plugo is a simple plugin manager that dynamically loads plugins from a directory, a json
configuration file e.g.plugins_config.json
, an environment variable ENABLED_PLUGINS
, or a predefined list (PLUGINS
). It allows for dynamic keyword arguments (kwargs
) to be passed during plugin loading, making it flexible for various applications like Flask
current_version = "v1.0.0"
pip install plugo
Plugins will be created relative to the path you run the commands from.
plugo new-base-plugin
plugo new-ui-plugin
plugo new-api-plugin
--name
: Name of the Plugin. This will default the Cookiecutter answer--output-dir
: Relative path for output directory for the new plugin. Defaults to./api/plugins
.
plugo new-base-plugin --name="Example Plugin" --output-dir="plugins"
All plugins have the following files:
metadata.json
(Required)plugin.py
(Required)requirements.txt
(Optional)
└── 📁sample_plugin
└── __init__.py
└── metadata.json
└── plugin.py
└── requirements.txt
The plugin.py
must have a init_plugin
function defined in it with any optional named kwargs (key word arguments) that can be referenced or passed in as context later.
# plugin.py
from flask import Blueprint
plugin_blueprint = Blueprint('sample_plugin', __name__, template_folder='templates', static_folder='static')
@plugin_blueprint.route('/sample_plugin')
def plugin_route():
return "Hello from sample_plugin!"
def init_plugin(app):
app.register_blueprint(plugin_blueprint, url_prefix='/plugins')
The metadata.json
defines metadata about the plugin. A core consideration is plugin dependencies—a list of plugins in the same directory that are required to load before this plugin can load.
// metadata.json
{
"name": "sample_plugin",
"version": "1.0.0",
"description": "A sample plugin",
"identifier": "com.example.sample_plugin",
"dependencies": [
"test_env_plugin"
],
"author": "Your Name",
"core_version": ">=1.0.0"
}
└── 📁flask_base_plugins
└── 📁plugins
└── 📁sample_plugin
└── __init__.py
└── metadata.json
└── plugin.py
└── requirements.txt
└── 📁test_env_plugin
└── __init__.py
└── metadata.json
└── plugin.py
└── requirements.txt
└── __init__.py
└── __init__.py
└── app.py
└── plugins_config.json
Plugins can be loaded from a plugins_config.json
file or a comma separated list Environment Variable ENABLED_PLUGINS
. The major difference is the level of control. The Environment Variable will assume all plugins in the list are active, while the plugins_config.json
file allows you to specify if a plugin is active or not e.g.:
// plugins_config.json
{
"plugins": [
{
"name": "sample_plugin",
"enabled": true
},
{
"name": "another_plugin",
"enabled": false
}
]
}
You can load your plugins with the load_plugins
function by importing it into your project:
from plugo.services.plugin_manager import load_plugins
The load_plugins
function takes the following parameters:
plugin_directory
(Optional): The path to the directory containing plugin folders.config_path
(Optional): The path to the plugin configuration JSON file.logger
(Optional): A logging.Logger instance for logging.**kwargs
(Optional): Additional keyword arguments passed to each plugin's init_plugin function (e.g., app for Flask applications).
- The Environment Variable (
ENABLED_PLUGINS
): Load plugins specified in a comma-separated list in theENABLED_PLUGINS
environment variable. - The Predefined
PLUGINS
List variable: Allows you to Load plugins defined in aPLUGINS
list variable usingImportClassDetails
andPluginConfig
.
You can define plugins programmatically using ImportClassDetails
and PluginConfig
and PLUGINS
.
from plugo.models.import_class import ImportClassDetails
from plugo.models.plugin_config import PluginConfig, PLUGINS
Data Classes
ImportClassDetails
: Specifies the module path and class or function name to import.PluginConfig
: Holds the configuration for a plugin, including its name, import details, and status.PLUGINS
: A Singleton list, used to storePluginConfig
instances for programmatic plugin loading.
By using ImportClassDetails and PluginConfig, you have full control over how plugins are loaded in your application. This method allows you to specify plugins that might not be located in the default plugin directory or to programmatically activate or deactivate plugins based on certain conditions.
Example app.py
:
# app.py
import os
from flask import Flask
from plugo.models.import_class import ImportClassDetails
from plugo.models.plugin_config import PluginConfig, PLUGINS
from plugo.services.consolidate_plugin_requirements import (
consolidate_plugin_requirements,
)
from plugo.services.plugin_manager import load_plugins
app = Flask(__name__)
# Initialize your app configurations, database, etc.
# Paths (Optional if using plugin_directory and config_path)
plugin_directory = os.path.join(app.root_path, "plugins")
plugin_config_path = os.path.join(app.root_path, "plugins_config.json")
# Create a PluginConfig instance with the plugin's name, import details, and status
plugin_config = PluginConfig(
plugin_name="test_env_plugin",
# Create an ImportClassDetails instance specifying the module and class/function to import
import_class_details=ImportClassDetails(
module_path="plugo.examples.flask_base_plugins.plugins.test_env_plugin.plugin",
module_class_name="init_plugin",
),
status="active",
)
# Add the PluginConfig instance to the PLUGINS list
PLUGINS.append(plugin_config)
# Set Environment Variable for Plugins (Optional)
os.environ["ENABLED_PLUGINS"] = "SomeOtherPlugin"
# Load plugins based on the configuration
loaded_plugins = load_plugins(
plugin_directory=plugin_directory, # Optional
config_path=plugin_config_path, # Optional
logger=None, # Optional
app=app, # kwargs passed to init_plugin
)
# Create Dynamic requirements-plugins.txt for deployments
consolidate_plugin_requirements(
plugin_directory=plugin_directory,
loaded_plugins=loaded_plugins,
)
if __name__ == "__main__":
app.run(debug=True)
- Import Statements: Import necessary modules and classes from
plugo
andFlask
. - App Initialization: Create a
Flask
app instance. - Logging Setup: Configure logging for better visibility (optional). In our example we are using the default logger set up in the function.
- Paths: Define
plugin_directory
andplugin_config_path
(optional if not using directory or config file). - Define Programmatic Plugins: Use
PluginConfig
andImportClassDetails
to define plugins programmatically.- ImportClassDetails: Specify the module path and class/function name for the plugin.
- PluginConfig: Create a configuration for the plugin, including its
name
,module
andclass
details andstatus
. - Add to PLUGINS: Append the
PluginConfig
instance to thePLUGINS
list.
- Environment Variable: Set
ENABLED_PLUGINS
to load plugins specified in the environment (optional assumed to be active if set and found in the plugin directory). - Load Plugins: Call
load_plugins
with the appropriate parameters.- If
plugin_directory
andconfig_path
are not provided, the function relies onENABLED_PLUGINS
andPLUGINS
.
- If
- Loaded Plugins: Print the set of loaded plugins for verification.
- Run the App: Start the Flask application.
You can optionally consolidate custom requirements from plugins using the consolidate_plugin_requirements function:
from plugo.services.consolidate_plugin_requirements import consolidate_plugin_requirements
The intent of this function is to support deployments and allow only what is required to be installed into your deployment environment especially if you have multiple plugins for different clients. This function takes the following parameters:
plugin_directory
(Required): The directory where plugins are stored.loaded_plugins
(Required): List of plugin names that were loaded (This is the output of theload_plugins
function).logger
(Optional): Logger instance for logging messages.output_file
(Optional): The output file to write the consolidated requirements to. Defaults torequirements-plugins.txt
In your dependent project, define a new command and register it using the entry points in pyproject.toml
.
Example Plugin Command (hello_world.py
):
import click
@click.command()
def hello_world():
"""Say Hello, World!"""
click.echo("Hello, World!")
Register the Plugin in pyproject.toml
:
Assuming my_project
is you project and package name:
[tool.poetry.plugins."plugo.commands"]
"hello_world" = "my_project.hello_world:hello_world"
Reinstall the Project
poetry lock
poetry install
Verify the Extended CLI
After installing both plugo
and the dependent project:
plugo --help
which should show:
Usage: plugo [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
new-base-plugin
new-api-plugin
new-ui-plugin
hello-world Say Hello, World!
pytest
coverage run -m pytest
coverage report
coverage html
mypy --html-report mypy_report .
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --format=html --htmldir="flake8_report/basic" --exclude=venv
flake8 . --count --exit-zero --max-complexity=11 --max-line-length=127 --statistics --format=html --htmldir="flake8_report/complexity" --exclude=venv
With the CLI command bumpver
, you can search for and update version strings in your project files. It has a flexible pattern syntax to support many version schemes (SemVer, CalVer or otherwise).
Run BumbVer with:
bumpver update --major
bumpver update --minor
bumpver update --patch
poetry build
poetry publish