit data bit

3 SPILEN rw 0x01 SPI character length bit
This bit is active after DW8_32 is reset (DW8_32=0).
1: 8-bit data (default)
0: 7-bit data

2 LSBFE rw 0x00 LSBFE: LSI first enable bit
1: Data transmission or reception lowest bit first
0: Data transmission or reception highest bit first

1 CPOL rw 0x00 Clock polarity select bit
1: The clock is high in the idle state (between two trans-
missions)
0: The clock is low in the idle state (between two transmis-
sions)

www.mm32mcu.com 432/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Bit Field Type Reset Description

0 CPHA rw 0x00 Clock phase select bit
1: The first data bit is sampled from the first clock edge
0: The first data bit is sampled from the second clock edge

18.4.9 Baud rate generator(SPI_SPBRG)
Offset address: 0x20

Reset value: 0x0000 0002

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrw

SPBRG

Reserved

Bit Field Type Reset Description

31:16 Reserved Always read as 0.
15:0 SPBRG rw 0x0002 SPI baud rate control register for baud rate

Baud rate formula:
Baud rate = fpclk/SPBRG
(fpclkis the APB clock frequency)
Note: Do not write 0 and 1 to this register.

18.4.10 Receive data count register (SPI_RXDNR)
Offset address: 0x24

Reset value: 0x0000 0001

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrw

RXDNR

Reserved

Bit Field Type Reset Description

31:16 Reserved Always read as 0.

www.mm32mcu.com 433/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Bit Field Type Reset Description

15:0 RXDNR rw 0x0001 The register is used to hold a count of to be received bytes
in next receive process
The value (1 by default) of this register is valid when the
SPI is in master receive mode. This register value is mod-
ified by writing MCU.
Note: Do not write 0 to this register.

18.4.11 Slave chip select register(SPI_NSSR)
Offset address: 0x28

Reset value: 0x0000 00FF

15 1234567891011121314 0

rw

Reserved NSS

Bit Field Type Reset Description

15:1 Reserved Always read as 0.
0 NSS rw 0xFF Chip select output signal in Master mode

This bit is active-low, and is inactive in the slave mode.
0: Slave device selected
1: Slave device not selected

18.4.12 Data control register(SPI_EXTCTL)
Offset address: 0x2C

Reset value: 0x0000 0008

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrw

EXTLEN

Reserved

Reserved

Bit Field Type Reset Description

31:5 Reserved Always read as 0.

www.mm32mcu.com 434/513

UM_MM32SPIN05x_q_Ver1.19
SERIAL PERIPHERAL INTERFACE(SPI)

Bit Field Type Reset Description

4：0 EXTLEN rw 0x08 This bit is used to control SPI data length.
0 0000：32 bit
0 0001：1 bit
0 0010：2 bit
0 0011：3 bit
…

1 1100：28 bit
1 1101：29 bit
1 1110：30 bit
1 1111：31 bit
Note: It is valid only when the DW8_32 bit of the
SPI_GCTL register is set to ’0’, the LSBFE bit of the
SPI_CCTL register is set to ’1’, and SPILEN is also set
to ’1’.

www.mm32mcu.com 435/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

19 I2C interface (I2C)

I2C interface (I2C)

19.1 I2C introduction

I2C (inter-integrated circuit) bus Interface serves as an interface between the microcon-
troller and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-
specific sequencing, protocol, arbitration and timing.

The I2C bus is a two-wire serial interface, in which two-wire bit serial data (SDA) and
serial clock (SCL) lines are used to transmit information between the devices connected
to bus. Each device is configured with a unique address identification and can be used as
a transmitter or receiver. Moreover, the device can also be considered as amaster or slave
during data transmission. The master is the device that initializes the data transfer of the
bus and generates a clock signal enabling the transmission. At that time, any addressed
device is considered as a slave.

I2C can operate in standard mode (data transmission rate: 0～100 Kbps) and fast mode
(maximum data transmission rate: 400 Kbps).

19.2 I2C main features
• Parallel-bus2C protocol converter
• Half-duplex synchronous operation
• Act as Master or Slave
• Support 7-bit and 10-bit addresses
• Support standard mode (100 Kbps) and fast mode (400 Kbps)
• Generate Start, Stop, Resend Start, Acknowledge Signals for detection
• Only support one master device in master mode
• 2 bytes of transmitting and receive buffers respectively
• Provide burr-free circuit to SCLI and SDAI
• Support DMA operation
• Support interrupt and query operations

19.3 I2C protocol

19.3.1 Start and Stop conditions
When the bus is in the idle state, SCL and SDA are simultaneously tied high with the
external pull-up resistor. Before the master enables the data transfer, a Start condition
must be generated. When the SCL line is high, the SDA line switches from high to low,
to indicate the Start condition. A Stop condition is generated when the master disables

www.mm32mcu.com 436/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

the transfer. The SCL line is high and the SDA line switches from low to high, indicating
a Stop condition.

The figure below shows the timing diagram for the Start and Stop conditions. During data
transfer, SDA must remain stable when SCL is 1.

755520

S

Start Condition

P

SCL

Change of Data

Allowed

Data line Stable

Data Valid

Change of Data

Allowed
Stop Condition

SDA

Figure 215. Start and Stop Conditions

19.3.2 Slave address protocol
I2C has two address formats: 7-bit address format and 10-bit address format.

7-bit address format
The following figure shows the first 7 bits (bit 7:1; slave address) of a byte transmitted after
the Start condition (S), and the lowest bit (bit 0) is the data direction bit. When bit 0 is 0, it
indicates that the master writes data to the slave; 1 represents that the master reads data
from the slave.

389349

S A6 A5 A4 A3 A2 A1 A0 R/W ACK

MSB LSB

Slave Address
sent by slave

S = START condition R/W = Read /Write PulseACK = Acknowledge

Figure 216. 7-bit Address Format

10-bit address format
In the 10-bit address format, 2 bytes are transmitted to transfer the 10-bit address. The
description of the first byte of the transmission bit is as follows: The first 5 bits (bit 7:3) are
used to signal the next 10-bit transmission of the slave. The last two bits (bit 2:1) of the
first byte are bit 9:8 of the slave address, and the lowest bit (bit 0) is the data direction bit

www.mm32mcu.com 437/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

(R/W). The second byte of the data transferred is the lower eight bits of the 10-bit address.

The details are as follows:

611694

S 0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 ACKACK1111

Reserved for 10-Bit Address sent by slave sent by slave

ACK = Acknowledge

R/W = Read/Write Pulse

S = START condition

R/W

Figure 217. 10-bit Address Format

The following table defines the special purpose and reserved addresses of the first byte
of I2C:

Table 59. First Byte of I2C

Slave

address
R/W bit Description

0000 000 0
General call address: the data is sent to the receive buffer via I2C, so

as to generate a general call interrupt

0000 000 1 Start byte

0000 001 X CBUS address: I2C interface ignores this access

0000 010 X Reserved

0000 011 X Reserved

0000 1xx X Reserved

1111 1xx X Reserved

1111 0xx X 10-bit slave addressing

19.3.3 Transmission and reception protocols
The master, master transmitter or receiver, initializes data transfer and sends or receives
data from the bus. The slave, as a slave transmitter or slave receiver, responds to the
master’s request, sending or receiving data.

Master transmitter and slave receiver
All data is transmitted in byte format, with the unlimited bytes per transfer. When the
master sends the address and R/W bit or the master sends a byte of data to the slave, the
slave shall generate a response signal (ACK). When the slave receiver fails to generate
an ACK response, the master will generate a Stop condition, to abort the transmission.
When the slave fails to respond, SDA shall be set high, making the master generate a
Stop condition.

www.mm32mcu.com 438/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

When the master transmitter transmits the data, the slave receiver responds to the master
transmitter by generating an ACK after each byte received, as shown in the following
figure.

478516

S A A PA/AR/W DATASlave Address Second ByteSlave Address First 7 bits

‘11110xxx’ ‘0’(write)

For 10-bit Address

From Master to Slave

From Slave to Master

A = Acknowledge(SDA low)

A = No Acknowledge(SDA high)

S = START Condition

P = STOP Condition

A A PDATADATAS Slave Address

‘0’(write)

For 7-bit Address

R/W A/AA

Figure 218. Master Transmitting Protocol

Master receiver and slave transmitter
When the master receives the data, as shown in the figure below, the master shall respond
to the slave transmitter after receiving data of one byte, except for the last byte. In this
way, the master receiver sends signal indicating whether it is the last byte to the slave
transmitter. The slave transmitter shall release the SDA when detecting a NACK so that
the master generates a Stop condition.

745602

S A A PA/AR/W Slave Address Second ByteSlave Address First 7 bits

‘11110xxx’ ‘0’(write)

For 10-bit Address

From Master to Slave

From Slave to Master

A = Acknowledge(SDA low)

A = No Acknowledge(SDA high)

S = START Condition

P = STOP Condition

A A PDATADATAS Slave Address

‘1’(read)

For 7-bit Address

R/W A/AA

Sr = RESTART Condition

DATASr

Figure 219. Master Receiving Protocol

www.mm32mcu.com 439/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

When the master needs not to generate Stop conditions, to release the bus, a repeated
Start condition can be generated, which is the same as the Start condition except that it
is generated after the ACK. In the master mode, the I2C interface communicates with the
same slave using different directions of transmission.

Start byte transmission protocol
The start byte transmission protocol is used by systems without dedicated I2C hardware
module. When the I2C module is used as the master, the start byte output can be gener-
ated for the required slave at the beginning of each transfer.

The protocol consists of seven 0s and one 1, as shown in the following figure. The pro-
cessor enables inquiring the bus with a low speed sampling flag 0 during the address
phase. Once 0 is detected, the processor switches from the low-speed sampling mode to
the normal-speed mode of the master.

007882

S

SDA

Sr

SCL 1 2 7 8 9

ACKstart byte

00000001

dummy acknowledge

(HIGH)

Figure 220. Start Byte Transmission

The start byte procedure is as follows:

1. The master generates a starting condition
2. The master sends the start byte (0000 0001)
3. The master sends an ACK clock pulse (ACK)
4. No slave responds to the ACK signal
5. The master generates a repeated Start condition (RESTART)

The hardware I2C receiver needs not to respond to the start byte since it is a reserved
address and the address is reset after RESTART.

19.3.4 Transmitting buffer management and generation of Start,
Stop, and repeated Start conditions

In the master mode, the I2C module generates a Stop condition on the bus whenever the
transmitter is null. If the repeated Start condition generation is enabled (RESTART = 1),
a repeated Start condition is generated when the transfer direction changes from read to
write or from write to read. If the repeated Start condition is disabled, a Start condition will
be generated after the Stop condition.

The figure below shows the bits of the DR register.

www.mm32mcu.com 440/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

924941

CMD DATADR

DATA: Read/Write field; data retrieved from slave is read from this

field; data to be sent to slave is written to this field.

CMD: Write-only field; this bit determines whether transfer to be

carried out is read (CMD = 1) or Write (CMD = 0)

8 7 0

Figure 221. DR Register

The timing diagram below describes the behavior of the I2C module in the master trans-
mitting mode when the Tx FIFO becomes null.

656035

 Tx FIFO loaded with data

(write data in this example)

 Data availability triggers

START condition on bus

Last byte popped from

Tx FIFO

A6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0D7 D7

S

W Ack Ack

P

Empty Tx FIFO triggers

STOP condition on bus

SDA

SCL

FIFO_EMPTY

Ack

Figure 222. Master Transmitting - Null Tx FIFO

The timing diagram below describes the behavior of the I2Cmodule in themaster receiving
mode when the Tx FIFO becomes null.

791568

 Tx FIFO loaded with command

(read operation in this example)

Command availability triggers

 START condition on bus

Last Command popped

from Tx FIFO

A6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0D7 D7

S

R Ack NAck

P

Empty Tx FIFO triggers

STOP condition on bus

SDA

SCL

FIFO_EMPTY

Ack

Figure 223. Master Receiving - Null Tx FIFO

www.mm32mcu.com 441/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

19.3.5 Multiple-master arbitration
The I2C bus is a multi-master bus. Arbitration is a process that multiple masters simulta-
neously attempt to control the bus, but only one of them is allowed to control the bus and
the message is not damaged. Once one of the masters has controlled the bus, the other
master can not control the bus until the master sends a Stop condition and sets the bus
to the idle state.

Arbitration occurs on the SDA when the SCL line is high. If two or more masters attempt
to send information to the bus, and if the other master generates a ”0”, the master that first
generated a ”1” will lose the arbitration. Those that lost the arbitration continue to generate
clock pulses until the end of the byte transfer. If each master attempts to address the same
device, arbitration will continue during the data phase.

After detecting the arbitration lost, the I2C interface stops generating the SCL signal.

The following figure shows the bus timing for arbitration of two masters

828193

‘0’

MSB

MSB

MSB

DATA

DATA

SDA

SCL

SDA lines up with DATA1 START condition

DATA1 loses arbitration

SDA mirrors DATA2

matching data

‘1’

Figure 224. Multiple-master Arbitration

19.3.6 Clock synchronization
When two or more masters attempt to transmit information on the bus simultaneously, they
must arbitrate and synchronize the SCL clock. All masters generate their own clocks to
transmit messages. The data is only active when the clock is high. Clock synchronization
is achieved with ’AND’ connection of the SCL signal. When the master turns the SCL
clock to 0, the master will calculate the SCL low time and set the SCL clock to 1 at the
beginning of next clock cycle. However, the master will enter a wait state until the SCL
clock changes to 1 if another master keeps SCL at 0.

All masters will calculate their high time, and those with the shortest high time will change
SCL to 0. Then, the master will calculate the low time, and those with the longest low time
will force other masters to enter the wait state, generating a synchronized SCL clock, as
shown in the following figure.

www.mm32mcu.com 442/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

975397

Wait State

Start counting HIGH period

SCL transitions HIGH
when all CLKs are in HIGH state

SCL LOW transition
Resets all CLKs to start counting
their LOW periods

CLKA

CLKB

SCL

Figure 225. Clock Synchronization of Multiple Masters

19.4 I2C operating mode

The I2C interface operates in one of four modes:

• Slave transmitter mode
• Slave receiver mode
• Master transmitter mode
• Master receiver mode

Note: The I2C interface module can only operates in either master mode or slave mode, and not

in both modes at the same time. Therefore, Bit 6 (DISSLAVE) and Bit 0 (MASTER) in register CR

shall not be set to 0 and 1 respectively (or 1 and 0 respectively).

The functional block diagram of I2C is as follows:

www.mm32mcu.com 443/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

769309

APB

Bus Interface Logic

PCLK

Baud Rate

Generator

TXREG RXREG

TX BUF RX BUF

SPBRG

T
X

 S
h

if
t
R

e
g

Register Control

Master

S
C

L
M

S
D

A
O

M

S
D

A
I

Detect

Logic

R
X

 S
h

if
t
R

e
g

MFSM

control

logic

T
X

 S
h

ift R
e

g
Slave

S
C

L
S

S
D

A
O

S

S
D

A
I

Detect

Logic

R
X

 S
h

ift R
e

g
SFSM

control

logic

Figure 226. I2C Functional Block Diagram

19.4.1 Slave mode
The following describes the procedure flow chart of the slave mode

Initial configuration
1. Write 0 to Bit 0 of ENR register, to disable I2C.
2. Configure the slave address by initializing the SAR register. The address is that the

I2C interface responds to.
3. Configure the specified address format of CR register (set bit 3 to select the 7-bit or

10-bit address format). Write 0 to Bit 6 of the CR register (DISSLAVE) and write 0 to
bit 0 (MASTER).

4. Write 1 to bit 0 in the ENR register, enabling the I2C interface module.

Single byte operation of slave transmitter
When the I2C interface is addressed by another I2C master and requests data, the I2C
interface operates in the slave transmitter mode as follows:

1. Other I2C master devices initialize the I2C transfer, with the transmit address matching
the slave address in the SAR register.

2. The I2C interface responds to the address sent, identifying the transmission direction
is in the slave transmitter mode.

3. The I2C interface generates the RD_REQ interrupt (Bit 5 of Register RAWISR) and
sets the SCL line low. The bus is always in waiting state until the software responds.

If the RD_REQ interrupt is masked (register IMR5 = 0), it is recommended that the CPU

www.mm32mcu.com 444/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

periodically inquires the RAWISR register.

1. Setting bit 5 of RAWISR is equivalent to generating an RD_REQ interrupt.
2. The software shall meet the requirements for I2C transmission.
3. The time interval is usually around 10 SCL clock cycles. For example, at 400 kbps,

the time interval is 25 us.
4. If the Tx FIFO is still loaded with data before receiving a read request, the I2C interface

will generate a TX_ABRT interrupt (RAWISR6) and clear the data in the Tx FIFO.
5. The software writes the data to the DR register (its bit 8 is set to 0).
6. Software shall first clear RD_REQ and TX_ABRT interrupts in the RAWISR registers

(bits 5 and 6 respectively)
7. The I2C interface releases SCL and sends a data byte.
8. The master device sends a repeated Start condition, to control the bus, or sends a

Stop condition to release the bus.

Single byte operation of slave receiver
When the I2C interface is addressed by other master devices and data is sent, the I2C
interface operates in the slave receiver mode, as follows:

1. Other I2C master devices initialize the I2C transfer, with the transmit address matching
the slave address in the SAR register.

2. The I2C interface responds to the address sent, identifying the transmission direction
is in the slave receiver mode.

3. The I2C interface receives the data sent by the master and stores it in the receive
buffer.

4. The I2C interface generates an RX_FULL interrupt (RAWISR2). If the RX_FULL inter-
rupt is masked (IMR2 = 0), it is recommended that the software periodically inquire the
SR register. When bit 3 of SR register (RFNE) is 1, it is equivalent to the RX_FULL
interrupt generated.

5. The software obtains the received data by reading bit 7:0 in the DR register.
6. The master device sends a repeated Start condition, to control the bus, or sends a

Stop condition to release the bus.

Block transmission of slave
In the standard I2C protocol, all data is processed in single byte, and the program responds
to the master’s read request by writing a byte to the slave’s Tx FIFO. When a slave (salve
transmitter) receives a read request (RD_REQ) from the master (master receiver), at least
one data is sent to the Tx FIFO of slave transmitter. This I2C interface module enables
processing multiple data in the x FIFO, therefore, for the next read request, an interrupt
is not needed to fetch data, thus greatly reducing the waiting time caused by each data
interruption.

This mode only acts when the I2C interface is in slave transmitter mode. If the master
transmitter responds to the data transferred by the slave transmitter, there is no data in
the slave’s TX FIFO; the I2C interface will set the SCL line of the I2C bus low until the read
request interrupt (RD_REQ) is generated and the TX FIFO data is ready before releasing

www.mm32mcu.com 445/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

the SCL line.

If the RX_REQ interrupt is masked (ISR5 = 0), the software can periodically inquire and
read RAWISR register. When reading RAWISR5, returning to 1 is equivalent to generating
the RX_REQ interrupt.

The RD_REQ interrupt is generated due to the read request, like an interrupt, it must be
cleared when exiting the Interrupt Service Routine (ISR). One or more bytes of data can be
written to the TX FIFO in an Interrupt Service Routine (ISR). In the process of transferring
these bytes to the master, if the master responds to the last byte, the slave must generate
the RD_REQ interrupt request again. This is because that the master requires more data.

If the master receives n bytes from the I2C interface, but the number of data written to the
Tx FIFO by the program is greater than n, the slave will clear the Tx FIFO and ignore the
extra words after transmitting data of required n bytes.

19.4.2 Main mode

Initial configuration
1. Disable the I2C interface by setting ENR0 = 0
2. Configure bit 2:1 of the CR register, to set the rate mode (standard mode and fast

mode) for I2C operation. In addition, ensure bit 6 (DISSLAVE) is 1, and bit 0 (MASTER)
is 1.

3. Write the I2C device address to the TAR register. Set this register, which can be con-
figured as a broadcast address or start byte command.

4. Set ENR0, to enable the I2C interface.
5. Write the transferred data and the transfer direction to the DR register. If the DR reg-

ister is configured before the I2C interface is enabled, data and commands will be lost
since the buffer is cleared when the I2C interface is disabled.

By following the above steps, I2C interface will generate a Start condition and send the
address byte data to the I2C bus.

Master transmitter and master receiver
The I2C interface supports dynamic switching of reads andwrites. When transmitting data,
write data to the lower byte (DR) of the I2C RX/TX data buffer and command register,
and set the CMD bit to 0, to allow a write operation. For the next read command, it is
unnecessary to set the low byte of the DR register, and the CMD bit shall be 1. If the
transmitter’s FIFO is null, the I2C module sets SCL low until the next command is written
to the transmitter’s FIFO.

Program flow chart
The following flow chart is a program example of the I2C interface used as a master:

www.mm32mcu.com 446/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

949597

Disable I2C module

by writing 0 to ENR

Configuring the CR register:

1. Set DISSLAVE to 1- slave disabled

2. Set RESTART to 1 -

enable repeated start mode

3. Configure MASTER10 in 0-7 bit

address format

4. Set SPEED to 1 - standard mode

5. Set MASTER to 1- master mode

Set the target slave

address by

configuring TAR

Set the SCL high

period by

configuring the

SSHR register

Set the SCL low

period by

configuring the

SSLR register

Enable all

interrupts by

writing IMR

register

Set the RXFIFO

threshold by

configuring the

RXTLR register

Set the TXFIFO

threshold by

configuring the

TXTLR register

Enable the I2C

interface by writing

1 to ENR register

Write write

command and

data or read

command to DR

Whether the TX_EMPTY

interrupt is generated?

SR [5]

(MST_ACTIV

)=0?

Disable I2C by

writing 0 to ENR

register

RX_FULL

interrupt

generated?

Get the received

data

by reading DR7:0

Is the command a

write command? No

Yes

Yes

Yes

Yes

No

Are more

commands sent?

Figure 227. Flow Chart of I2C Interface Master

19.4.3 I2C abort transmission
The ABRT control bit in the ENR register allows the software to disable the I2C bus before
transmitting the command in the TX FIFO. In response to the ABORT request, the I2C
module issues a Stop condition to the I2C bus while clearing the TX FIFO. The transfer of
operation value can be aborted in the master mode.

Procedure
1. Stop writing new commands to the Tx FIFO (DR)
2. Disable the transmission of DMA by setting TDMAE = 0 when operating in DMA mode
3. Set the ABRT bit of ENR register to 1
4. Wait for TX_ABRT interrupt

www.mm32mcu.com 447/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

19.5 Communication using DMA

The I2C interface supports data transmission and reception through DMA, namely, DMA
transmission or DMA reception can be enabled separately by setting the corresponding
bit in the DMA register. A DMA request will be generated when the data register becomes
null during the transmission or becomes full upon reception. The DMA request must be
acknowledged before the end of the current byte transfer.

Transmission using DMA
DMA mode can be enabled for transmission by setting the TXEN bit in the DMA register.
Data will be loaded from aMemory area predefined to the DR register during data transfer.

Reception using DMA
DMA mode can be enabled for reception by setting the RDMAE bit in the DMA register.
Data will be loaded from the DR register to a Memory area predefined during each data
reception after DMA channel is configured by I2C.

19.6 I2C interrupt

The following table lists the I2C interrupt bits and how they are set and cleared. Some
bits are set by hardware and cleared by software; the other bits are set and cleared by
hardware.

Table 60. Set and Clear Interrupt Bits

Interrupt

bit

Set by hardware/cleared by

software
Set and cleared by hardware

GEN_CALL √ x

START_DET √ x

STOP_DET √ x

ACTIVITY √ x

RX_DONE √ x

TX_ABRT √ x

RD_REQ √ x

TX_EMPTY x √

TX_OVER √ x

RX_FULL x √

RX_OVER √ x

RX_UNDER √ x

The following figure depicts that interrupt bits in the interrupt register are set by hardware
and cleared by software.

www.mm32mcu.com 448/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

809039

IMR

RAWISR

pwdata[i]

i = register bit field

register_en

(decoded from padder)
ISR

0

1
0

1

0

1
1

0

0

I2C_EN

H/W SETCLR_READ_EN

{S/W Access

to Register

Figure 228. Interrupt Mechanism

19.7 I2C register description

Table 61. I2C Register Overview

Offset Acronym Register Name Reset Section

0x00 I2C_CR I2C control register 0x007F section 19.7.1

0x04 I2C_TAR I2C destination address register 0x0055 section 19.7.2

0x08 I2C_SAR I2C slave address register 0x0055 section 19.7.3

0x10 I2C_DR I2C data command register 0x0001 section 19.7.4

0x14 I2C_SSHR Standard mode I2C clock high counter

register

0x0190 section 19.7.5

0x18 I2C_SSLR Standard mode I2C clock low counter reg-

ister

0x01D6 section 19.7.6

0x1C I2C_FSHR Fast mode I2C clock high counter register 0x0036 section 19.7.7

0x20 I2C_FSLR Fast mode I2C clock low counter register 0x0082 section 19.7.8

0x2C I2C_ISR I2C interrupt status register 0x0000 section 19.7.9

0x30 I2C_IMR I2C interrupt mask register 0x08FF section 19.7.10

0x34 I2C_RAWISR I2C RAW interrupt register 0x0000 section 19.7.11

0x38 I2C_RXTLR I2C reception threshold 0x0000 section 19.7.12

0x3C I2C_TXTLR I2C transmission threshold 0x0000 section 19.7.13

0x40 I2C_ICR I2C combined and independent interrupt

clear register

0x0000 section 19.7.14

0x44 I2C_RX_UNDER I2C clear RX_UNDER interrupt register 0x0000 section 19.7.15

0x48 I2C_RX_OVER I2C clears RX_OVER interrupt register 0x0000 section 19.7.16

www.mm32mcu.com 449/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Offset Acronym Register Name Reset Section

0x4C I2C_TX_OVER I2C clear TX_OVER interrupt register 0x0000 section 19.7.17

0x50 I2C_RD_REQ I2C clear RD_REQ interrupt register 0x0000 section 19.7.18

0x54 I2C_TX_ABRT I2C clear TX_ABRT interrupt register 0x0000 section 19.7.19

0x58 I2C_RX_DONE I2C clear RX_DONE interrupt register 0x0000 section 19.7.20

0x5C I2C_ACTIV I2C clear ACTIVITY interrupt register 0x0000 section 19.7.21

0x60 I2C_STOP I2C clear STOP_DET interrupt register 0x0000 section 19.7.22

0x64 I2C_START I2C clear START_DET interrupt register 0x0000 section 19.7.23

0x68 I2C_GC I2C clear GEN_CALL interrupt register 0x0000 section 19.7.24

0x6C I2C_ENR I2C enable register 0x0000 section 19.7.25

0x70 I2C_SR I2C status register 0x0006 section 19.7.26

0x74 I2C_TXFLR I2C transmitter buffer level register 0x0000 section 19.7.27

0x78 I2C_RXFLR I2C receiver buffer level register 0x0000 section 19.7.28

0x7C I2C_HOLD I2C SDA hold time register 0x0001 section 19.7.29

0x88 I2C_DMA I2C DMA control register 0x0000 section 19.7.30

0x94 I2C_SETUP I2C SDA setup time register 0x0064 section 19.7.31

0x98 I2C_GCR I2C general call ACK register 0x0001 section 19.7.32

19.7.1 I2C control register(I2C_CR)
Offset address: 0x00

Reset value: 0x007F

15 1234567891011121314 0

RESTART STOP

rwrwrwrrwrwrwrw rw

Reserved SPEEDEMPINTSTOPINT DISSLAVEREPEN MASTER10 SLAVE10 MASTER

rwrw

Bit Field Type Reset Description

15 : 11 Reserved Always read as 0.

www.mm32mcu.com 450/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

10 RESTART rw 0x00 Whether to generate a RESTART signal before transmis-
sion or reception
This bit is only valid when
IC_EMPTYFIFO_HOLD_MASTER_EN is set to ’1’
1: If the RESTART signal is ”1”, the data is received or sent
(according to a RESTART signal will be generated before
data reception or transmission (depending on CMD), re-
gardless of the previous command changes the direction
of data transmission. If IC_RESTART_EN signal is set to
’0’, the STOP signal will follow the START signal
0: If the RESTART signal is set to ’1’, the RESTART signal
is generated only when the previous command changes
the direction of data transmission. If the RESTART signal
is set to ’0’, the STOP signal will follow the START signal

9 STOP rw 0x00 STOP: Whether to generate a STOP signal after transmis-
sion or reception
This bit is only valid when
IC_EMPTYFIFO_HOLD_MASTER_EN is set to ’1’
1: A STOP signal is generated after the current byte, re-
gardless of the Tx FIFO is null. If the Tx FIFO is not null,
the master immediately issues a new transmission and
bus arbitration signal.
0: A STOP signal is not generated after the current byte,
regardless of the Tx FIFO is null. The master continues
the current transmission (data transmission or reception
depending on CMD). If the Tx FIFO is null, the master will
set SCL low, to pend the bus until Tx FIFO receives new
data

8 EMPINT rw 0x00 This bit controls the generation of TX_EMPTY interrupt.
Refer to the IC_RAW_INTR_STAT register for details.

7 STOPINT rw 0x00 In the slave mode, whether a STOP_DET interrupt is gen-
erated.
1:STOP_DET interrupt is generated when the address
matches
0:STOP_DET interrupt is generated regardless of the ad-
dress match.
This bit is only applicable to slave mode.
Note: During the addressing of broadcasting address, if this bit

is set, the slave will not generate a STOP_DET interrupt. The

STOP_DET interrupt is generated only when the transmitted ad-

dress matches the slave address.

www.mm32mcu.com 451/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

6 DISSLAVE rw 0x01 This bit controls whether I2C has its slave disabled
0: Slave enabled
1: Slave disabled

5 REPEN rw 0x01 Determines whether RESTART conditions may be sent
when acting as a master
0: Disabled
1: Enabled
When RESTART is disabled, the following functions can-
not be performed when the I2C interface acts as a master:
Send start byte
Change the transmission direction in combined format
mode
Read data 10-bit address format
The RESTART condition is replaced by sending a Stop
condition first and then transmitting a Start condition. If
the above operation is executed, bit 6 (TX_ABRT) of the
IC_RAW_INTR_STAT register is set.

4 MASTER10 r 0x01 Address mode when acting as a master
0: 7-bit address format
1: 10-bit address format

3 SLAVE10 rw 0x01 When acting as a slave, this bit controls whether the I2C
responds to 7- or 10-bit addresses
0: 7-bit addressing address. The I2C interface ignores 10-
bit addressing. For 7-bit addressing, only the lower 7 bits
of IC_SAR register is compared.
1: 10-bit addressing address. I2C only responds to 10-
bit addressing; the receiving address is compared with 10
bits of IC_SAR.

2:1 SPEED rw 0x03 These bits control at which speed the I2C operates
This configuration is only valid when the I2C interface op-
erates in the master mode.
1: Standard mode (0 ∼ 100 Kbps)
2: Fast mode (400 Kbps)

0 MASTER rw 0x01 This bit controls whether the I2C master is enabled
0: Master disabled
1: Master enabled

The DISSLAVE (bit 6) and MASTER (bit 0) configurations are listed in the following table:

Table 62. DISSLAVE (Bit 6) and MASTER (Bit 0) Configurations

DISSLAVE CR[6] MASTER CR[0] Status

0 0 Slave device

www.mm32mcu.com 452/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

DISSLAVE CR[6] MASTER CR[0] Status

0 1 Configuration error

1 0 Configuration error

1 1 Master device

19.7.2 I2C destination address register(I2C_TAR)
Offset address: 0x04

Reset value: 0x0055

15 1234567891011121314 0

rwrwrwrwrwrwrwrwrwrwrw rw

SPECIAL GC ADDR

Reserved

Bit Field Type Reset Description

15 : 12 Reserved Always read as 0.
11 SPECIAL rw 0x00 This bit indicates whether the software executes a special

command (general call or start byte command)
0: Ignore the 10-bit GC, and use the ADDR bit normally
1: Execute special I2C commands such as GC bit

10 GC rw 0x00 If bit 11 (SPECIAL) is set to 1, then this bit indicates
whether a General Call or START byte command is to be
performed by the I2C
0: General call address. Only perform write operation
when sending a general call address. The I2C interface al-
ways operates in broadcast address mode until SPECIAL
(bit 11) is cleared.
1: Start byte command

9 : 0 ADDR rw 0x55 This is the target address for any master transaction
When a broadcast address is sent, these bits can be ig-
nored.
To generate the start byte command, the CPU only needs
to write these bits once.

19.7.3 I2C slave address register(I2C_SAR)
Offset address: 0x08

Reset value: 0x0055

15 1234567891011121314 0

rwrwrwrwrwrwrwrwrw rw

Reserved ADDR

www.mm32mcu.com 453/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

15 : 10 Reserved Always read as 0.
9 : 0 ADDR rw 0x55 When the I2C interface operates in the slave mode, for

slavememory address in 7-bit address format, ADDR [6:0]
is only valid.

19.7.4 I2C data command register(I2C_DR)
Offset address: 0x10

Reset value: 0x0001

15 1234567891011121314 0

Reserved CMD DAT

rwrwrww rw rwrwrw rw

Bit Field Type Reset Description

15 : 9 Reserved Always read as 0.
8 CMD w 0x00 Control read or write operations in master mode

1: Read
0: Write
When a command is sent to TX FIFO, this bit is used to dis-
tinguish between read and write commands. In the slave
receiver mode, the write operation of this bit is ignored.
In the slave transmitter mode, writing 0 indicates that the
data of the DR register is ready to be sent.

7 : 0 DAT rw 0x01 I2C bus data to be sent or received

19.7.5 Standard mode I2C clock high counter register(I2C_SSHR)
Offset address: 0x14

Reset value: 0x0190

15 1234567891011121314 0

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

Bit Field Type Reset Description

15 : 0 CNT rw 0x0190 SCL clock high period in standard mode of I2C interface
Note: This register has a configurable value between 6 and

65525. This is because the I2C interface uses a 16-bit counter;

the I2C bus is in the idle state when the counter value is SSHR

+ 10.

www.mm32mcu.com 454/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

19.7.6 Standard mode I2C clock low counter register(I2C_SSLR)
Offset address: 0x18

Reset value: 0x01D6

15 1234567891011121314 0

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

Bit Field Type Reset Description

15 : 0 CNT rw 0x01D6 TheminimumSCL clock low period is 8 in the I2C interface
standard mode.

19.7.7 Fast mode I2C clock high counter register(I2C_FSHR)
Offset address: 0x1C

Reset value: 0x0036

15 1234567891011121314 0

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

Bit Field Type Reset Description

15 : 0 CNT rw 0x0036 SCL clock high period in fast mode of I2C interface
This register is read-only and returns 0 when I2C operates
in standard mode, with the minimum value of 6.

19.7.8 Fast mode I2C clock low counter register(I2C_FSLR)
Offset address: 0x20

Reset value: 0x0082

15 1234567891011121314 0

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

CNT

Bit Field Type Reset Description

15 : 0 CNT rw 0x0082 SCL clock low period in fast mode of I2C interface
This register is read-only and returns 0 when I2C operates
in standard mode, with the minimum value of 8.

19.7.9 I2C interrupt status register(I2C_ISR)
Offset address: 0x2C

www.mm32mcu.com 455/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Reset value: 0x0000

15 1234567891011121314 0

Reserved

rrrrrrrrrrrrr r

D RESTART

GC START ACTIV RX_DONE TX_ABRTRD_REQ TX_EMPTY TX_OVER RX_FULL RX_OVER RX_UNDER

STOP

Bit Field Type Reset Description

15 : 14 Reserved Always read as 0.
13 : 0 ISR r 0x0000 Refer to the RAWISR register for specific description of

each bit

19.7.10 I2C interrupt mask register(I2C_IMR)
Offset address: 0x30

Reset value: 0x08FF

15 1234567891011121314 0

Reserved

rwrwrwrwrwrwrwrwrwrwrw rw

GC START ACTIV RX_DONE TX_ABRTRD_REQ TX_EMPTY TX_OVER RX_FULL RX_OVER RX_UNDER

STOP

Bit Field Type Reset Description

15 : 12 Reserved Always read as 0.
11 : 0 IMR rw 0x08FF Each bit is masked and mapped to the ISR.

19.7.11 I2C RAW interrupt register(I2C_RAWISR)
Offset address: 0x34

Reset value: 0x0000

The difference between RAWISR and ISR registers is that the former is not masked.

15 1234567891011121314 0

rrrrrrrrrrr r

Reserved GC START ACTIV RX_DONE TX_ABRTRD_REQ TX_EMPTY TX_OVER RX_FULL RX_OVER RX_UNDER

STOP

Bit Field Type Reset Description

15 : 12 Reserved Always read as 0.
11 GC r 0x00 General call

This bit is set when a general call address is received.
The I2C interface is disabled or cleared when the CPU
reads the GC register. I2C stores the received data in the
receiver buffer.

www.mm32mcu.com 456/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

10 START r 0x00 Start condition detection
Regardless of the I2C interface operates in the master or
slave mode, this bit is set once the Start or repeated Start
condition is detected on the I2C interface.

9 STOP r 0x00 Stop condition detection
The status of this bit is based on the status of the STOPINT
in the CR register when STOPINT = 0
Regardless of the I2C interface operates in the master or
slave mode, this bit is set once the Stop condition is de-
tected on the I2C interface.In slave mode, a STOP inter-
rupt is generated regardless of whether the addressing is
matched or not.
When STOPINT = 1
In master mode (MASTER = 1), this bit shows if a Stop
condition occurs on the I2C interface.
In slave mode (MASTER = 0), a STOP interrupt is gener-
ated only when the slave address is matched successfully.

8 ACTIV r 0x00 I2C interface is enabled, this bit is used to capture the ac-
tive state of the I2C module
After being set, this bit can only be cleared by the following
four methods:
Disable I2C interface
Read ACTIV register
Rread ICR register
System reset
Once set, this bit can only be cleared by the abovemethod.
Even if I2C is idle, this bit also remains high until it is
cleared.

7 RX_DONE r 0x00 Transmit done
When I2C is used as a slave transmitter, this bit will be
set if the master fails to respond after sending one byte of
data.
This case happens at the last byte transferred, indicating
the end of the transfer.

6 TX_ABRT r 0x00 Transmit abort
When the I2C interface acts as a transmitter, this bit is set
if the data in the buffer is failed to be fully sent.
Note: The transmit abort bit will clear the receiver and transmitter

buffers in the I2C interface. The transmitter buffer is in a refresh

state until the TX_ABRT register is read. Once the read opera-

tion is performed, the transmitter will receive new data from the

APB bus.

www.mm32mcu.com 457/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

5 RD_REQ r 0x00 Read request
When I2C acts as a slave, other masters are set when
attemptting to read data from the I2C interface.
The I2C interface keeps the bus in a wait state (SCL =
0) until the interrupt is processed, which means that the
I2C interface is successfully addressed by other masters
as a slave and requires data transmission. The processor
must respond to the interrupt and then write data to the
DR register. This bit is cleared when the processor reads
the RD_REQ register.

4 TX_EMPTY r 0x00 Transmit buffer empty
The status of this bit depends on the EMPINT state in the
CR register:
when EMPINT is 0 and the transmitter buffer is null, this
bit is set;
when EMPINT is 1, the transmitter buffer is null and the
operation of internal shift register is finished, this bit is set
This bit is automatically cleared by hardware when the
transmitter buffer is not null.

3 TX_OVER r 0x00 Transmit buffer over
If the transmit buffer is full, and the processor writes new
data, causing overflow, this bit will be set.

2 RX_FULL r 0x00 Receive buffer not empty
This bit is set when the receive buffer is not null.
This bit will be cleared by hardware when the receive
buffer is not null.

1 RX_OVER r 0x00 Receive buffer over
This bit will be set when the receive buffer is full and new
data is received. The I2C interface will respond at this
point, but new data will be lost.

0 RX_UNDER r 0x00 Receive buffer under
This bit will be set when the processor reads the DR reg-
ister and the RX FIFO is null.

19.7.12 I2C reception threshold(I2C_RXTLR)
Offset address: 0x38

Reset value: 0x0000

15 1234567891011121314 0

rrrrrrr rrrrrrrr r

Reserved TL

www.mm32mcu.com 458/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

15 : 8 Reserved Always read as 0.
7 : 0 TL r 0x00 Receive FIFO threshold level

This bit enables controlling the RX_FULL interrupt trigger.

19.7.13 I2C transmission threshold(I2C_TXTLR)
Offset address: 0x3C

Reset value: 0x0000

15 1234567891011121314 0

rrrrrrr rrrrrrrr r

Reserved TL

Bit Field Type Reset Description

15 : 8 Reserved Always read as 0.
7 : 0 TL r 0x00 Receive FIFO threshold level

This bit enables controlling the TX_EMPTY interrupt trig-
ger.

19.7.14 I2C combined and independent interrupt clear
register(I2C_ICR)

Offset address: 0x40

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

ICR

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 ICR r 0x00 When this register is read, all combined interrupts and

independent interrupts. Those that can be automatically
cleared by hardware will not be cleared b this bit, and only
those that can be cleared by software will be cleared.

19.7.15 I2C clear RX_UNDER interrupt register(I2C_RX_UNDER)
Offset address: 0x44

Reset value: 0x0000

www.mm32mcu.com 459/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

15 1234567891011121314 0

r

Reserved

RX_UNDER

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 RX_UNDER r 0x00 Clear RX_UNDER interrupt (RAWISR0) by reading this

register.

19.7.16 I2C clears RX_OVER interrupt register(I2C_RX_OVER)
Offset address: 0x48

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

RX_OVER

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 RX_OVER r 0x00 Clear RX_OVER interrupt (RAWISR1) by reading this reg-

ister.

19.7.17 I2C clear TX_OVER interrupt register(I2C_TX_OVER)
Offset address: 0x4C

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

TX_OVER

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 TX_OVER r 0x00 Clear TX_OVER interrupt (RAW_ISR3) by reading this

register.

19.7.18 I2C clear RD_REQ interrupt register(I2C_RD_REQ)
Offset address: 0x50

Reset value: 0x0000

www.mm32mcu.com 460/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

15 1234567891011121314 0

r

Reserved

RD_REQ

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 RD_REQ r 0x00 Clear RD_REQ interrupt (RAW_ISR5) by reading this reg-

ister.

19.7.19 I2C clear TX_ABRT interrupt register(I2C_TX_ABRT)
Offset address: 0x54

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

TX_ABRT

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 TX_ABRT r 0x00 Clear the TX_ABRT interrupt (RAWISR6) by reading this

register
Release the TX FIFO from the refresh/reset state, to re-
ceive the written data.

19.7.20 I2C clear RX_DONE interrupt register(I2C_RX_DONE)
Offset address: 0x58

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

RX_DONE

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 RX_DONE r 0x00 Clear RX_DONE interrupt (RAWISR7) by reading this reg-

ister.

www.mm32mcu.com 461/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

19.7.21 I2C clear ACTIVITY interrupt register (I2C_ACTIV)
Offset address: 0x5C

Reset value: 0x0000

15 1234567891011121314 0

Reserved

r

ACTIV

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 ACTIV r 0x00 Read this register to clear ACTIV interrupt (RAWISR8) if

the I2C bus is inactive
If I2C is still active, the ACTIV interrupt will continue to be
set. This bit is cleared by hardware when the I2C module
is disabled or when the I2C bus is no longer active. The
status of ACTIV (bit 8) in the RAWISR can be obtained by
reading this register.

19.7.22 I2C clear STOP_DET interrupt register(I2C_STOP)
Offset address: 0x60

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

STOP

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 STOP r 0x00 Clear STOP interrupt (RAWISR9) by reading this register.

19.7.23 I2C clear START_DET interrupt register(I2C_START)
Offset address: 0x64

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

START

www.mm32mcu.com 462/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 START r 0x00 Clear START interrupt (RAWISR10) by reading this regis-

ter

19.7.24 I2C clear GEN_CALL interrupt register(I2C_GC)
Offset address: 0x68

Reset value: 0x0000

15 1234567891011121314 0

r

Reserved

GC

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 GC r 0x00 Clear GC interrupt (RAWISR11) by reading this register

19.7.25 I2C enable register(I2C_ENR)
Offset address: 0x6C

Reset value: 0x0000

ABORT ENABLE

rw rw

 15 1234567891011121314 0

Reserved

Bit Field Type Reset Description

15 : 2 Reserved Always read as 0.
1 ABORT rw 0x00 I2C transfer abort

0: The abort did not occur or has ended
1: Abort is in progress
The I2C transfer can be aborted by software when the
I2C module is set as a master. Once being set, this bit
cannot be cleared immediately, the I2C module control
logic will generate a STOP condition and clear the transmit
buffer after completing the current transfer, and generates
a TX_ABRT interrupt after the abort.
This ABORT bit is automatically cleared after the abort op-
eration.

www.mm32mcu.com 463/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

0 ENABLE rw 0x00 I2C mode enable
0: Disable the I2C module (transmit and receive buffers
remain erased)
1: Enable the I2C module

19.7.26 I2C status register(I2C_SR)
Offset address: 0x70

Reset value: 0x0006

This register is read-only and indicates the current transfer and buffer status. The status
bits do not generate an interrupt.

15 1234567891011121314 0

rrrrrr r

Reserved SLV_ACTIVMST_ACTIV RFF RFNE TFE TFNE ACTIV

Bit Field Type Reset Description

15 : 7 Reserved Always read as 0.
6 SLV

_ACTIV
r 0x00 Slave FSM activity status 0: The slave state machine is in

the IDLE state, so the I2C slave part is inactive.
1: The slave state machine is not in the IDLE state, so the
I2C slave part is active.

5 MST
_ACTIV

r 0x00 Master FSM activity status
0: The master state machine is in the IDLE state, so the
I2C master part is inactive.
1: The master state machine is not in the IDLE state, so
the I2C master part is active.

4 RFF r 0x00 Receive FIFO completely full
0: receive buffer not full
1: Receive buffer full

3 RFNE r 0x00 Receive FIFO not empty
0: Receive buffer empty
1: Receive buffer not empty

2 TFE r 0x01 Transmit FIFO completely empty
0: Transmit buffer not empty
1: Transmit buffer empty

1 TFNF r 0x01 Transmit FIFO not full
0: Transmit buffer full
1: Transmit buffer not full

0 ACTIV r 0x00 I2C activity status
The MST_ACTIV bit has the OR relationship with
SLV_ACTIV bit.

www.mm32mcu.com 464/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

19.7.27 I2C transmitter buffer level register(I2C_TXFLR)
Offset address: 0x74

Reset value: 0x0000

15 1234567891011121314 0

r r

Reserved CNT

Bit Field Type Reset Description

15 : 2 Reserved Always read as 0.
1 : 0 CNT r 0x00 The number of valid data in the transmit buffer (0～2)

19.7.28 I2C receiver buffer level register(I2C_RXFLR)
Offset address: 0x78

Reset value: 0x0000

15 1234567891011121314 0

r r

Reserved CNT

Bit Field Type Reset Description

15 : 2 Reserved Always read as 0.
1 : 0 CNT r 0x00 The number of valid data in the receive buffer (0～2)

19.7.29 I2C SDA hold time register(I2C_HOLD)
Offset address: 0x7C

Reset value: 0x0001

15 1234567891011121314 0

r r

TX_HOLD

31 1718192021222324252627282930 16

r r

Reserved RX_HOLD

rrrrrrr rrrrrrrr r

r rrrrrrrrrrrrrr rr rrrrrrrrrrrrrr r

Bit Field Type Reset Description

31 : 24 Reserved Always read as 0.
23 : 16 RX_HOLD r 0x00 SDA hold time when the I2C device acts as receiver, with

the unit of APB1 system clock cycle

www.mm32mcu.com 465/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

Bit Field Type Reset Description

15 : 0 TX_HOLD r 0x01 SDA hold time when the I2C device acts as transmitter,
with the unit of APB1 system clock cycle

19.7.30 I2C DMA control register(I2C_DMA)
Offset address: 0x88

Reset value: 0x0000

15 1234567891011121314 0

rw rw

Reserved TXEN RXEN

Bit Field Type Reset Description

15 : 2 Reserved Always read as 0.
1 TXEN rw 0x00 Transmit DMA enable

0: transmit DMA disabled
1: Receive DMA enabled

0 RXEN rw 0x00 Receive DMA enable
0: Receive DMA disabled
1: Receive DMA enabled

19.7.31 I2C SDA setup time register(I2C_SETUP)
Offset address: 0x94

Reset value: 0x0064

15 1234567891011121314 0

r r

CNTReserved

rrrrrrr rrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

15 : 8 Reserved Always read as 0.
7 : 0 CNT rw 0x64 SDA setup

If the recommended delay time is 1000 nS, and the APB1
clock frequency is 10 MHz, the register is set to 11, with
the minimum of 2.

19.7.32 I2C general call ACK register(I2C_GCR)
Offset address: 0x98

Reset value: 0x0001

www.mm32mcu.com 466/513

UM_MM32SPIN05x_q_Ver1.19
I2C INTERFACE (I2C)

15 1234567891011121314 0

rw

Reserved

GC

Bit Field Type Reset Description

15 : 1 Reserved Always read as 0.
0 GC rw 0x01 ACK general call

1: Response after receiving a general call
0: No response and no interruption after receiving a gen-
eral call

www.mm32mcu.com 467/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

20 Universal asynchronous receiver

transmitter(UART)
Universal asynchronous receiver transmitter(UART)

20.1 UART introduction

The universal asynchronous receiver transmitter (UART) offers a flexible means of full-
duplex data exchange with external equipment requiring an industry standard NRZ asyn-
chronous serial data format. The UART offers a very wide range of baud rates using
a fractional baud rate generator. It supports synchronous one-way communication and
half-duplex single wire communication as well as modem operations (CTS/RTS).

High speed data communication is possible by using the DMA for multibuffer configuration.

20.2 UART main features
• Support RS-232S protocol in asynchronous mode, and meet Industry Standard 16550
• Support DMA requests
• Full-duplex synchronous operation
• Fractional baud rate generator system
• Programmable baud rate shared by transmitter and receiver
• Separate transmit and receive buffer registers
• Embedded 1 byte transmit and 32 byte receive buffer
• low level first for data transmission and reception
• Starting from start bit, followed by a data bit (the output data length includes 5 bits, 6
bits, 7 bits, 8 bits), and ending with the stop bit. Alternatively, parity check bit is optional,
which is set before the stop bit and after the data bit.

• The 9th bit can be used for synchronous frame configuration.
• Support hardware odd or even check, generation and detection
• Line break generation and detection
• Support hardware auto flow control
• Support the following interrupt sources:

– Transmitter BUFFER empty
– Receiver data valid
– Receive buffer overflow
– Frame error
– Parity error
– Receive break frame
– Transmit shift register completed

www.mm32mcu.com 468/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

– Send disconnected frame complete
– Receiving sync frame

20.3 UART functional description

At least two pins are required for any UART bidirectional communication: receive data
input (RX) and transmit data output (TX).

RX: Receive data serial input. Data is recovered by oversampling techniques, to distin-
guish between data and noise.

TX: Transmit data output. When the transmitter is disabled, the output pin is returned to
its I/O port configuration. The TX pin is high when the transmitter is activated and no data
is transmitted.

• The bus shall be idle before transmission or reception
• One start bit
• One data word (5, 6, 7 or 8 bits) with the least significant bit first
• 0.5, 1, 1.5, 2 stop bits, thus indicating the end of the data frame
• Use the fractional baud rate generator –a representation of 16-bit integers and 4bit
decimals

The following pin is required in hardware flow mode:

• nCTS: Clear transmission. If it is high, it blocks the next data transmission at the end
of the current data transmission.

• nRTS: Transmit request; the low level indicates that the UART is ready to receive data.

www.mm32mcu.com 469/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

710870

APB

Bus Interface Logic

pclk

Baud Rate

Generator
TXREG RXREG

TXBUFFER

(1 Byte)

RXBUFFER

(1 Byte)

spbrg

TX Shift RegisterS P STOP

Register Control

TX

Transmitter

RX Shift Register

Receiver

Data

Recovery
RX

bclk16 bclk16

rxbuffer_full

rx
o
er

r

rx
fe

rr

rx
p
er

r

rx
b
rk

ch
ar

[1
:0

]

rx
en

tx
en sp

b

p
en

p
se

l

sp
b

p
en

p
se

l

ch
ar

[1
:0

]

txbuffer_empty

pclk
pclk

Figure 229. UART Block Diagram

20.3.1 UART character description
Word lengthmay be selected as 5～8 bits by programming the CHAR bit in the UART_CCR
register. The TX pin is in low state during the start bit, and is in high state during the stop
bit.

An Idle character is interpreted as an entire frame of“1”s followed by the start bit of the
next frame which contains data (the number of‘1’s will include the number of stop bits).

A Break character is interpreted on receiving‘0’s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic“1”bit) to acknowledge
the start bit.

Transmission and reception are driven by a common baud rate generator; the clock for
each is generated when the enable bit is set respectively for the transmitter and receiver.

www.mm32mcu.com 470/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

849357

8-bit word length and 1 stop bit

Start

bit

Data frame

Possible

parity

bit

Stop

bit

Next

start

bit Next data frame0 1 2 3 4 5 6 7

Idle frame
Start

bit

Break frame Stop

bit

Start

bit

Figure 230. UART Timing

20.3.2 Transmitter
The transmitter can send data words of 5 ∼ 8 bits depending on the CHAR bit status.
When the transmit enable bit (TXEN) is set, the data in the transmit shift register is output
on the TX pin.

Character transmission
During a UART transmission, data shifts out least significant bit first on the TX pin. In
this mode, the UART_TDR register consists of a buffer between the internal bus and the
transmit shift register.

Every character is preceded by a start bit. The character is terminated by a configurable
number of stop bits.

The TXEN bit shall not be reset during transmission of data. Otherwise, the data on the TX pin will

be corrupted as the baud rate counters will get frozen, and the current data being transmitted will

be lost.

Configurable stop bits
The number of stop bits to be transmitted with every character can be programmed by
setting SPB bits.

A break frame will be 10 low bits followed by the stop bits, or 11 low bits followed by the
stop bits.The RXBRK_INTF bit in the interrupt status register will be set when the break
frame is received.

Procedure
1. Enable the UART by writing the UARTEN bit in UART_GCR register to 1.
2. Program the CHAR bit in UART_CCR to define the word length.
3. Program the number of stop bits (SPB) in UART_CCR.

www.mm32mcu.com 471/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

4. Set the TXEN bit in UART_GCR.
5. Select the desired baud rate using the UART_BRR register.
6. Write the data to be sent in the UART_TDR register (this clears the TX_INTF bit).

Repeat Step 6 for each data to be transmitted in case of single buffer.

Single byte communication
The TX_INTF bit is always cleared by a write to the data register. The TX_INTF bit is set
by hardware and it indicates:

• The data has been moved from TDR to the shift register and the data transmission has
started.

• The TDR register is cleared.
• The next data can be written in the UART_TDR register without overwriting the previous
data.

This flag generates an interrupt if the TXIEN bit is set. When a transmission is taking place
in UART, a write instruction to the UART_TDR register stores the data in the TDR register
and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place in idle UART, a write instruction to the UART_TDR
register places the data directly in the shift register, the data transmission starts, and the
TX_INTF bit is immediately set. Meanwhile, TXBUF_EMPTY of UART_CSR is set. If a
frame is transmitted (after the stop bit) and no new data is written to UART_TDR (TDR
register null), the TXC bit will be set, indicating all transmission has been completed.

838422

Write

UART_TDR

Baud rate

clock

TX

TX_INTF bit

TXDONE bit

Note:This timing diagram shows two consecutive transmissions.

Word 1

Transmit Shift Reg.

Start Bit Bit 0

WORD 1

Bit 1 Bit 7/8 Bit 0

Word 2

WORD 1

Start Bit

WORD 2

Transmit Shift Reg.
WORD 2

Stop Bit

Figure 231. Status Bit Change During Transmission

Break character
Setting the BRK bit transmits a break character. If the BRK bit is set to ’1’, a break char-
acter is sent on the TX line after completing the current character transmission. This bit is
reset by software when the break character is completed (during the stop bit of the break

www.mm32mcu.com 472/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

character). The UART inserts a logic 1 bit at the end of the last break frame, to guarantee
the recognition of the start bit of the next frame.

20.3.3 Receiver

Character reception
During a UART reception, data shifts in least significant bit first through the RX pin. In
this mode, the UART_RDR register consists of a buffer between the internal bus and the
received shift register.

Procedure:

1. Enable the UART by writing the UARTEN bit in UART_GCR register to 1.
2. Program the CHAR bit in UART_CCR to define the word length.
3. Program the number of stop bits (SPB) in UART_CCR.
4. Select the desired baud rate using the UART_BRR register.
5. Set the RXEN bit UART_GCR. This enables the receiver which begins searching for

a start bit.

When a character is received:

• The RX_INTF bit is set. It indicates that the content of the shift register is transferred
to the RDR. In other words, data has been received and can be read (as well as its
associated error flags).

• An interrupt is generated if the RXIEN bit is set.
• The error flags can be set if a frame error or an overrun error has been detected during
reception.

• UART_RDR register is read by software, RX_INTF bit shall be cleared before the next
character is received.

The RXEN bit shall not be reset while receiving data. If the RXEN bit is cleared during reception,

the current byte to be received will be lost.

Break character
When a break frame is received, the UART is set and RXBRK_INTF interrupt is generated.

Overrun error
An overrun error occurs when a character is received before being read by UART_RDR.

When an overrun error occurs:

• The RXOERR_INTF bit is set.
• TheRDR content will not be lost. The previous data is available when a read to UART_RDR
is performed.

• The shift register will be overwritten. After that point, any data received will be lost.
• An interrupt is generated if the RXOERREN bit is set.

Frame error
The frame error is detected when the Stop bit is failed to be received and identified, then:

• RXFERR_INTF bit is set by hardware.

www.mm32mcu.com 473/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

• Invalid data will not be transmitted to UART_RDR register from the shift register.
• An interrupt will be generated if RXFERREN bit is set.

20.3.4 9-bit data communication
If the B8EN control bit of the UART_CCR register is enabled, the UART enables the trans-
mission and reception of 9-bit data, and can transmit and receive 9-bit data. Note: The
parity enable bit PEN has no effect after B8EN is enabled.

When data is being transmitted, B8TXD needs to be set before writing data to the transmit
register UART_TDR. The B8TXD is transmitted as theMSB of the transmitted data and the
value of the UART_TDR. If B8TOG is set, if B8TXD is the same as B8POL, it means that
the data is used as an address frame or a synchronization frame. After the transmission
is finished, B8TXD will automatically flip. In the next data transmission process, it is not
necessary to set B8TXD to the inactive level.

When data is received, the most significant bit of the received data can be read from
register bit B8RXD. If the received B8RXD is the same as B8POL, the RXB8_INTF bit in
the Interrupt Status Register UART_ISR will be set.

20.3.5 Multiprocessor communication
Multiprocessor communication is possible through the UART (connecting several UARTs
to a single network). For example, a UART device can be the master, its TX output is
connected to the RX input of the other UART slave devices; the UART slaves are logically
coupled together with the respective TX outputs and connected to the RX input of the
master device.

In a multi-processor configuration, we usually want only the addressed receiver to be
activated to receive subsequent data, thus reducing the extra UART service overhead
caused by the participation of unaddressed receivers.

Devices that are not addressed can have their quiescing enabled in silent mode. In silent
mode:

• Any receive status bit will not be set.
• All receive interrupts are disabled.
• The RWU bit in the UART_CCR register is set. The RWU can be automatically con-
trolled by hardware or written by software under certain conditions.

Depending on the WAKE bit status in the UART_CCR register, the UART can enter or exit
the Silent mode in two ways.

• If the WAKE bit is reset: an idle bus detect is made.
• If the WAKE bit is set: Address mark detection is performed.

Idle bus detection (WAKE=0)
When the RWU bit is written 1, the UART enters silent mode. When an idle frame is
detected, it is woken up. The RWU is then cleared by hardware and the interrupt status
flag RX_INTF is not set. RWU can also be written to 0 by software.

www.mm32mcu.com 474/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Address mark detection (WAKE=1)
In this mode, if the MSB is B8POL, the byte is considered an address, otherwise it is
considered data. In an address byte, the address of the target receiver is compared to
its own address, and the address and mask bits of the receiver are programmed in the
UART_RXADDR and UART_RXMASK registers.

If the received byte does not match its programmed address, the UART enters silent
mode. At this point, the hardware sets the RWU bit. Receiving this byte will neither set the
interrupt status flag RX_INTF nor generate an interrupt or issue a DMA request because
the UART is already in silent mode.

When the received byte matches the in-receiver programming address, the UART exits
the silent mode. The RWU bit is then cleared and the subsequent bytes are normally
received. The interrupt status flag RX_INTF is set when this matched address byte is
received because the RWU bit has been cleared.

20.3.6 Single-line half-duplex communication
Single-line half-sided mode is selected by setting the HDSEL bit in the UART_SCR regis-
ter. In this mode, the SCEN bit of the UART_SCR register must be kept clear.

The UART can be configured to follow a single-wire half-duplex protocol. In single-wire
half-duplex mode, the TX and RX pins are interconnected inside the chip. Half-duplex and
full-duplex communication is selected using the control bit ”HALF DUPLEX SEL” (HDSEL
bit in UART_SCR).

When HDSEL is 1

• RX is no longer used
• When there is no data transmission, TX is always released. Therefore, it appears as a
standard I/O port in the idle state or the receiving state. This means that the I/O must
be configured as a floating input (or an open drain output high) when not being driven
by the UART.

In addition, communication is similar to the normal UART mode. Software conflicts are
managed online (for example by using a central arbiter). In particular, the transmission
is never blocked by hardware. When the TXEN bit is set, the transmission continues as
soon as the data is written to the data register.

20.3.7 smart card
Set the SCEN bit in the UART_SCR register to select the smart card mode.

The interface complies with the ISO7816-3 standard and supports the smart card asyn-
chronous protocol. The UART should be set to:

• 8-bit data bit plus parity bit: CHAR=11, PEN=1 in the UART_CCR register at this time
• 1.5 stop bits for transmission and reception: SPB1=1, SPB0=1 of the UART_CCR reg-
ister

The example given below illustrates the signal on the data line in both the verify error and
the no parity error.

www.mm32mcu.com 475/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

325075

No parity error

0 1 2 3 4 5 6 7 P

Have parity error

0 1 2 3 4 5 6 7 PS

S

Protection time

Protection time

When a parity error occurs,

The signal line is pulled low by the receiver

Figure 232. UART block diagram

When connected to a smart card, the TX of the UART drives a bidirectional line of a smart
card. In order to do this, the RX must be connected to the same I/O port as the TX. During
the transmit start bit and data byte, the transmitter’s output enable bit, TXEN, is set and
released during the transmit stop bit (weak pull-up), so the receiver can assert the data
line if a verify error is found Pull down. If TXEN is not used, TX is pulled high during the
stop bit: in this case, the receiver can drive this line as long as the TX is configured to
open drain.

Smart card is a single-line half-duplex communication protocol

• The data is sent out from the transmit shift register and is delayed by a minimum of 1/2
baud clock. In normal operation, a full transmit shift register will shift data out at the next
baud clock edge. In smart card mode, this transmission is delayed by 1/2 baud clock.

• If a parity error is detected during reception of a data frame set to 0.5 or 1.5 stop bits, the
transmission line is pulled low for one baud clock cycle after the completion of reception
of the frame (ie, at the end of the stop bit). This is to tell the smart card that the data sent
to the UART has not been received correctly. This NACK signal (lower the transmission
line for one baud clock period) will generate a framing error at the transmitting end (the
transmitting end is configured as 1.5 stop bits). The application can resend the data
according to the protocol. If the NACK control bit is set, the receiver will give a NACK
signal when a check error occurs; otherwise, no NACK will be sent.

• The setting of the TXC flag can be delayed by programming the protection time register.
In normal operation, TXC is asserted when the transmit shift register becomes empty
and no new transmit request occurs. In smart card mode, an empty transmit shift reg-
ister will trigger the guard time counter to start counting up until the value in the guard
time register. The TXC was forced to pull low during this time. When the guard time
counter reaches the value in the guard time register, TXC is set high.

• The revocation of the flag is not affected by the smart card mode.
• If the transmitter detects a framing error (receives the receiver’s NACK signal), the
transmitter’s receive function module does not detect the NACK as a start bit. According
to the ISO protocol, the duration of the received NACK can be 1 or 2 baud clock cycles.

• On the receiver side, if a check error is detected and a NACK is sent, the receiver will

www.mm32mcu.com 476/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

not detect the NACK as the start bit.

Note: 1. The disconnect symbol has no meaning in smart card mode. A 00h data with a
frame error will be treated as data instead of a broken symbol.

2. When the TXEN bit is toggled back and forth, no IDLE frame is sent. The ISO protocol
does not define an IDLE frame.

The figure below details how the UART samples the NACK signal. In this example, the
UART is transmitting data and is configured with 1.5 stop bits. In order to check the in-
tegrity of the data and the NACK signal, the receive function block of the UART is activated.

446515

bit 7 Parity bit 1.5 stop bits

1 bit time 1.5 bit time

Sampling at

the 8th, 9th,

Sampling at the

16th, 17th, and

Sampling at

the 8th, 9th,
Sampling at

the 8th, 9th,

0.5 bit time

Figure 233. UART block diagram

20.3.8 Fractional baud rate generator
Set the BRR and FRA registers to set the corresponding baud rate. Refer to the following
formula:

fbaudrate =
fPCLK

16 × UART DIV

UART DIV = BRR +
FRA
16

Get:

fbaudrate =
fPCLK

16 × BRR + FRA

The BRR register has a minimum value of 4.

20.3.9 Sampling
Since no separate clock is provided for asynchronous operation, the receiver requires
synchronization to the receiver. In order to obtain the correct character data on the receive

www.mm32mcu.com 477/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

pin ’RX’, the UART is configured with a detection circuit. The UART samples the RX pin
through a ’bclk16’ clock with a 16-times data baud rate. Each data has 16 clock samples,
and the sampled values of the 7th, 8th, and 9th falling edges are taken.

576531

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 31

Samples

Baud CLK for all but start bit

Start bit Bin0RX

Baud CLK

x16 CLK

Figure 234. RX Pin Sampling Plan

20.3.10 Parity control
Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PEN bit in the UART_CCR register. The invalid data will not be
transferred to UART_RDR register from the shift register in case of parity error.

Even parity: the parity bit is calculated to obtain an even number of“1s”inside the frame
and the parity bit.

Example: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PSEL
bit in UART_CCR = 1).

Odd parity: the parity bit is calculated to obtain an odd number of“1s”inside the frame
and the parity bit.

Example: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PSEL
bit in UART_CCR = 0).

Transmission mode: If the PEN bit is set in UART_CCR, then the MSB bit of the data
written in the data register is transmitted but is changed by the parity bit (even number of
’1s’ if even parity is selected or an odd number of ’1s’ if odd parity is selected). If the parity
check fails, the RXPERR_INTF flag is set in the UART_ISR register and an interrupt is
generated if RXPERREN is preset.

20.3.11 Hardware flow control
It is possible to control the serial data flow between two devices by using the nCTS input
and the nRTS output. The following figure shows how to connect two devices in this mode.

www.mm32mcu.com 478/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

686568

TX circuit

UART 1

RX circuit

RX circuit

UART 2

TX circuit

TX

nCTS

RX

nRTS

RX

nRTS

TX

nCTS

Figure 235. Hardware Flow Control Between Two UARTs

RTS andCTS flow control can be enabled by setting the AUTOFLOWENbit in the UART_GCR.

RTS flow control
If the RTS flow control is enabled, then nRTS is active (tied low) as long as the UART
receiver is ready to receive new data. When the receive register receives data, nRTS
is released, indicating that the transmission is expected to stop at the end of the current
frame. The following figure shows an example of communication with RTS flow control
enabled.

941810

RX

nRTS

Start

Bit
Start
Bit

Stop
Bit

Stop
Bitldle

RXNE Data 1 read

Data 2 can now be transmitted

RXNE

Data 1 Data 2

Figure 236. RTS Flow Control

CTS flow control
If the CTS flow control is enabled, then the transmitter checks the nCTS input before
transmitting the next frame. If nCTS is active (tied low), then the next data is transmitted
(assuming that a data is to be transmitted, in other words), else the transmission does not
occur. When nCTS is inactive during a transmission, the current transmission is completed
before the transmitter stops. The figure below shows an example of communication with

www.mm32mcu.com 479/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

CTS flow control enabled.

771455

CTS CTS

Data 3 empty

Data 3Data 2Data 1

Data 2 emptyTDR

TX

nCTS

Transmit data register

Stop
Bit

Start
Bit

Start
Bit

Stop
Bit ldle

Writing data 3 in TDR
Transmission of Data 3 is

delayed until nCTS = 0

Figure 237. CTS Flow Control

20.3.12 Communication using DMA
The UART is capable of communicating using the DMA.

Transmission using DMA
During transmission using DMA, first configure the address of the UART_TDR register
as the destination address of the DMA transfer in the DMA control register, configure the
memory address as the source address of the DMA transfer, and configure the data vol-
ume. Then, enable DMA mode by setting the DMAMODE bit in the UART_GCR register.
When the TXEN bit is set to ’1’, the DMA transfers data from the specified SRAM zone to
the UART_TDR register.

Reception using DMA
During reception using DMA, first configure the address of the UART_RDR register as the
source address of the DMA transfer in the DMA control register, configure the memory
address as the destination address of the DMA transfer, and configure the data volume.
Then, enable DMA mode by setting the DMAMODE bit in the UART_GCR register. When
the RXEN bit is enabled, the DMA transfers data from the specified SRAM zone to the
UART_RDR register.

20.4 UART interrupt requests
Table 64. UART interrupt requests

Interrupt event Interrupt status Enable bit

Transmit buffer null TX_INTF TXIEN

Valid data received RX_INTF RXIEN

www.mm32mcu.com 480/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Interrupt event Interrupt status Enable bit

Transmit shift register completed TXC_INTF TXC_EN

Receive overrun error RXOERR_INTF RXOERREN

Parity error RXPERR_INTF RXPERREN

Frame error RXFERR_INTF RXFERREN

Break frame RXBRK_INTF RXBRKEN

Send disconnect frame TXBRK_INTF TXBRK_EN

Receiving sync frame RXB8_INTF RXB8_EN

These events generate an interrupt if the corresponding Enable Control Bit is set.

20.5 UART registers

Table 65. UART Register Overview

Offset Acronym Register Name Reset Section

0x00 UART_TDR UART transmit data register 0x00000000 section 20.5.1

0x04 UART_RDR UART receive data register 0x00000000 section 20.5.2

0x08 UART_CSR UART current status register 0x00000009 section 20.5.3

0x0C UART_ISR UART interrupt status register 0x00000000 section 20.5.4

0x10 UART_IER UART interrupt enable register 0x00000000 section 20.5.5

0x14 UART_ICR UART interrupt clear register 0x00000000 section 20.5.6

0x18 UART_GCR UART global control register 0x00000000 section 20.5.7

0x1C UART_CCR UART general control register 0x00000030 section 20.5.8

0x20 UART_BRR UART baud rate register 0x00000001 section 20.5.9

0x24 UART_FRA UART fractional baud rate register 0x00000000 section 20.5.10

0x28 UART_RXADDR UART receive address register 0x00000000 section 20.5.11

0x2C UART_RXMASK UART receive mask register 0x000000FF section 20.5.12

0x30 UART_SCR UART SCR register 0x00000000 section 20.5.13

20.5.1 UART transmit data register(UART_TDR)
Offset address: 0x00

Reset value: 0x0000 0000

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrw rw

Reserved

Reserved TXREG

www.mm32mcu.com 481/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

31 : 8 Reserved Always read as 0.
7 : 0 TXREG rw 0x00 Transmit data register

20.5.2 UART receive data register(UART_RDR)
Offset address: 0x04

Reset value: 0x0000 0000

15 1234567891011121314 0

31 1718192021222324252627282930 16

rrrrrrr r

Reserved

Reserved RXREG

Bit Field Type Reset Description

31 : 8 Reserved Always read as 0.
7 : 0 RXREG r 0x00 Receive data register

This register is read-only.

20.5.3 UART current status register(UART_CSR)
Offset address: 0x08

Reset value: 0x0000 0009

15 1234567891011121314 0

rrr r

31 1718192021222324252627282930 16

Reserved

Reserved
TXBUF_

EMPTY
TXFULL RXAVL TXC

Bit Field Type Reset Description

31 : 4 Reserved Always read as 0.
3 TXBUF_

EMPTY
r 0x01 Transmit buffer empty flag bit

1 : Transmit buffer null
0 : Transmit buffer non-null

2 TXFULL r 0x00 Transmit buffer full flag bit
1 : Transmit buffer full
0 : Transmit buffer non-null

www.mm32mcu.com 482/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

1 RXAVL r 0x00 Receive valid data flag bit
This bit is set when the receive buffer receives data of one
full byte.
1 : Receive buffer has received a complete and valid byte
of data
0 : Receive buffer null

0 TXC r 0x01 Transmit complete flag bit
1 : Both the transmit buffer and the transmit shift register
are null
0 : The transmit register is non-null

20.5.4 UART interrupt status register
Offset address: 0x0C

Reset value: 0x0000 0000

15 1234567891011121314 0

rrrrrrr r

31 1718192021222324252627282930 16

Reserved

Reserved RX_

INTF

RX

BRK_

INTF

RXP

ERR_

INTF

RXO

ERR_

INTF

TX_

INTF

TX

BRK_

INTF

RXB8

_INTF

TXC_

INTF
Res.

Bit Field Type Reset Description

31 : 9 Reserved Always read as 0.
8 RXB8_ INTF r 0x00 UART sync frame interrupt flag bit. In the 9-bit commu-

nication mode, when the ninth bit of the received data is
the same as the register CCR.B8POL, the RXB8_INT po-
sition. This bit can be used as an interrupt request signal
1 : Received sync frame
0 : No sync frames received

7 TXBRK_
INTF

r 0x00 The UART disconnect frame transmission completion in-
terrupt flag bit.
1 : Shift register disconnect frame data transmission com-
pleted
0 : Shift register is empty or is being shifted
Note: Disconnected frames cannot be sent continuously.

6 RXBRK_
INTF

r 0x00 UART receive frame break interrupt flag bit
After the abnormal stop bit, the RX pin receives 10 or more
low levels for a period of time.
1 : Break frame detected
0 : No break frame detected

www.mm32mcu.com 483/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

5 Reserved Always read as 0.
4 RXPERR_

INTF
r 0x00 Parity error interrupt flag bit

1 : Parity error detected
0 : No parity error detected

3 RXOERR_
INTF

r 0x00 Receive overflow error interrupt flag bit
This bit is set only when autoflowen=0.
1 : Receive overrun error
0 : No overrun error

2 TXC_INTF r 0x00 The UART Transmit Shift Register completes the interrupt
flag bit.
1 : Shift register data transmission completed
0 : Shift register is empty or is being shifted
Note: This flag is related to the protection time.

1 RX_INTF r 0x00 Receive valid data interrupt flag bit
This bit is set when the receive buffer receives data of one
full byte.
1 : Receive buffer receives valid byte data
0 : Receive buffer null

0 TX_INTF r 0x00 Transmit buffer empty interrupt flag bit
1 : Transmit buffer null
0 : Transmit buffer non-null

20.5.5 UART interrupt enable register(UART_IER)
Offset address: 0x10

Reset value: 0x0000 0000

15 1234567891011121314 0

rwrwrwrwrwrwrw rw

31 1718192021222324252627282930 16

Reserved

Reserved RXIEN
RX

BRK

EN

RXP

ERR

EN

RXO

ERR

EN

TXIENTXBRK

_IEN

RXB8

_IEN

TXC_

IEN
Res.

Bit Field Type Reset Description

31 : 9 Reserved Always read as 0.
8 RXB8_IEN rw 0x00 The UART sync frame interrupt enable control bit.

1 : Enable receive sync frame interrupt
0 : Do not receive sync frame interrupts

www.mm32mcu.com 484/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

7 TXBRK_IEN rw 0x00 The UART break frame transmission complete interrupt
enable control bit.
1 : Enable send break frame completion interrupt
0 : Do not send disconnected frame completion interrupt

6 RXBRKEN rw 0x00 Receive frame break interrupt enable bit
1 : Interrupt enabled
0 : Interrupt disabled

4 RXPERREN rw 0x00 Parity error interrupt enable bit
1 : Interrupt enabled
0 : Interrupt disabled

3 RXOERREN rw 0x00 Receive overflow error interrupt enable bit
1 : Interrupt enabled
0 : Interrupt disabled

2 TXC_IEN rw 0x00 The UART Transmit Shift Register completes the Interrupt
Enable Control bit.
1 : Shift register data transmission completed
0 : Shift register is empty or is being shifted

1 RXIEN rw 0x00 Receive buffer interrupt enable bit
1 : Interrupt enabled
0 : Interrupt disabled

0 TXIEN rw 0x00 Transmit buffer empty interrupt enable bit
1 : Interrupt enabled
0 : Interrupt disabled

20.5.6 UART interrupt clear register(UART_ICR)
Offset address: 0x14

Reset value: 0x0000 0000

15 1234567891011121314 0

wwwwwww w

31 1718192021222324252627282930 16

Reserved

Reserved RXICLR
RX

BRK

CLR

RXP

ERR

CLR

RXO

ERR

CLR

TXICLRTXBRK

_CLR

RXB8

_CLR

TXC_

CLR

Res.

Bit Field Type Reset Description

31 : 9 Reserved Always read as 0.
8 RXB8_CLR w 0x00 The UART sync frame interrupt flag clear control bit.

1 : Clear receive sync frame interrupt flag
0 : No action

www.mm32mcu.com 485/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

7 TXBRK_CLR w 0x00 The UART disconnect frame transmission completion in-
terrupt flag clear control bit.
1 : Clear disconnect frame send completion interrupt flag
0 : No action

6 RXBRKCLR w 0x00 Receive frame break interrupt clear bit
1 : Interrupt cleared
0 : Interrupt not cleared

4 RXPERRCLR w 0x00 Parity error interrupt clear bit
1 : Interrupt cleared
0 : Interrupt not cleared

3 RXOERRCLR w 0x00 Receive overflow error interrupt clear bit
1 : Interrupt cleared
0 : Interrupt not cleared

2 TXC_CLR w 0x00 The UART Transmit Shift Register completes the Interrupt
Enable Control bit.
1 : Clear shift register data transmission completion inter-
rupt flag
0 : No action

1 RXICLR w 0x00 Receive interrupt clear bit
1 : Interrupt cleared
0 : Interrupt not cleared

0 TXICLR w 0x00 Transmit buffer empty interrupt clear bit
1 : Interrupt cleared
0 : Interrupt not cleared

20.5.7 UART global control register(UART_GCR)
Offset address: 0x18

Reset value: 0x0000 0000

15 1234567891011121314 0

rwrwrwrw rw

31 1718192021222324252627282930 16

Reserved

Reserved DMA

MODE

AUTO

FLOW

EN

TXEN RXEN UARTEN

Bit Field Type Reset Description

31 : 5 Reserved Always read as 0.
4 TXEN rw 0x00 Enable transmit

1 : Transmission enabled
0 : Transmission disabled and TX buffer cleared

www.mm32mcu.com 486/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

3 RXEN rw 0x00 Enable receive
1 : Reception enabled
0 : Reception disabled and RX buffer cleared

2 AUTO
FLOWEN

rw 0x00 Automatic flow control enable bit
1 : Automatic flow control enabled
0 : Automatic flow control disabled

1 DMAMODE rw 0x00 DMA mode selection bit
1 : Select DMA mode
0 : Select the normal mode

0 UARTEN rw 0x00 UART mode selection bit
1 : UART module enabled
0 : UART mode disabled

20.5.8 UART general control register(UART_CCR)
Offset address: 0x1C

Reset value: 0x0000 0030

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrwrwrwrwrwrwrw

Reserved

Reserved CHAR BRK SPB0 PSEL PENWAKE RWU B8EN SPB1B8RXDB8TXDB8POLB8TOG

Bit Field Type Reset Description

31 : 14 Reserved Always read as 0.
13 WAKE rw 0x00 Wake up method. This bit determines the method of wak-

ing up the UART.
1 : Address mark wake up
0 : Idle bus wake up
Note: The UART has already received a data byte be-
fore placing the UART in silent mode. Otherwise, in silent
mode, it cannot be woken up by idle bus detection.

12 RWU rw 0x00 Receive wake up. This bit is used to determine if the UART
is placed in silent mode. This bit can be set or cleared by
software. When the wake-up sequence arrives, the hard-
ware also automatically clears it.
1 : Receiver is in silent mode
0 : The receiver is in normal working mode
When the address mark wakes up, if the receive buffer is
not empty, it cannot be modified by software.

www.mm32mcu.com 487/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

11 B8EN rw 0x00 The ninth bit enable control bit of the UART sync frame.
After this bit is enabled, the verify enable bit PEN has no
effect.
1 : Enable ninth bit transmission of sync frame
0 : Disable synchronization frame ninth transmission

10 B8TOG rw 0x00 The UART sync frame sends the ninth auto flip control bit.
1 : Enable ninth automatic flip
0 : Prohibit the ninth automatic flip
Note: When the values of B8TXD and B8POL are the
same, the second data transmitted after the register is con-
figured starts to flip. The first data defaults to the address
bit.

9 B8POL rw 0x00 The ninth bit polarity control bit of the UART sync frame.
1 : The ninth bit of the sync frame is active high.
0 : The ninth bit of the sync frame is active low.

8 B8TXD rw 0x00 The UART sync frame sends the ninth bit of data.
1 : The ninth bit of the transmission sync frame is high
0 : The ninth bit of the transmission sync frame is low

7 B8RXD rw 0x00 The UART sync frame receives the ninth bit of data. Read
only.
1 : The ninth bit of the receive sync frame is high
0 : The ninth bit of the receive sync frame is low

6 SPB1 rw 0x00 The stop bit selection bit is combined with SPB0 to set the
stop bit number.

5 : 4 CHAR rw 0x03 UART width bit
00: 5bits 01: 6bits
10: 7bits 11: 8bits

3 BRK rw 0x00 UART transmit frame break
1 : Serial forced output logic ’0’ (break frame)
0 : Break disabled

2 SPB0 rw 0x00 Stop bit selection
Set the transmit stop bits. The receiver usually detects a
stop bit.
SPB1, SPB0 : 00, 1 stop position
SPB1, SPB0 : 01, 2 stop bits (5 bit data bit, SPB setting is
not used, stop bit is forced to 1 bit)
SPB1, SPB0 : 10, 0.5 stop bits
SPB1, SPB0 : 11, 1.5 stop bits

www.mm32mcu.com 488/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

1 PSEL rw 0x00 Parity selection bit
When the check is enabled, this bit is used to select to use
either even or odd parity.
1 : Even parity
0 : Odd parity

0 PEN rw 0x00 Parity enable bit
1 : Transmit and receive check enabled
0 : Check disabled

20.5.9 UART baud rate register(UART_BRR)
Offset address: 0x20

Reset value: 0x0000 0001

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrw

Reserved

DIV_Mantissa

Bit Field Type Reset Description

31 : 16 Reserved Always read as 0.
15 : 0 DIV_Mantissa rw 0x0001 The integer part of UARTDIV

These 16 bits define the integer part of the UART divider
division factor (UARTDIV).
DIV_Mantissa Minimum value is 4

20.5.10 UART fractional baud rate register(UART_FRA)
Offset address: 0x24

Reset value: 0x0000 0000

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrw

Reserved

DIV_FractionReserved

www.mm32mcu.com 489/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

31 : 4 Reserved Always read as 0.
3 : 0 DIV_Fraction rw 0x00 The decimal part of UARTDIV

These 4 bits define the decimal part of the UART divider
division factor (UARTDIV).

20.5.11 UART receive address register(UART_RXADDR)
Offset address: 0x28

Reset value: 0x0000 0000

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrw

Reserved

RXADDRReserved

Bit Field Type Reset Description

31 : 8 Reserved Always read as 0.
7 : 0 RXADDR rw 0x00 UART sync frame data native match address. If RXMASK

= 0xFF, RXB8_INTF is generated when the received sync
frame data is the same as the local match address.
Address 0 is the broadcast address and will respond when
received.

20.5.12 UART receive mask register(UART_RXMASK)
Offset address: 0x2C

Reset value: 0x0000 00FF

15 1234567891011121314 0

31 1718192021222324252627282930 16

rwrwrwrwrwrwrwrw

Reserved

RXMASKReserved

Bit Field Type Reset Description

31 : 8 Reserved Always read as 0.

www.mm32mcu.com 490/513

UM_MM32SPIN05x_q_Ver1.19
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER(UART)

Bit Field Type Reset Description

7 : 0 RXMASK rw 0xFF When the data bits are all ”0”, a sync frame interrupt re-
quest is generated when any data is received.
If the data bit is ”1” and the corresponding bits of RDR and
RXADDRmatch, a synchronous frame interrupt request is
generated.

20.5.13 UART SCR register(UART_SCR)
Offset address: 0x30

Reset value: 0x0000 0000

15 1234567891011121314 0

rwrrwrwrwrwrwrwrwrwrw rw

31 1718192021222324252627282930 16

Reserved

Reserved SCENSCAE

N

NACKSCFCNTHDSE

L

Res.

Bit Field Type Reset Description

31 : 13 Reserved Always read as 0.
12 HDSEL rw 0x00 Single-line half-duplex mode selection.

1 : Enable half-duplex mode
0 : Half-duplex mode

11 : 4 SCFCNT rw 0x00 ISO7816 protection counter. When the transmit data is
low during the protection counter period, the start bit of
the next data is disabled.
0 is 16 baud rate counting time, 15..1 is 15..1 time

3 Reserved Always read as 0.
2 NACK r 0x00 Master receive frame acknowledge bit
1 SCAEN rw 0x00 ISO7816 verifies the auto answer bit.

1 : Enable auto answer
0 : Disable automatic answer

0 SCEN rw 0x00 ISO7816 enables control bits.
1 : Enable ISO7816 function
0 : Prohibit ISO7816 function

www.mm32mcu.com 491/513

UM_MM32SPIN05x_q_Ver1.19
HARDWARE DIVISION(HWDIV)

21 Hardware division(HWDIV)

Hardware division(HWDIV)

21.1 Hardware Division Introduction

Hardware division is useful in some high-performance applications that automatically per-
form signed or unsigned 32-bit integer division operations.

21.2 Main features of hardware division
• signed or unsigned integer division
• 32-bit divisor and dividend, output 32-bit quotient and remainder
• 8 HCLK cycles completed
• If the divisor is zero, an overflow interrupt flag will be generated.
• write divisor automatically performs division operation
• automatically waits for the end of the operation when reading the quotient and remainder
registers, no need to check the status bits

21.3 Hardware division function introduction

The hardware division unit consists of four 32-bit data registers, which are dividend, di-
visor, quotient and remainder, and can be done with signed or unsigned 32-bit division.
The hardware division control register USIGN bit can be selected to be signed division or
unsigned division.

Each time the divisor register is written, the divide operation is automatically triggered.
After the end of the operation, the result is written to the quotient and remainder registers.
If the quotient register, remainder register, or status register is read before the end, the
read operation is suspended until the end of the operation.

If the divisor is zero, an overflow interrupt flag will be generated.

21.4 Hardware Division Register description

Table 66. Hardware Division Register Overview

Offset Acronym Register Name Reset Section

0x00 HWDIV_DVDR Dividend register 0x00000000 section 21.4.1

0x04 HWDIV_DVSR Divisor register 0x00000001 section 21.4.2

0x08 HWDIV_QUOTR Quotient register 0x00000000 section 21.4.3

0x0C HWDIV_RMDR Remainder register 0x00000000 section 21.4.4

www.mm32mcu.com 492/513

UM_MM32SPIN05x_q_Ver1.19
HARDWARE DIVISION(HWDIV)

Offset Acronym Register Name Reset Section

0x10 HWDIV_SR HWDIV status register 0x00000000 section 21.4.5

0x14 HWDIV_CR HWDIV control register 0x00000001 section 21.4.6

21.4.1 Dividend register(HWDIV_DVDR)
Offset address: 0x00

Reset value: 0x0000 0000

171819202122232425 162728293031 26

DIVIDEND

123456789 01112131415 10

DIVIDEND

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

31 : 0 DIVIDEND rw 0x0000
0000

Dividend data

21.4.2 Divisor register(HWDIV_DVSR)
Offset address: 0x04

Reset value: 0x0000 0001

171819202122232425 162728293031 26

DIVISOR

123456789 01112131415 10

DIVISOR

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

Bit Field Type Reset Description

31 : 0 DIVISOR rw 0x0000
0001

Divisor data
After the register is written, the division operation is auto-
matically triggered.

21.4.3 Quotient register(HWDIV_QUOTR)
Offset address: 0x08

Reset value: 0x0000 0000

www.mm32mcu.com 493/513

UM_MM32SPIN05x_q_Ver1.19
HARDWARE DIVISION(HWDIV)

171819202122232425 162728293031 26

QUOTIENT

123456789 01112131415 10

QUOTIENT

r rrrrrrrrrrrrrr r

r rrrrrrrrrrrrrr r

Bit Field Type Reset Description

31 : 0 QUOTIENT r 0x0000
0000

Quotient data

21.4.4 Remainder register(HWDIV_RMDR)
Offset address: 0x0C

Reset value: 0x0000 0000

171819202122232425 162728293031 26

REMAINDER

123456789 01112131415 10

REMAINDER

r rrrrrrrrrrrrrr r

r rrrrrrrrrrrrrr r

Bit Field Type Reset Description

31 : 0 REMAINDER r 0x0000
0000

Remainder data

21.4.5 HWDIV status register(HWDIV_SR)
Offset address: 0x10

Reset value: 0x0000 0000

171819202122232425 162728293031 26

123456789 01112131415 10

r

OVF

Res.

Res.

Bit Field Type Reset Description

31: 1 Reserved Reserved, always read as 0.

www.mm32mcu.com 494/513

UM_MM32SPIN05x_q_Ver1.19
HARDWARE DIVISION(HWDIV)

Bit Field Type Reset Description

0 OVF r 0x00 overflow status flag
Automatically clear before the next division operation
1: The current operation divisor is zero.
0: The current operation divisor is not zero.

21.4.6 HWDIV control register(HWDIV_CR)
Offset address: 0x14

Reset value: 0x0000 0001

171819202122232425 162728293031 26

123456789 01112131415 10

rw rw

Res.

Res. OVFE USIGN

Bit Field Type Reset Description

31: 2 Reserved Reserved, always read as 0.
1 OVFE rw 0x00 Overflow interrupt enable

1: divide by zero overflow interrupt enable
0: divide by zero overflow interrupt is not enabled

0 USIGN rw 0x01 Unsigned division enable
1: unsigned division
0: signed division

www.mm32mcu.com 495/513

UM_MM32SPIN05x_q_Ver1.19
SYSTEM CONFIGURATION CONTROLLER (SYSCFG)

22 System configuration controller

(SYSCFG)
System configuration controller (SYSCFG)

The device is provided with a set of system configuration registers, with the main functions
as follows:

• The remapping section covers the TIM16 and TIM17, and UART1 and DMA trigger
sources of ADC to other different DMA channels.

• Management device connected to the external interrupts of GPIO port.
• Remapping the memory to the code starting area.
• Pin configuration for external interrupt.

22.1 SYSCFG register description

Table 67. Summary of SYSCFG Register

Offset Acronym Register Name Reset Section

0x00 SYSCFG_CFGR SYSCFG configuration register 0x0000000X section 22.1.1

0x08 SYSCFG_EXTICR1 External interrupt configuration register 1 0x00000000 section 22.1.2

0x0C SYSCFG_EXTICR2 External interrupt configuration register 2 0x00000000 section 22.1.3

0x10 SYSCFG_EXTICR3 External interrupt configuration register 3 0x00000000 section 22.1.4

0x14 SYSCFG_EXTICR4 External interrupt configuration register 4 0x00000000 section 22.1.5

22.1.1 SYSCFG configuration register (SYSCFG_CFGR)
This register is dedicated to configuring memory start area mapping and DMA request
remapping, with two control bits of configurable memory start address (0x0000 0000)
storage area type, these two control bits can be configured by software, to mask BOOT
selection. After reset, these two control bits represent the actual BOOT mode configura-
tion.

Offset address: 0x00

Reset value: 0x0000 000X(X: the selection control bit of the actual BOOT mode)

www.mm32mcu.com 496/513

UM_MM32SPIN05x_q_Ver1.19
SYSTEM CONFIGURATION CONTROLLER (SYSCFG)

171819202122232425 162728293031 26

123456789 01112131415 10

rwrwrwrwrwrw rw

Reserved

MEM_ MODEReserved

ADC

_DMA

_RMP

UART1

_TX

_DMA

_RMP

UART1

_RX

_DMA

_RMP

TIM16

_DMA

_RMP

TIM17

_DMA

_RMP

Reserved

Bit Field Type Reset Description

31 : 13 Reserved Always read as 0.
12 TIM17_DMA

_RMP
rw 0x00 TIM17 DMA request remapping bit

This bit is set and cleared by the software, controlling the
remapping of TIM17 DMA channel requests.
0: No remapping(TIM17_CH1 and TIM17_UP DMA re-
quest mapped on DMA Channel 1)
1: Remapping (TIM17_CH1 and TIM17_UP DMA request
mapped on DMA Channel 2)

11 TIM16_DMA
_RMP

rw 0x00 TIM16 DMA request remapping bit
This bit is set and cleared by the software.controlling the
remapping of TIM16 DMA channel requests.
0: No remapping(TIM16_CH1 and TIM16_UP DMA re-
quest mapped on DMA Channel 3)
1: Remapping (TIM16_CH1 and TIM16_UP DMA request
mapped on DMA Channel 4)

10 UART1_RX
_DMA_RMP

rw 0x00 UART1_RX DMA request remapping bit
This bit is set and cleared by the software, controlling the
remapping of UART1_RX DMA channel requests. .
0: No remapping(UART1_ RX DMA request mapped on
DMA Channel 3)
1: Remapping (UART1_ RX DMA request mapped on
DMA Channel 5)

9 UART1_TX
_DMA_RMP

rw 0x00 UART1_TX DMA request remapping bit
This bit is set and cleared by the software, controlling the
remapping of UART1_TX DMA channel requests.
0: No remapping(UART1_TX DMA request mapped on
DMA Channel 2)
1: Remapping (UART1_TXDMA request mapped onDMA
Channel 4)

www.mm32mcu.com 497/513

UM_MM32SPIN05x_q_Ver1.19
SYSTEM CONFIGURATION CONTROLLER (SYSCFG)

Bit Field Type Reset Description

8 ADC_DMA
_RMP

rw 0x00 ADC DMA request remapping bit
This bit is set and cleared by the software, controlling the
remapping of ADC DMA channel requests.
0: No remapping(ADC DMA request mapped on DMA
Channel 1)
1: Remapping (ADC DMA request mapped on DMA Chan-
nel 2)

7 : 2 Reserved Always read as 0.
1 : 0 MEM_MODE rw 0x00 Memory selection bit These bits are set and cleared by the

software, controlling the internal mapping of thememory to
address 0x0000 0000. When being reset, these bit values
are determined by the BOOT0 pin configuration value and
the nBOOT1 bit value.
x0: main flash memory mapped to 0x0000 0000
01: System flash mapped to 0x0000 0000
11: Embedded RAM mapped to 0x0000 0000

22.1.2 External interrupt configuration register 1
(SYSCFG_EXTICR1)

Offset address: 0x08

Reset value: 0x0000 0000

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

EXTI0EXTI3 EXTI2 EXTI1

Bit Field Type Reset Description

31 : 16 Reserved Always read as 0.
15 : 0 EXTIx rw 0x00 EXTI x configuration(x = 0…3)

These bits are available for software to read and write, and
used for selecting the input sources of EXTIx external in-
terrupts.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin

www.mm32mcu.com 498/513

UM_MM32SPIN05x_q_Ver1.19
SYSTEM CONFIGURATION CONTROLLER (SYSCFG)

22.1.3 External interrupt configuration register 2
(SYSCFG_EXTICR2)

Offset address: 0x0C

Reset value: 0x0000 0000

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

EXTI4EXTI7 EXTI6 EXTI5

Bit Field Type Reset Description

31 : 16 Reserved Always read as 0.
15 : 0 EXTIx rw 0x00 EXTI x configuration(x = 4…7)

These bits are available for software to read and write, and
used for selecting the input sources of EXTIx external in-
terrupts.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin

22.1.4 External interrupt configuration register 3
(SYSCFG_EXTICR3)

Offset address: 0x10

Reset value: 0x0000 0000

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

EXTI8EXTI11 EXTI10 EXTI9

Bit Field Type Reset Description

31 : 16 Reserved Always read as 0.

www.mm32mcu.com 499/513

UM_MM32SPIN05x_q_Ver1.19
SYSTEM CONFIGURATION CONTROLLER (SYSCFG)

Bit Field Type Reset Description

15 : 0 EXTIx rw 0x00 EXTI x configuration(x = 8…11)
These bits are available for software to read and write, and
used for selecting the input sources of EXTIx external in-
terrupts.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin

22.1.5 External interrupt configuration register 4
(SYSCFG_EXTICR4)

Offset address: 0x14

Reset value: 0x0000 0000

rw rwrwrwrwrwrwrwrwrwrwrwrwrwrw rw

171819202122232425 162728293031 26

123456789 01112131415 10

Reserved

EXTI12EXTI15 EXTI14 EXTI13

Bit Field Type Reset Description

31 : 16 Reserved Always read as 0.
15 : 0 EXTIx rw 0x00 EXTI x configuration(x = 12…15)

These bits are available for software to read and write, and
used for selecting the input sources of EXTIx external in-
terrupts.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin

www.mm32mcu.com 500/513

UM_MM32SPIN05x_q_Ver1.19
DEVICE ELECTRONIC SIGNATURE (DEVICE)

23 Device electronic signature (De-

vice)
Device electronic signature (Device)

The electronic signature is stored in the System memory area in the Flash memory mod-
ule, and can be read using the JTAG/SWD or the CPU. It contains factory-programmed
identification data that allow the user firmware or other external devices to automatically
match microcontrollers with different configurations.

23.1 Memory size registers

23.1.1 Unique device ID register (96 bits)
The unique device identifier is ideally suited:

• for use as serial numbers (for example USB string serial numbers or other end applica-
tions).

• for use as security keys in order to increase the security of code in Flash memory while
using and combining this unique ID with software cryptographic primitives and protocols
before programming the internal Flash memory.

• to activate secure boot processes, etc.

The 96-bit unique device identifier provides a reference number which is unique for any
device and in any context. These bits can never be altered by the user.

The 96-bit unique device identifier can also be read in single bytes (8 bits) /half-words
(16 bits) /full words (32 bits) in different ways and then be concatenated using a custom
algorithm.

23.2 UID register description

Table 68. Memory Capacity Register Description Overview

Offset Acronym Register Name Reset Section

0x00 UID1 Unique identification code 0xXXXXXXXX section 23.2.1

0x02 UID2 Unique identification code 0xXXXXXXXX section 23.2.2

0x04 UID3 Unique identification code 0xXXXXXXXX section 23.2.3

0x08 UID4 Unique identification code 0xXXXXXXXX section 23.2.4

23.2.1 UID1
Base address: 0x1FFF F7E8

www.mm32mcu.com 501/513

UM_MM32SPIN05x_q_Ver1.19
DEVICE ELECTRONIC SIGNATURE (DEVICE)

Address offset: 0x00

Read-only, the value is factory-programmed

15 1234567891011121314 0

 r r r r r r r r r r r r rr r r

U_ID

Bit Field Type Reset Description

15 :0 U_ID r U_ID: 15: 0 unique ID bits
This field value is also reserved for a future feature.

23.2.2 UID2
Address offset: 0x02

Read-only, the value is factory-programmed

15 1234567891011121314 0

 r r r r r r r r r r r r rr r r

U_ID

Bit Field Type Reset Description

15 :0 U_ID r U_ID: 31: 16 unique ID bits
This field value is also reserved for a future feature.

23.2.3 UID3
Address offset: 0x04

Read-only, the value is factory-programmed

15 1234567891011121314 0

31 1718192021222324252627282930 16

 r r r r r r r r r r r r r r r r

 r r r r r r r r r r r r r r r r

U_ID

U_ID

Bit Field Type Reset Description

31 :0 U_ID r U_ID: 63: 32 unique ID bits
This field value is also reserved for a future feature.

23.2.4 UID4
Address offset: 0x08

www.mm32mcu.com 502/513

UM_MM32SPIN05x_q_Ver1.19
DEVICE ELECTRONIC SIGNATURE (DEVICE)

Read-only, the value is factory-programmed

15 1234567891011121314 0

31 1718192021222324252627282930 16

 r r r r r r r r r r r r r r r r

 r r r r r r r r r r r r r r r r

U_ID

U_ID

Bit Field Type Reset Description

31：0 U_ID r U_ID: 95: 64 unique ID bits
This field value is also reserved for a future feature.

www.mm32mcu.com 503/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

24 Debug support(DBG)

Debug support(DBG)

24.1 Overview

The core of the series contains hardware debugging modules for complex debugging op-
erations. The hardware debugging modules allow the core to be stopped either on a given
instruction fetch (breakpoint) or data access (watchpoint).

When stopped, the core’s internal state and the system’s external state may be examined.
Once examination is completed, the core and the system may be restored and program
execution resumed.

The hardware debugging module is used by the debugger for relevant operations when it
is connected to and used for debugging the microcontroller of the series.

Support:

• Serial debug interface

871928

Cortex-M

Core

Bus matrix

Bridge

NVIC

DWT

FPB

TPIU

DCode

interface

SWJ-DP

Debug AP

JTDO/

TRACESWO

JNTRST

Cortex-M0 debug support

CC debug support

JTMS/

SWDIO

JTDI

JTCK/

SWCLK

AHB-AP

Data

Internal Private

Peripheral Bus(PPB)

ITM

External Private

Peripheral Bus (PPB)

System

interface

DBGMCU

Trace Port

TRACESWO

TRACECK

TRACED[3:0]

Figure 238. Block Diagram of MM32 Series Level and CPU Level Debug Support

www.mm32mcu.com 504/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

The core provides integrated on-device debug support. It is comprised of:

• SW-DP: : serial debug port
• AHP-AP: AHB access port
• ITM: Instrumentation trace macrocell
• FPB: Flash patch breakpoint
• DWT: Data watchpoint trigger
• TPUI: Trace port unit interface

24.2 Pinout and debug port pins

The device microcontroller is available in various packages with different numbers of avail-
able pins. As a result, some functionality related to pin availability may differ between
packages.

24.2.1 SWD debug port pins
2 ordinary I/O ports of the device are used as the SW-DP interface pins. These pins are
available on all packages.

Table 69. SWJ Debug Port Pins

SWJ-DP pin name
SW debug interface

Pin assignment
Type Debugging function

SW SW debug interface Input/output Serial data input/output PA13

SWCLK Input Serial clock PA14

24.2.2 Internal pull-up and pull-down on SWD pins
It is necessary to ensure that the SWD input pins are not floating since they are directly
connected to D flip-flops to control the debug mode features. Special care must be taken
with the SWCLK pin which is directly connected to the clock of some of these flip-flops.

To avoid any uncontrolled I/O levels, the device embeds internal pull-ups and pull-downs
on the SWD input pins:

• SWDIO: Internal pull-up
• SWCLK: Input with pull-down

The software can use these I/Os as ordinary I/Os.

24.3 ID codes and locking mechanism

There are several ID codes inside the device.

24.3.1 MCU device ID code
The MCU integrates an MCU ID code. This ID identifies the MCU part number and the
die revision. It is part of the DBG_MCU component and is mapped on the external APB
bus. This code is accessible using the SW debug port (2 pins) or by the user code.

www.mm32mcu.com 505/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

DBGMCU_IDCODE

Address: 0x40013400 Only 32-bits access supported.

Read-only =0xXXXXXXXX, where X is a bit with undefined content.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DEV_ID

DEV_ID

r r r r r r r r r r r r r r r

rrrrrrrrrrrrrrrr

r

31: 0 DEV_ID: Device identifier

24.3.2 Cortex JEDEC-106 ID code
The CPU has a JEDEC-106 ID code. It is located in a 4KB ROM table mapped to the
internal APB bus address 0xE00FF000_ 0xE00FFFFF.

The following table shows the individual ID codes for the series:

Table 71. ID code

ID name chip

DEV_ID 0xCC4460B1

CPU TAP SW ID 0x0BB11477

24.4 SW debug port

24.4.1 SW protocol introduction
This synchronous serial protocol uses two pins:

• SWCLK: clock from host to target
• SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to. Bits are transferred LSB-first on the wire. For SWDIO bidirectional
management, the pin must be pulled-up on the board (100 KΩ recommended). Each time
the direction of SWDIO changes in the protocol, a turnaround time is inserted where the
line is not driven by the host nor the target. By default, this turnaround time is one bit time,
however, this can be adjusted by configuring the SWCLK frequency.

24.4.2 SW protocol sequence
Each sequence consist of three phases:

• Packet request (8 bits) transmitted by the host
• Acknowledge response (3 bits) transmitted by the target

www.mm32mcu.com 506/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

• Data transfer phase (33 bits) transmitted by the host or the target

Table 72. Packet Request (8-bit)

Bit Name Description

0 Start Must be ’1’

1 APnDP 0: DP Access 1: AP Access

2 RnW 0: Write Request 1: Read Request

4:3 A(3: 2) Address field of the DP or AP registers

5 Parity Single bit parity of preceding bits

6 Stop 0

7 Park
Not driven by the host. Must be read as ’1’ by the target

because of the pull-up

Refer to the CPU TRM (Technical Reference Manual) for a detailed description of DPACC
and APACC registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drives the line.

Table 73. Packet Request (3-bit)

Bit Name Description

0..2 ACK

001: Fault

010: Wait

100: OK

The ACK must be followed by a turnaround time only if it is a READ transaction or if a
WAIT or FAULT acknowledge has been received.

Table 74. Packet Request (33-bit)

Bit Name Description

0..31 WDATA/RDATA Write or read data

32 Parity Single parity of the 32 data bits

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

24.4.3 SW-DP state machine (Reset, idle states, ID code)
The state machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard.

The SW-DP state machine is inactive until the debugger reads this ID code.

• The SW-DP state machine is in RESET STATE either after power-on reset, or after the
DP has switched from JTAG to SWD or after the line is high for more than 50 cycles.

• The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after

www.mm32mcu.com 507/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

RESET state.
• After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the debugger will issue a
FAULT acknowledge response on another transactions.

24.4.4 DP and AP read/write accesses
• Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).

• Read accesses to the AP are posted. This means that the result of the access is re-
turned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.

• The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.

• The SW-DP implements a write buffer (for both DP and AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the debugger acknowledge response is ”WAIT”. With the exception of
IDCODE read or CTRL/STAT read or ABORT write which is accepted even if the write
buffer is full.

• Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write effective
internally. These cycles should be applied while driving the line low (IDLE state). This is
particularly important when writing the CTRL/STAT for a power-up request. If the next
transaction (requiring a power-up) occurs immediately, it will fail.

24.4.5 SW-DP register
Access to these registers are initiated when APnDP=0.

A(3: 2) Read/write
CTRLSEL bit

of SELECT register
Register Description

00 Read IDCODE It is set to 0x1BA01477 (identifies the SW-DP)

00 Write ABORT

01 Read/Write 0
DP-

CTRL/STAT

Request a system or debug power-up; configure the trans-

fer operation for AP accesses; control the compare and

verify operations; read some status flags (overrun, power-

up acknowledges)

01 Read/Write 1
WIRE CON-

TROL

Configure the physical serial port protocol (like the dura-

tion of the turnaround time).

10 Read
READ RE-

SEND

Enables recovery of the read data from a corrupted debug-

ger transfer, without repeating the original AP transfer.

10 Write SELECT
Select the current access port and the active 4-word reg-

ister window.

www.mm32mcu.com 508/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

A(3: 2) Read/write
CTRLSEL bit

of SELECT register
Register Description

11 Read/Write
READ

BUFFER

This read buffer is useful because AP accesses are

posted (the result of a read AP request is available on the

next AP transaction). This read buffer captures data from

the AP, presented as the result of a previous read, without

initiating a new transaction

24.4.6 SW-AP register
Access to these registers are initiated when APnDP=1.

There are many AP Registers addressed as the combination of:

• A[3:2]
• The current value of the DP SELECT register

24.5 MCU debug module (MCUDBG)

The MCU debug module assists the debugger with the following features:

• Low power mode
• Provide timer at breakpoint, and enable the clock control of watchdog
• Control the assignment of trace pin

24.5.1 Debugg support in low power mode
To enter low-power mode, the instruction WFI or WFE must be executed. The MCU im-
plements several low-power modes which can either deactivate the CPU clock or reduce
the power of the CPU. The core does not allow FCLK or HCLK to be turned off during a
debug session. As these are required for the debugger connection, during a debug, they
must remain active. The MCU integrates special means to allow the user to debug code
in low-power modes.

For this, the debugger host must first set some debug configuration registers to change
the low-power mode behavior:

• In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by
the debugger. This will feed HCLK with the same clock that is provided to FCLK (system
clock previously configured by the software).

• In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will
enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode.

24.5.2 Support timer, watchdog
When generating a breakpoint, it is necessary to select the operating mode of the counter
based on the different uses of the timer and the watchdog:

• The counter continues to count when a breakpoint is generated. This is often used
when outputting a PWM controlled motor.

www.mm32mcu.com 509/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

• When a breakpoint is generated, the counter stops counting. This is required for the
watchdog counter.

24.5.3 Debug MCU configuration register
This register allows the configuration of the MCU under DEBUG. This concerns:

• Low-power mode support
• Timer and watchdog counter support
• Trace pin assignment

This DBGMCU_CR is mapped on the External APB bus at address 0x40013404. It is
asynchronously reset by the PORESET (and not the system reset). It can be written by
the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software
to write to these registers.

24.6 Description of DBG Register

Table 76. Summary of DBG Register

Offset Acronym Register Name Reset Section

0x00 DBG DBG Control Register 0x00000000 section 24.6.1

24.6.1 DBG Control Register(DBG_CR)
Address: 0x40013404 Only 32-bits access supported.

POR Reset: 0x0000 0000 (not reset by system reset)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

wwwwww w w w

Reserved

Reserved DBG_TIMx_STOP
DBG_

WWDG

_STOP

DBG_

IWDG

_STOP
Reserved

DBG_

STAN

DBY

DBG_

STOP

DBG_

SLEEP

Bit Field Type Reset Description

31:14 Reserved Always read as 0.
13:10 DBG_TIMx_

STOP
w 0x00 TIMx stopped when core is halted (x=4.1)

0: The clock of the involved Timer Counter is fed even if
the core is halted
1: The clock of the involved Timer counter is stopped when
the core is halted

www.mm32mcu.com 510/513

UM_MM32SPIN05x_q_Ver1.19
DEBUG SUPPORT(DBG)

Bit Field Type Reset Description

9 DBG_WWDG_
STOP

w 0x00 Debug window watchdog stopped when core is halted
0: The window watchdog counter clock continues even if
the core is halted
1: The window watchdog counter clock is stopped when
the core is halted

8 DBG_IWDG_
STOP

w 0x00 Debug independent watchdog stopped when core is
halted
0: The watchdog counter clock continues even if the core
is halted
1: The watchdog counter clock is stopped when the core
is halted

7:3 Reserved Always read as 0.
2 DBG_STAN

DBY
w 0x00 Debug Standby mode

0: (FCLK=Off, HCLK=Off) The whole digital part is unpow-
ered. From software point of view, exiting from Standby is
identical than fetching reset vector (except a few status bit
indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is
not unpowered and FCLK and HCLK are provided by the
internal RC oscillator which remains active. In addition,
the MCU generate a system reset during Standby mode
so that exiting from Standby is identical than fetching from
reset

1 DBG_STOP w 0x00 Debug Stop mode
0 DBG_SLEEP w 0x00 Debug Sleep mode

0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is
clocked by the system clock as previously configured by
the software while HCLK is disabled. In Sleep mode, the
clock controller configuration is not reset and remains in
the previously programmed state. Consequently, when
exiting from Sleep mode, the software does not need to
reconfigure the clock controller.
1: (FCLK=On, HCLK=On) In this case, when entering
Sleep mode, HCLK is fed by the same clock that is pro-
vided to FCLK (system clock as previously configured by
the software).

www.mm32mcu.com 511/513

UM_MM32SPIN05x_q_Ver1.19
REVISION HISTORY

25 Revision history

Revision history

Table 77. Revision History

Date Rversion Changes

2019/08/06 Rev1.19 Modify the typo at thememory and bus architecture

2019/07/23 Rev1.18
SPI_EXTCTL is only valid when the DW8_32 bit is

’0’

2019/07/16 Rev1.17 The minimum UART BRR register is 4

2019/07/09 Rev1.16 Modify comparatorMode parameter description

2019/07/03 Rev1.15

Modify the capture/compare register in the ad-

vanced timer. 5 Describe the error and change

CCMR5 to CCMR3.

2019/05/09 Rev1.14

Modify port mode configuration

Brake and deadband registers in the advanced

timer BDTR deadband generator setting bit DTG

Correction

2019/04/16 Rev1.13 Modify the adc calculation formula

2019/03/11 Rev1.12 Modify the RCC_CIR register description

2019/01/17 Rev1.11
Add RCC register description and deleting the

PWM module

2019/01/10 Rev1.10 Modify the PWR description

2019/01/09 Rev1.10 Modify comparator

www.mm32mcu.com 512/513

UM_MM32SPIN05x_q_Ver1.19
REVISION HISTORY

Date Rversion Changes

2018/12/22 Rev1.09

TIM14 modifies picture 565511 to remove some of

the extra changes.

In the TIMX_16bit Function Description section, in

the Input Capture section, change ”CC1S = 01 in

the TIMx_CCR1 register” to ”CC1S = 01 in the

TIMx_CCMR1 register”.

TIM1/8 replaces ”capture” in the text with ”capture”.

In the TIM1/8 Function Description section, the

Input Capture section modifies ”CC1S = 01 in

the TIMx_CCR1 register” to ”CC1S=01 in the

TIMx_CCMR1 register”.

The synchronization part of the TIM1/8 TIMx timer

and external trigger changes the incorrect writing

”IMx_CR1” to ”TIMx_CR1”.

DIV_Mantiss cannot be 0 in UART_BRR.

2018/12/20 Rev1.08
UART_CSR changed to UART current status reg-

ister

www.mm32mcu.com 513/513

