-
Notifications
You must be signed in to change notification settings - Fork 1
/
peakelement.java
65 lines (53 loc) · 2.43 KB
/
peakelement.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
package striver.binarysearch;
public class peakelement {
//162. Find Peak Element
//Medium
//9.4K
//4.3K
//A peak element is an element that is strictly greater than its neighbors.Given a 0-indexed integer array nums
//, find a peak element, and return its index. If the array contains multiple peaks, return the index
//to any of the peaks.You may imagine that nums[-1] = nums[n] = -∞. In other words, an element is always
// considered to be strictly greater than a neighbor that is outside the array.
//You must write an algorithm that runs in O(log n) time.
//Example 1:
//Input: nums = [1,2,3,1]
//Output: 2
//Explanation: 3 is a peak element and your function should return the index number 2.
//Example 2:
//Input: nums = [1,2,1,3,5,6,4]
//Output: 5
//Explanation: Your function can return either index number 1 where the peak element is 2,
// or index number 5 where the peak element is 6.
public static int peAkElement(int nums[] ){
int n = nums.length;
if (n == 1) return 0;
if (nums[0] > nums[1]) return 0;
if (nums[n - 1] > nums[n - 2]) return n - 1;
int low = 1, high = n - 2;
while (low <= high) {
int mid = (low + high) / 2;
if (nums[mid] > nums[mid - 1] && nums[mid] > nums[mid + 1]) {
return mid;
} else if (nums[mid] > nums[mid - 1]) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return -1;
}
// the intution behind this algorithm is preeety straight forward so first we need to find the solution in
// the O(nlogn) and the array is sorted so what else yess binary search..
// and after tht either the peak element wil occcur in the left of the array or in the mid of the array or
// in the right of the array or the arr[mid] is itself the peek element
// case 1 : if the arr[mid] is the peek element then its obvious tht arr[mid] > arr[mid - 1] &&
//arr[mid] > arr[mid + 1] so return arr[mid]
//case 2: if it is present in the left side of the array it is greater thn the nums[mid - 1] thn move
// high = mid - 1
// or low = mid + 1;
public static void main(String[]args){
int nums[] = { 1 ,2 , 3 , 4, 9 , 8 ,7 ,6};
int peek_elm = peAkElement(nums);
System.out.println("The peak element of this array is in idx = " + peek_elm);
}
}