-
Notifications
You must be signed in to change notification settings - Fork 5
/
bilateralmedian.py
81 lines (65 loc) · 2.44 KB
/
bilateralmedian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# USAGE
# python detect_bright_spots.py --image images/lights_01.png
# import the necessary packages
from imutils import contours
from skimage import measure
import numpy as np
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
# load the image, convert it to grayscale, and blur it
image = cv2.imread("E:\\internship\\B. Disease Grading\\B. Disease Grading\\1. Original Images\\a. Training Set\\IDRiD_048.jpg")
image=cv2.resize(image,(800,615))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.bilateralFilter(gray,9,75,75)
median=cv2.medianBlur(blur,5)
cv2.imshow("median",median)
#cv2.imshow()
# threshold the image to reveal light regions in the
# blurred image
thresh = cv2.threshold(median, 155, 255, cv2.THRESH_BINARY)[1]
# perform a series of erosions and dilations to remove
# any small blobs of noise from the thresholded image
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=4)
# perform a connected component analysis on the thresholded
# image, then initialize a mask to store only the "large"
# components
labels = measure.label(thresh, neighbors=8, background=0)
mask = np.zeros(thresh.shape, dtype="uint8")
# loop over the unique components
for label in np.unique(labels):
# if this is the background label, ignore it
if label == 0:
continue
# otherwise, construct the label mask and count the
# number of pixels
labelMask = np.zeros(thresh.shape, dtype="uint8")
labelMask[labels == label] = 255
numPixels = cv2.countNonZero(labelMask)
# if the number of pixels in the component is sufficiently
# large, then add it to our mask of "large blobs"
if numPixels >300:
mask = cv2.add(mask, labelMask)
# find the contours in the mask, then sort them from left to
# right
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = contours.sort_contours(cnts)[0]
# loop over the contours
for (i, c) in enumerate(cnts):
ellipse = cv2.fitEllipse(c)
(x, y, w, h) = cv2.boundingRect(c)
cv2.putText(image, "#{}".format(i + 1), (x, y - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
cv2.ellipse(image,ellipse,(0,255,0),2)
print(h)
print(w)
print(x)
print(y)
break
# draw the bright spot on the image
cv2.imshow("Image", image)
cv2.waitKey(0)