NOTE ON COMPUTATION OF INTEGER SQUARE ROOTS

DANIEL HAST

The integer square root function m — |/m| can be implemented efficiently using
[1, Algorithm 1.13]. Fix integers m > 1 and x¢ > |[v/m]. Recursively define a
sequence as follows:

Tn + [m/xy ]
S e

Note that since x,, is an integer, we also have

V:n—km/an
Tn1 = f .

In [1, Theorem 1.7], it is shown that this sequence decreases until reaching |v/m].

Here we analyze this algorithm in more detail: We show that the sequence either
attains a fixed point at |y/m| or oscillates between |/m] and [\/m] + 1, and we
prove a bound proportional to log,(logs(m)) on the number of steps required for
the sequence to stabilize in this manner.

This allows Algorithm 1.13 to be turned into a constant-time algorithm by
running the algorithm for a number of steps depending only on the bit-width of the
unsigned integer type used to represent m, not the value m itself, and then taking
the minimum of the final two values to account for the possibility of oscillation. (Of
course, for this to yield a constant-time algorithm, we must also use constant-time
implementations of addition, division, the minimum function, etc.)

Lemma. (1) If z,, = |/m], then x 41 € {zp, zn + 1}.

(2) If , > |/m], then [/m| < 211 < Ty
(3) If z, > |/m], then

Tp — VM > 2(xp11 — Vm).
(4) Forall k > 2, if 1 < x,/y/m < k/(k — 2), then
Ty = Vm > kE(zn1 — Vm).
Proof. Suppose x,, = |\/m]. For any s > 1, we have
Is) (|s] +3) = s)>+3s] > |s)>+2|s| +1=(|s] +1)® > s%
Setting s = y/m, we obtain z,(z, + 3) > m, so |m/x,| < m/z, < x, + 3. Thus

Tntl = V"Hm/x"JJ < LW

=z, + 1.
> > Jer

Furthermore, |m/x,| > x,, 80 &y4+1 > z,. This proves (1).
Now suppose z,, > |v/m|. Then z, > \/m, so m/x,, < x,. Thus

Tn +Mm/x
Tyl = L”Q/”J < T
1
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Furthermore, by the AM-GM inequality,

RS

Toi = V"“Lm/an > |vm) .

SO

2
This proves (2). (Note that (2) is also proved as part of [1, Theorem 1.7].) Moreover,
Ty > /m implies m/z, < \/m, so

xn—m>xn+m/xn—2ﬁ=2<w—m> > 2(zpy1 — VM),

proving (3) as well.
Finally, fix ¥ > 2 and suppose z,, > /m and z,/v/m < k/(k —2). Then
(k — 2)x, < ky/m, so
0 < (zn — vVm) (kv/m — (k — 2)zy,)

= (2k — 2)zpvm — (k — 2)z2 — km

=z, ((2k — 2)v/m — (k — 2)z, — km/z,)

=2y, (2(zn — VM) — k(zn, + m/z, — 2/m)).
Thus

2(zy, — \/m) > k(zn +m/x, — 2%) > 2k(Znq1 — \/E),

proving (4). O

Theorem. Suppose g < 3v/m. Then for all n > max(1,log,(log,(m)) — log,(3)),
min(zn, Tni1) = [Vm] .

Proof. Let d,, = logy(xy, — +/m) if 2,, > /m and d,, = —oo otherwise. By parts (2)
and (3) of the lemma, if d,, # —o0, then d,, — d,,+1 > 1. By part (4) of the lemma
applied to k = 2, if 0 < (z,, — v/m)/v/m < 2/(2° — 2), then dy, — dpy1 > 4. In
particular, if d,, # —oo and d,, < logy \/m, then d,, — d,,11 > 2. Also, if d,, # —o0
and d,, <logy\/m+1—1, then d,, — d, 41 > i.

If o < 3y/m, then z1 — m < 1(zo — /m) < y/m, so di < log, /m. Thus
dy —dy > 2, 50 dy < logy/m+1—3. If dy # —o0, this implies dy — d3 > 3, so
d3 < logy v/m + 1 — 6. Continuing inductively, we see that for all n > 2,

d, <logyy/m—+1—3-2"72
as long as dy,...,d, # —oo. In particular, applying part (1) of the lemma, if
32771 > log, \/m, then either z,, or ,1 is equal to |/m|. Taking logarithms of
both sides of this inequality yields the theorem. (I

Corollary. If 21 < m < 2% and z = 2/%/21, then for all n > max(2, [logy(b)] +1),
min(zp, Tpy1) = L\/EJ .
Proof. Since ¢ < 2-2%/2 = 2/2(20-1)1/2 < 2y/2\/m < 3/m, this follows from the

theorem. 0
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