-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.txt
40 lines (28 loc) · 1.34 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
The following repoistory contains the data accompanying the publication:
Hoppe, D., & Rothkopf, C. A. (2019). Multi-step planning of eye movements in visual search. Scientific reports, 9(1), 1-12.
https://www.nature.com/articles/s41598-018-37536-0
----------------------
- Code
----------------------
spatialPlanningCode.py
reads in the preprocessed data and the stimulus shapes, computes mean landing locations and generates the behavioral plot shown in the paper.
----------------------
- Data
----------------------
spatialPlanningData.csv
contains the data of individual subjects after preprocessing. This data is used to estimate the parameters of our computational model.
Description of the dataframe:
Unnamed: 0 : row number
code: participant code
seed: stimulus code
cols: classification of fixation (0: first fixation in the short search interval, 1: first fixation in the long interval, 2: second location in the long interval)
posX: x-coordinate of the fixation
posY: y-coordinate of the fixation
----------------------
- Experimental Stimuli
----------------------
spatialPlanningShape-13.gz
spatialPlanningShape-19.gz
spatialPlanningShape-26.gz
spatialPlanningShape-4.gz
Each file contains the shape used for our visual search task. Shape numbers correspond to the column seed in the data file.