-
Notifications
You must be signed in to change notification settings - Fork 0
/
dcd.c
1097 lines (939 loc) · 36 KB
/
dcd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "largefiles.h" /* platform dependent 64-bit file I/O defines */
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include "endianswap.h"
#include "fastio.h"
#include "molfile_plugin.h"
#include "dcd.h"
#include "psfgen.h"
/* print DCD error in a human readable way */
static void print_dcderror(const char *func, int errcode) {
const char *errstr;
switch (errcode) {
case DCD_EOF: errstr = "end of file"; break;
case DCD_DNE: errstr = "file not found"; break;
case DCD_OPENFAILED: errstr = "file open failed"; break;
case DCD_BADREAD: errstr = "error during read"; break;
case DCD_BADEOF: errstr = "premature end of file"; break;
case DCD_BADFORMAT: errstr = "corruption or unrecognized file structure"; break;
case DCD_FILEEXISTS: errstr = "output file already exists"; break;
case DCD_BADMALLOC: errstr = "memory allocation failed"; break;
case DCD_BADWRITE: errstr = "error during write"; break;
case DCD_SUCCESS:
default:
errstr = "no error";
break;
}
// printf("dcdplugin) %s: %s\n", func, errstr);
}
/*
* Read the header information from a dcd file.
* Input: fd - a file struct opened for binary reading.
* Output: 0 on success, negative error code on failure.
* Side effects: *natoms set to number of atoms per frame
* *nsets set to number of frames in dcd file
* *istart set to starting timestep of dcd file
* *nsavc set to timesteps between dcd saves
* *delta set to value of trajectory timestep
* *nfixed set to number of fixed atoms
* *freeind may be set to heap-allocated space
* *reverse set to one if reverse-endian, zero if not.
* *charmm set to internal code for handling charmm data.
*/
static int read_dcdheader(fio_fd fd, int *N, int *NSET, int *ISTART,
int *NSAVC, double *DELTA, int *NAMNF,
int **FREEINDEXES, float **fixedcoords, int *reverseEndian,
int *charmm)
{
unsigned int input_integer[2]; /* buffer space */
int i, ret_val, rec_scale;
char hdrbuf[84]; /* char buffer used to store header */
int NTITLE;
int dcdcordmagic;
char *corp = (char *) &dcdcordmagic;
/* coordinate dcd file magic string 'CORD' */
corp[0] = 'C';
corp[1] = 'O';
corp[2] = 'R';
corp[3] = 'D';
/* First thing in the file should be an 84.
* some 64-bit compiles have a 64-bit record length indicator,
* so we have to read two ints and check in a more complicated
* way. :-( */
ret_val = READ(fd, input_integer, 2*sizeof(unsigned int));
CHECK_FREAD(ret_val, "reading first int from dcd file");
CHECK_FEOF(ret_val, "reading first int from dcd file");
/* Check magic number in file header and determine byte order*/
if ((input_integer[0]+input_integer[1]) == 84) {
*reverseEndian=0;
rec_scale=RECSCALE64BIT;
// printf("dcdplugin) detected CHARMM -i8 64-bit DCD file of native endianness\n");
} else if (input_integer[0] == 84 && input_integer[1] == dcdcordmagic) {
*reverseEndian=0;
rec_scale=RECSCALE32BIT;
// printf("dcdplugin) detected standard 32-bit DCD file of native endianness\n");
} else {
/* now try reverse endian */
swap4_aligned(input_integer, 2); /* will have to unswap magic if 32-bit */
if ((input_integer[0]+input_integer[1]) == 84) {
*reverseEndian=1;
rec_scale=RECSCALE64BIT;
// printf("dcdplugin) detected CHARMM -i8 64-bit DCD file of opposite endianness\n");
} else {
swap4_aligned(&input_integer[1], 1); /* unswap magic (see above) */
if (input_integer[0] == 84 && input_integer[1] == dcdcordmagic) {
*reverseEndian=1;
rec_scale=RECSCALE32BIT;
// printf("dcdplugin) detected standard 32-bit DCD file of opposite endianness\n");
} else {
/* not simply reversed endianism or -i8, something rather more evil */
// printf("dcdplugin) unrecognized DCD header:\n");
// printf("dcdplugin) [0]: %10d [1]: %10d\n", input_integer[0], input_integer[1]);
// printf("dcdplugin) [0]: 0x%08x [1]: 0x%08x\n", input_integer[0], input_integer[1]);
return DCD_BADFORMAT;
}
}
}
/* check for magic string, in case of long record markers */
if (rec_scale == RECSCALE64BIT) {
ret_val = READ(fd, input_integer, sizeof(unsigned int));
if (input_integer[0] != dcdcordmagic) {
// printf("dcdplugin) failed to find CORD magic in CHARMM -i8 64-bit DCD file\n");
return DCD_BADFORMAT;
}
}
/* Buffer the entire header for random access */
ret_val = READ(fd, hdrbuf, 80);
CHECK_FREAD(ret_val, "buffering header");
CHECK_FEOF(ret_val, "buffering header");
/* CHARMm-genereate DCD files set the last integer in the */
/* header, which is unused by X-PLOR, to its version number. */
/* Checking if this is nonzero tells us this is a CHARMm file */
/* and to look for other CHARMm flags. */
if (*((int *) (hdrbuf + 76)) != 0) {
(*charmm) = DCD_IS_CHARMM;
if (*((int *) (hdrbuf + 40)) != 0)
(*charmm) |= DCD_HAS_EXTRA_BLOCK;
if (*((int *) (hdrbuf + 44)) == 1)
(*charmm) |= DCD_HAS_4DIMS;
if (rec_scale == RECSCALE64BIT)
(*charmm) |= DCD_HAS_64BIT_REC;
} else {
(*charmm) = DCD_IS_XPLOR; /* must be an X-PLOR format DCD file */
}
if (*charmm & DCD_IS_CHARMM) {
/* CHARMM and NAMD versions 2.1b1 and later */
// printf("dcdplugin) CHARMM format DCD file (also NAMD 2.1 and later)\n");
} else {
/* CHARMM and NAMD versions prior to 2.1b1 */
// printf("dcdplugin) X-PLOR format DCD file (also NAMD 2.0 and earlier)\n");
}
/* Store the number of sets of coordinates (NSET) */
(*NSET) = *((int *) (hdrbuf));
if (*reverseEndian) swap4_unaligned(NSET, 1);
/* Store ISTART, the starting timestep */
(*ISTART) = *((int *) (hdrbuf + 4));
if (*reverseEndian) swap4_unaligned(ISTART, 1);
/* Store NSAVC, the number of timesteps between dcd saves */
(*NSAVC) = *((int *) (hdrbuf + 8));
if (*reverseEndian) swap4_unaligned(NSAVC, 1);
/* Store NAMNF, the number of fixed atoms */
(*NAMNF) = *((int *) (hdrbuf + 32));
if (*reverseEndian) swap4_unaligned(NAMNF, 1);
/* Read in the timestep, DELTA */
/* Note: DELTA is stored as a double with X-PLOR but as a float with CHARMm */
if ((*charmm) & DCD_IS_CHARMM) {
float ftmp;
ftmp = *((float *)(hdrbuf+36)); /* is this safe on Alpha? */
if (*reverseEndian)
swap4_aligned(&ftmp, 1);
*DELTA = (double)ftmp;
} else {
(*DELTA) = *((double *)(hdrbuf + 36));
if (*reverseEndian) swap8_unaligned(DELTA, 1);
}
/* Get the end size of the first block */
ret_val = READ(fd, input_integer, rec_scale*sizeof(int));
CHECK_FREAD(ret_val, "reading second 84 from dcd file");
CHECK_FEOF(ret_val, "reading second 84 from dcd file");
if (*reverseEndian) swap4_aligned(input_integer, rec_scale);
if (rec_scale == RECSCALE64BIT) {
if ((input_integer[0]+input_integer[1]) != 84) {
return DCD_BADFORMAT;
}
} else {
if (input_integer[0] != 84) {
return DCD_BADFORMAT;
}
}
/* Read in the size of the next block */
input_integer[1] = 0;
ret_val = READ(fd, input_integer, rec_scale*sizeof(int));
CHECK_FREAD(ret_val, "reading size of title block");
CHECK_FEOF(ret_val, "reading size of title block");
if (*reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((((input_integer[0]+input_integer[1])-4) % 80) == 0) {
/* Read NTITLE, the number of 80 character title strings there are */
ret_val = READ(fd, &NTITLE, sizeof(int));
CHECK_FREAD(ret_val, "reading NTITLE");
CHECK_FEOF(ret_val, "reading NTITLE");
if (*reverseEndian) swap4_aligned(&NTITLE, 1);
for (i=0; i<NTITLE; i++) {
fio_fseek(fd, 80, FIO_SEEK_CUR);
CHECK_FEOF(ret_val, "reading TITLE");
}
/* Get the ending size for this block */
ret_val = READ(fd, input_integer, rec_scale*sizeof(int));
CHECK_FREAD(ret_val, "reading size of title block");
CHECK_FEOF(ret_val, "reading size of title block");
} else {
return DCD_BADFORMAT;
}
/* Read in an integer '4' */
input_integer[1] = 0;
ret_val = READ(fd, input_integer, rec_scale*sizeof(int));
CHECK_FREAD(ret_val, "reading a '4'");
CHECK_FEOF(ret_val, "reading a '4'");
if (*reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((input_integer[0]+input_integer[1]) != 4) {
return DCD_BADFORMAT;
}
/* Read in the number of atoms */
ret_val = READ(fd, N, sizeof(int));
CHECK_FREAD(ret_val, "reading number of atoms");
CHECK_FEOF(ret_val, "reading number of atoms");
if (*reverseEndian) swap4_aligned(N, 1);
/* Read in an integer '4' */
input_integer[1] = 0;
ret_val = READ(fd, input_integer, rec_scale*sizeof(int));
CHECK_FREAD(ret_val, "reading a '4'");
CHECK_FEOF(ret_val, "reading a '4'");
if (*reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((input_integer[0]+input_integer[1]) != 4) {
return DCD_BADFORMAT;
}
*FREEINDEXES = NULL;
*fixedcoords = NULL;
if (*NAMNF != 0) {
(*FREEINDEXES) = (int *) calloc(((*N)-(*NAMNF)), sizeof(int));
if (*FREEINDEXES == NULL)
return DCD_BADMALLOC;
*fixedcoords = (float *) calloc((*N)*4 - (*NAMNF), sizeof(float));
if (*fixedcoords == NULL)
return DCD_BADMALLOC;
/* Read in index array size */
input_integer[1]=0;
ret_val = READ(fd, input_integer, rec_scale*sizeof(int));
CHECK_FREAD(ret_val, "reading size of index array");
CHECK_FEOF(ret_val, "reading size of index array");
if (*reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((input_integer[0]+input_integer[1]) != ((*N)-(*NAMNF))*4) {
return DCD_BADFORMAT;
}
ret_val = READ(fd, (*FREEINDEXES), ((*N)-(*NAMNF))*sizeof(int));
CHECK_FREAD(ret_val, "reading size of index array");
CHECK_FEOF(ret_val, "reading size of index array");
if (*reverseEndian)
swap4_aligned((*FREEINDEXES), ((*N)-(*NAMNF)));
input_integer[1]=0;
ret_val = READ(fd, input_integer, rec_scale*sizeof(int));
CHECK_FREAD(ret_val, "reading size of index array");
CHECK_FEOF(ret_val, "reading size of index array");
if (*reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((input_integer[0]+input_integer[1]) != ((*N)-(*NAMNF))*4) {
return DCD_BADFORMAT;
}
}
return DCD_SUCCESS;
}
static int read_charmm_extrablock(fio_fd fd, int charmm, int reverseEndian,
float *unitcell) {
int i, input_integer[2], rec_scale;
if (charmm & DCD_HAS_64BIT_REC) {
rec_scale = RECSCALE64BIT;
} else {
rec_scale = RECSCALE32BIT;
}
if ((charmm & DCD_IS_CHARMM) && (charmm & DCD_HAS_EXTRA_BLOCK)) {
/* Leading integer must be 48 */
input_integer[1] = 0;
if (fio_fread(input_integer, sizeof(int), rec_scale, fd) != rec_scale)
return DCD_BADREAD;
if (reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((input_integer[0]+input_integer[1]) == 48) {
double tmp[6];
if (fio_fread(tmp, 48, 1, fd) != 1) return DCD_BADREAD;
if (reverseEndian)
swap8_aligned(tmp, 6);
for (i=0; i<6; i++) unitcell[i] = (float)tmp[i];
} else {
/* unrecognized block, just skip it */
if (fio_fseek(fd, (input_integer[0]+input_integer[1]), FIO_SEEK_CUR)) return DCD_BADREAD;
}
if (fio_fread(input_integer, sizeof(int), rec_scale, fd) != rec_scale) return DCD_BADREAD;
}
return DCD_SUCCESS;
}
static int read_fixed_atoms(fio_fd fd, int N, int num_free, const int *indexes,
int reverseEndian, const float *fixedcoords,
float *freeatoms, float *pos, int charmm) {
int i, input_integer[2], rec_scale;
if(charmm & DCD_HAS_64BIT_REC) {
rec_scale=RECSCALE64BIT;
} else {
rec_scale=RECSCALE32BIT;
}
/* Read leading integer */
input_integer[1]=0;
if (fio_fread(input_integer, sizeof(int), rec_scale, fd) != rec_scale) return DCD_BADREAD;
if (reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((input_integer[0]+input_integer[1]) != 4*num_free) return DCD_BADFORMAT;
/* Read free atom coordinates */
if (fio_fread(freeatoms, 4*num_free, 1, fd) != 1) return DCD_BADREAD;
if (reverseEndian)
swap4_aligned(freeatoms, num_free);
/* Copy fixed and free atom coordinates into position buffer */
memcpy(pos, fixedcoords, 4*N);
for (i=0; i<num_free; i++)
pos[indexes[i]-1] = freeatoms[i];
/* Read trailing integer */
input_integer[1]=0;
if (fio_fread(input_integer, sizeof(int), rec_scale, fd) != rec_scale) return DCD_BADREAD;
if (reverseEndian) swap4_aligned(input_integer, rec_scale);
if ((input_integer[0]+input_integer[1]) != 4*num_free) return DCD_BADFORMAT;
return DCD_SUCCESS;
}
static int read_charmm_4dim(fio_fd fd, int charmm, int reverseEndian) {
int input_integer[2],rec_scale;
if (charmm & DCD_HAS_64BIT_REC) {
rec_scale=RECSCALE64BIT;
} else {
rec_scale=RECSCALE32BIT;
}
/* If this is a CHARMm file and contains a 4th dimension block, */
/* we must skip past it to avoid problems */
if ((charmm & DCD_IS_CHARMM) && (charmm & DCD_HAS_4DIMS)) {
input_integer[1]=0;
if (fio_fread(input_integer, sizeof(int), rec_scale, fd) != rec_scale) return DCD_BADREAD;
if (reverseEndian) swap4_aligned(input_integer, rec_scale);
if (fio_fseek(fd, (input_integer[0]+input_integer[1]), FIO_SEEK_CUR)) return DCD_BADREAD;
if (fio_fread(input_integer, sizeof(int), rec_scale, fd) != rec_scale) return DCD_BADREAD;
}
return DCD_SUCCESS;
}
/*
* Read a dcd timestep from a dcd file
* Input: fd - a file struct opened for binary reading, from which the
* header information has already been read.
* natoms, nfixed, first, *freeind, reverse, charmm - the corresponding
* items as set by read_dcdheader
* first - true if this is the first frame we are reading.
* x, y, z: space for natoms each of floats.
* unitcell - space for six floats to hold the unit cell data.
* Not set if no unit cell data is present.
* Output: 0 on success, negative error code on failure.
* Side effects: x, y, z contain the coordinates for the timestep read.
* unitcell holds unit cell data if present.
*/
static int read_dcdstep(fio_fd fd, int N, float *X, float *Y, float *Z,
float *unitcell, int num_fixed,
int first, int *indexes, float *fixedcoords,
int reverseEndian, int charmm) {
int ret_val, rec_scale; /* Return value from read */
if (charmm & DCD_HAS_64BIT_REC) {
rec_scale=RECSCALE64BIT;
} else {
rec_scale=RECSCALE32BIT;
}
if ((num_fixed==0) || first) {
/* temp storage for reading formatting info */
/* note: has to be max size we'll ever use */
int tmpbuf[6*RECSCALEMAX];
fio_iovec iov[7]; /* I/O vector for fio_readv() call */
fio_size_t readlen; /* number of bytes actually read */
int i;
/* if there are no fixed atoms or this is the first timestep read */
/* then we read all coordinates normally. */
/* read the charmm periodic cell information */
/* XXX this too should be read together with the other items in a */
/* single fio_readv() call in order to prevent lots of extra */
/* kernel/user context switches. */
ret_val = read_charmm_extrablock(fd, charmm, reverseEndian, unitcell);
if (ret_val) return ret_val;
/* setup the I/O vector for the call to fio_readv() */
iov[0].iov_base = (fio_caddr_t) &tmpbuf[0]; /* read format integer */
iov[0].iov_len = rec_scale*sizeof(int);
iov[1].iov_base = (fio_caddr_t) X; /* read X coordinates */
iov[1].iov_len = sizeof(float)*N;
iov[2].iov_base = (fio_caddr_t) &tmpbuf[1*rec_scale]; /* read 2 format integers */
iov[2].iov_len = rec_scale*sizeof(int) * 2;
iov[3].iov_base = (fio_caddr_t) Y; /* read Y coordinates */
iov[3].iov_len = sizeof(float)*N;
iov[4].iov_base = (fio_caddr_t) &tmpbuf[3*rec_scale]; /* read 2 format integers */
iov[4].iov_len = rec_scale*sizeof(int) * 2;
iov[5].iov_base = (fio_caddr_t) Z; /* read Y coordinates */
iov[5].iov_len = sizeof(float)*N;
iov[6].iov_base = (fio_caddr_t) &tmpbuf[5*rec_scale]; /* read format integer */
iov[6].iov_len = rec_scale*sizeof(int);
readlen = fio_readv(fd, &iov[0], 7);
if (readlen != (rec_scale*6*sizeof(int) + 3*N*sizeof(float)))
return DCD_BADREAD;
/* convert endianism if necessary */
if (reverseEndian) {
swap4_aligned(&tmpbuf[0], rec_scale*6);
swap4_aligned(X, N);
swap4_aligned(Y, N);
swap4_aligned(Z, N);
}
/* double-check the fortran format size values for safety */
if(rec_scale == 1) {
for (i=0; i<6; i++) {
if (tmpbuf[i] != sizeof(float)*N) return DCD_BADFORMAT;
}
} else {
for (i=0; i<6; i++) {
if ((tmpbuf[2*i]+tmpbuf[2*i+1]) != sizeof(float)*N) return DCD_BADFORMAT;
}
}
/* copy fixed atom coordinates into fixedcoords array if this was the */
/* first timestep, to be used from now on. We just copy all atoms. */
if (num_fixed && first) {
memcpy(fixedcoords, X, N*sizeof(float));
memcpy(fixedcoords+N, Y, N*sizeof(float));
memcpy(fixedcoords+2*N, Z, N*sizeof(float));
}
/* read in the optional charmm 4th array */
/* XXX this too should be read together with the other items in a */
/* single fio_readv() call in order to prevent lots of extra */
/* kernel/user context switches. */
ret_val = read_charmm_4dim(fd, charmm, reverseEndian);
if (ret_val) return ret_val;
} else {
/* if there are fixed atoms, and this isn't the first frame, then we */
/* only read in the non-fixed atoms for all subsequent timesteps. */
ret_val = read_charmm_extrablock(fd, charmm, reverseEndian, unitcell);
if (ret_val) return ret_val;
ret_val = read_fixed_atoms(fd, N, N-num_fixed, indexes, reverseEndian,
fixedcoords, fixedcoords+3*N, X, charmm);
if (ret_val) return ret_val;
ret_val = read_fixed_atoms(fd, N, N-num_fixed, indexes, reverseEndian,
fixedcoords+N, fixedcoords+3*N, Y, charmm);
if (ret_val) return ret_val;
ret_val = read_fixed_atoms(fd, N, N-num_fixed, indexes, reverseEndian,
fixedcoords+2*N, fixedcoords+3*N, Z, charmm);
if (ret_val) return ret_val;
ret_val = read_charmm_4dim(fd, charmm, reverseEndian);
if (ret_val) return ret_val;
}
return DCD_SUCCESS;
}
/*
* Skip past a timestep. If there are fixed atoms, this cannot be used with
* the first timestep.
* Input: fd - a file struct from which the header has already been read
* natoms - number of atoms per timestep
* nfixed - number of fixed atoms
* charmm - charmm flags as returned by read_dcdheader
* Output: 0 on success, negative error code on failure.
* Side effects: One timestep will be skipped; fd will be positioned at the
* next timestep.
*/
static int skip_dcdstep(fio_fd fd, int natoms, int nfixed, int charmm) {
int seekoffset = 0;
int rec_scale;
if (charmm & DCD_HAS_64BIT_REC) {
rec_scale=RECSCALE64BIT;
} else {
rec_scale=RECSCALE32BIT;
}
/* Skip charmm extra block */
if ((charmm & DCD_IS_CHARMM) && (charmm & DCD_HAS_EXTRA_BLOCK)) {
seekoffset += 4*rec_scale + 48 + 4*rec_scale;
}
/* For each atom set, seek past an int, the free atoms, and another int. */
seekoffset += 3 * (2*rec_scale + natoms - nfixed) * 4;
/* Assume that charmm 4th dim is the same size as the other three. */
if ((charmm & DCD_IS_CHARMM) && (charmm & DCD_HAS_4DIMS)) {
seekoffset += (2*rec_scale + natoms - nfixed) * 4;
}
if (fio_fseek(fd, seekoffset, FIO_SEEK_CUR)) return DCD_BADEOF;
return DCD_SUCCESS;
}
/*
* Write a timestep to a dcd file
* Input: fd - a file struct for which a dcd header has already been written
* curframe: Count of frames written to this file, starting with 1.
* curstep: Count of timesteps elapsed = istart + curframe * nsavc.
* natoms - number of elements in x, y, z arrays
* x, y, z: pointers to atom coordinates
* Output: 0 on success, negative error code on failure.
* Side effects: coordinates are written to the dcd file.
*/
static int write_dcdstep(fio_fd fd, int curframe, int curstep, int N,
const float *X, const float *Y, const float *Z,
const double *unitcell, int charmm) {
int out_integer;
if (charmm) {
/* write out optional unit cell */
if (unitcell != NULL) {
out_integer = 48; /* 48 bytes (6 floats) */
fio_write_int32(fd, out_integer);
WRITE(fd, unitcell, out_integer);
fio_write_int32(fd, out_integer);
}
}
/* write out coordinates */
out_integer = N*4; /* N*4 bytes per X/Y/Z array (N floats per array) */
fio_write_int32(fd, out_integer);
if (fio_fwrite((void *) X, out_integer, 1, fd) != 1) return DCD_BADWRITE;
fio_write_int32(fd, out_integer);
fio_write_int32(fd, out_integer);
if (fio_fwrite((void *) Y, out_integer, 1, fd) != 1) return DCD_BADWRITE;
fio_write_int32(fd, out_integer);
fio_write_int32(fd, out_integer);
if (fio_fwrite((void *) Z, out_integer, 1, fd) != 1) return DCD_BADWRITE;
fio_write_int32(fd, out_integer);
/* update the DCD header information */
fio_fseek(fd, NFILE_POS, FIO_SEEK_SET);
fio_write_int32(fd, curframe);
fio_fseek(fd, NSTEP_POS, FIO_SEEK_SET);
fio_write_int32(fd, curstep);
fio_fseek(fd, 0, FIO_SEEK_END);
return DCD_SUCCESS;
}
/*
* Write a header for a new dcd file
* Input: fd - file struct opened for binary writing
* remarks - string to be put in the remarks section of the header.
* The string will be truncated to 70 characters.
* natoms, istart, nsavc, delta - see comments in read_dcdheader
* Output: 0 on success, negative error code on failure.
* Side effects: Header information is written to the dcd file.
*/
static int write_dcdheader(fio_fd fd, const char *remarks, int N,
int ISTART, int NSAVC, double DELTA, int with_unitcell,
int charmm) {
int out_integer;
float out_float;
char title_string[200];
time_t cur_time;
struct tm *tmbuf;
char time_str[81];
out_integer = 84;
WRITE(fd, (char *) & out_integer, sizeof(int));
strcpy(title_string, "CORD");
WRITE(fd, title_string, 4);
fio_write_int32(fd, 0); /* Number of frames in file, none written yet */
fio_write_int32(fd, ISTART); /* Starting timestep */
fio_write_int32(fd, NSAVC); /* Timesteps between frames written to the file */
fio_write_int32(fd, 0); /* Number of timesteps in simulation */
fio_write_int32(fd, 0); /* NAMD writes NSTEP or ISTART - NSAVC here? */
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
if (charmm) {
out_float = DELTA;
WRITE(fd, (char *) &out_float, sizeof(float));
if (with_unitcell) {
fio_write_int32(fd, 1);
} else {
fio_write_int32(fd, 0);
}
} else {
WRITE(fd, (char *) &DELTA, sizeof(double));
}
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
fio_write_int32(fd, 0);
if (charmm) {
fio_write_int32(fd, 24); /* Pretend to be CHARMM version 24 */
} else {
fio_write_int32(fd, 0);
}
fio_write_int32(fd, 84);
fio_write_int32(fd, 164);
fio_write_int32(fd, 2);
strncpy(title_string, remarks, 80);
title_string[79] = '\0';
WRITE(fd, title_string, 80);
cur_time=time(NULL);
tmbuf=localtime(&cur_time);
strftime(time_str, 80, "REMARKS Created %d %B, %Y at %R", tmbuf);
WRITE(fd, time_str, 80);
fio_write_int32(fd, 164);
fio_write_int32(fd, 4);
fio_write_int32(fd, N);
fio_write_int32(fd, 4);
return DCD_SUCCESS;
}
/*
* clean up dcd data
* Input: nfixed, freeind - elements as returned by read_dcdheader
* Output: None
* Side effects: Space pointed to by freeind is freed if necessary.
*/
static void close_dcd_read(int *indexes, float *fixedcoords) {
free(indexes);
free(fixedcoords);
}
void *open_dcd_read(const char *path, const char *filetype,
int *natoms)
{
dcdhandle *dcd;
fio_fd fd;
int rc;
struct stat stbuf;
if (!path) return NULL;
/* See if the file exists, and get its size */
memset(&stbuf, 0, sizeof(struct stat));
if (stat(path, &stbuf))
{
printf("dcdplugin) Could not access file '%s'.\n", path);
return NULL;
}
if (fio_open(path, FIO_READ, &fd) < 0)
{
printf("dcdplugin) Could not open file '%s' for reading.\n", path);
return NULL;
}
dcd = (dcdhandle *) malloc(sizeof(dcdhandle));
memset(dcd, 0, sizeof(dcdhandle));
dcd->fd = fd;
if ((rc = read_dcdheader(dcd->fd, &dcd->natoms, &dcd->nsets, &dcd->istart,
&dcd->nsavc, &dcd->delta, &dcd->nfixed, &dcd->freeind,
&dcd->fixedcoords, &dcd->reverse, &dcd->charmm)))
{
print_dcderror("read_dcdheader", rc);
fio_fclose(dcd->fd);
free(dcd);
return NULL;
}
/*
* Check that the file is big enough to really hold the number of sets
* it claims to have. Then we'll use nsets to keep track of where EOF
* should be.
*/
{
fio_size_t ndims, firstframesize, framesize, extrablocksize;
fio_size_t trjsize, filesize, curpos;
int newnsets;
extrablocksize = dcd->charmm & DCD_HAS_EXTRA_BLOCK ? 48 + 8 : 0;
ndims = dcd->charmm & DCD_HAS_4DIMS ? 4 : 3;
firstframesize = (dcd->natoms+2) * ndims * sizeof(float) + extrablocksize;
framesize = (dcd->natoms-dcd->nfixed+2) * ndims * sizeof(float)
+ extrablocksize;
/*
* It's safe to use ftell, even though ftell returns a long, because the
* header size is < 4GB.
*/
curpos = fio_ftell(dcd->fd); /* save current offset (end of header) */
#if defined(_MSC_VER) && defined(FASTIO_NATIVEWIN32)
/* the stat() call is not 64-bit savvy on Windows */
/* so we have to use the fastio fseek/ftell routines for this */
/* until we add a portable filesize routine for this purpose */
fio_fseek(dcd->fd, 0, FIO_SEEK_END); /* seek to end of file */
filesize = fio_ftell(dcd->fd);
fio_fseek(dcd->fd, curpos, FIO_SEEK_SET); /* return to end of header */
#else
filesize = stbuf.st_size; /* this works ok on Unix machines */
#endif
trjsize = filesize - curpos - firstframesize;
if (trjsize < 0) {
printf("dcdplugin) file '%s' appears to contain no timesteps.\n", path);
fio_fclose(dcd->fd);
free(dcd);
return NULL;
}
newnsets = trjsize / framesize + 1;
if (dcd->nsets > 0 && newnsets != dcd->nsets)
{
printf("dcdplugin) Warning: DCD header claims %d frames, file size indicates there are actually %d frames\n", dcd->nsets, newnsets);
}
dcd->nsets = newnsets;
dcd->setsread = 0;
}
dcd->first = 1;
dcd->x = (float *) malloc(dcd->natoms * sizeof(float));
dcd->y = (float *) malloc(dcd->natoms * sizeof(float));
dcd->z = (float *) malloc(dcd->natoms * sizeof(float));
if (!dcd->x || !dcd->y || !dcd->z)
{
printf("dcdplugin) Unable to allocate space for %d atoms.\n", dcd->natoms);
if (dcd->x)
free(dcd->x);
if (dcd->y)
free(dcd->y);
if (dcd->z)
free(dcd->z);
fio_fclose(dcd->fd);
free(dcd);
return NULL;
}
*natoms = dcd->natoms;
return dcd;
}
int read_next_timestep(void *v, int natoms, molfile_timestep_t *ts)
{
dcdhandle *dcd;
int i, j, rc;
float unitcell[6];
unitcell[0] = unitcell[2] = unitcell[5] = 1.0f;
unitcell[1] = unitcell[3] = unitcell[4] = 90.0f;
dcd = (dcdhandle *)v;
/* Check for EOF here; that way all EOF's encountered later must be errors */
if (dcd->setsread == dcd->nsets) return MOLFILE_EOF;
dcd->setsread++;
if (!ts) {
if (dcd->first && dcd->nfixed) {
/* We can't just skip it because we need the fixed atom coordinates */
rc = read_dcdstep(dcd->fd, dcd->natoms, dcd->x, dcd->y, dcd->z,
unitcell, dcd->nfixed, dcd->first, dcd->freeind, dcd->fixedcoords,
dcd->reverse, dcd->charmm);
dcd->first = 0;
return rc; /* XXX this needs to be updated */
}
dcd->first = 0;
/* XXX this needs to be changed */
return skip_dcdstep(dcd->fd, dcd->natoms, dcd->nfixed, dcd->charmm);
}
rc = read_dcdstep(dcd->fd, dcd->natoms, dcd->x, dcd->y, dcd->z, unitcell,
dcd->nfixed, dcd->first, dcd->freeind, dcd->fixedcoords,
dcd->reverse, dcd->charmm);
dcd->first = 0;
if (rc < 0) {
print_dcderror("read_dcdstep", rc);
return MOLFILE_ERROR;
}
/* copy timestep data from plugin-local buffers to VMD's buffer */
/* XXX
* This code is still the root of all evil. Just doing this extra copy
* cuts the I/O rate of the DCD reader from 728 MB/sec down to
* 394 MB/sec when reading from a ram filesystem.
* For a physical disk filesystem, the I/O rate goes from
* 187 MB/sec down to 122 MB/sec. Clearly this extra copy has to go.
*/
{
int natoms = dcd->natoms;
float *nts = ts->coords;
const float *bufx = dcd->x;
const float *bufy = dcd->y;
const float *bufz = dcd->z;
for (i=0, j=0; i<natoms; i++, j+=3) {
nts[j ] = bufx[i];
nts[j + 1] = bufy[i];
nts[j + 2] = bufz[i];
}
}
ts->A = unitcell[0];
ts->B = unitcell[2];
ts->C = unitcell[5];
if (unitcell[1] >= -1.0 && unitcell[1] <= 1.0 &&
unitcell[3] >= -1.0 && unitcell[3] <= 1.0 &&
unitcell[4] >= -1.0 && unitcell[4] <= 1.0)
{
/* This file was generated by CHARMM, or by NAMD > 2.5, with the angle */
/* cosines of the periodic cell angles written to the DCD file. */
/* This formulation improves rounding behavior for orthogonal cells */
/* so that the angles end up at precisely 90 degrees, unlike acos(). */
ts->alpha = 90.0 - asin(unitcell[4]) * 90.0 / M_PI_2; /* cosBC */
ts->beta = 90.0 - asin(unitcell[3]) * 90.0 / M_PI_2; /* cosAC */
ts->gamma = 90.0 - asin(unitcell[1]) * 90.0 / M_PI_2; /* cosAB */
}
else
{
/* This file was likely generated by NAMD 2.5 and the periodic cell */
/* angles are specified in degrees rather than angle cosines. */
ts->alpha = unitcell[4]; /* angle between B and C */
ts->beta = unitcell[3]; /* angle between A and C */
ts->gamma = unitcell[1]; /* angle between A and B */
}
return MOLFILE_SUCCESS;
}
static void close_file_read(void *v)
{
dcdhandle *dcd = (dcdhandle *)v;
close_dcd_read(dcd->freeind, dcd->fixedcoords);
fio_fclose(dcd->fd);
free(dcd->x);
free(dcd->y);
free(dcd->z);
free(dcd);
}
static void *open_dcd_write(const char *path, const char *filetype,
int natoms)
{
dcdhandle *dcd;
fio_fd fd;
int rc;
int istart, nsavc;
double delta;
int with_unitcell;
int charmm;
if (fio_open(path, FIO_WRITE, &fd) < 0) {
printf("dcdplugin) Could not open file '%s' for writing\n", path);
return NULL;
}
dcd = (dcdhandle *) malloc(sizeof(dcdhandle));
memset(dcd, 0, sizeof(dcdhandle));
dcd->fd = fd;
istart = 0; /* starting timestep of DCD file */
nsavc = 1; /* number of timesteps between written DCD frames */
delta = 1.0; /* length of a timestep */
if (getenv("VMDDCDWRITEXPLORFORMAT") != NULL)
{
with_unitcell = 0; /* no unit cell info */
charmm = DCD_IS_XPLOR; /* X-PLOR format */
printf("dcdplugin) WARNING: Writing DCD file in X-PLOR format, \n");
printf("dcdplugin) WARNING: unit cell information will be lost!\n");
}
else
{
with_unitcell = 1; /* contains unit cell infor (Charmm format) */
charmm = DCD_IS_CHARMM; /* charmm-formatted DCD file */
if (with_unitcell)
charmm |= DCD_HAS_EXTRA_BLOCK;
}
rc = write_dcdheader(dcd->fd, "Created by DCD plugin", natoms,
istart, nsavc, delta, with_unitcell, charmm);
if (rc < 0) {
print_dcderror("write_dcdheader", rc);
fio_fclose(dcd->fd);
free(dcd);
return NULL;
}
dcd->natoms = natoms;
dcd->nsets = 0;
dcd->istart = istart;
dcd->nsavc = nsavc;
dcd->with_unitcell = with_unitcell;
dcd->charmm = charmm;
dcd->x = (float *)malloc(natoms * sizeof(float));
dcd->y = (float *)malloc(natoms * sizeof(float));
dcd->z = (float *)malloc(natoms * sizeof(float));
return dcd;
}
static int write_timestep(void *v, const molfile_timestep_t *ts)
{
dcdhandle *dcd = (dcdhandle *)v;
int i, rc, curstep;
float *pos = ts->coords;
double unitcell[6];
unitcell[0] = unitcell[2] = unitcell[5] = 1.0f;
unitcell[1] = unitcell[3] = unitcell[4] = 90.0f;
/* copy atom coords into separate X/Y/Z arrays for writing */
for (i=0; i<dcd->natoms; i++)
{
dcd->x[i] = *(pos++);
dcd->y[i] = *(pos++);
dcd->z[i] = *(pos++);
}
dcd->nsets++;
curstep = dcd->istart + dcd->nsets * dcd->nsavc;
unitcell[0] = ts->A;
unitcell[2] = ts->B;
unitcell[5] = ts->C;
unitcell[1] = sin((M_PI_2 / 90.0) * (90.0 - ts->gamma)); /* cosAB */
unitcell[3] = sin((M_PI_2 / 90.0) * (90.0 - ts->beta)); /* cosAC */
unitcell[4] = sin((M_PI_2 / 90.0) * (90.0 - ts->alpha)); /* cosBC */
rc = write_dcdstep(dcd->fd, dcd->nsets, curstep, dcd->natoms,
dcd->x, dcd->y, dcd->z,
dcd->with_unitcell ? unitcell : NULL,
dcd->charmm);
if (rc < 0) {
print_dcderror("write_dcdstep", rc);
return MOLFILE_ERROR;
}