Skip to content

Latest commit

 

History

History
325 lines (267 loc) · 11 KB

README.md

File metadata and controls

325 lines (267 loc) · 11 KB

plugo

plugo is a simple plugin manager that dynamically loads plugins from a directory, a json configuration file e.g.plugins_config.json, an environment variable ENABLED_PLUGINS, or a predefined list (PLUGINS). It allows for dynamic keyword arguments (kwargs) to be passed during plugin loading, making it flexible for various applications like Flask

current_version = "v1.0.0"

Quickstart

Install

pip install plugo

Create a new plugin

Plugins will be created relative to the path you run the commands from.

Base Plugin

plugo new-base-plugin

Flask HTML Plugin

plugo new-ui-plugin

Flask RESTX API Plugin

plugo new-api-plugin

Optional Parameters

  • --name: Name of the Plugin. This will default the Cookiecutter answer
  • --output-dir: Relative path for output directory for the new plugin. Defaults to ./api/plugins.
Example Creation with Optional Parameters
plugo new-base-plugin --name="Example Plugin" --output-dir="plugins"

Example Plugin

Plugin Structure

All plugins have the following files:

  • metadata.json (Required)
  • plugin.py (Required)
  • requirements.txt (Optional)
└── 📁sample_plugin
    └── __init__.py
    └── metadata.json
    └── plugin.py
    └── requirements.txt

plugin.py Example

The plugin.py must have a init_plugin function defined in it with any optional named kwargs (key word arguments) that can be referenced or passed in as context later.

# plugin.py
from flask import Blueprint

plugin_blueprint = Blueprint('sample_plugin', __name__, template_folder='templates', static_folder='static')

@plugin_blueprint.route('/sample_plugin')
def plugin_route():
    return "Hello from sample_plugin!"


def init_plugin(app):
    app.register_blueprint(plugin_blueprint, url_prefix='/plugins')

metadata.json Example

The metadata.json defines metadata about the plugin. A core consideration is plugin dependencies—a list of plugins in the same directory that are required to load before this plugin can load.

// metadata.json

{
    "name": "sample_plugin",
    "version": "1.0.0",
    "description": "A sample plugin",
    "identifier": "com.example.sample_plugin",
    "dependencies": [
        "test_env_plugin"
    ],
    "author": "Your Name",
    "core_version": ">=1.0.0"
}

Example Project

Project Structure
└── 📁flask_base_plugins
    └── 📁plugins
        └── 📁sample_plugin
            └── __init__.py
            └── metadata.json
            └── plugin.py
            └── requirements.txt
        └── 📁test_env_plugin
            └── __init__.py
            └── metadata.json
            └── plugin.py
            └── requirements.txt
        └── __init__.py
    └── __init__.py
    └── app.py
    └── plugins_config.json
Loading Plugins

Plugins can be loaded from a plugins_config.json file or a comma separated list Environment Variable ENABLED_PLUGINS. The major difference is the level of control. The Environment Variable will assume all plugins in the list are active, while the plugins_config.json file allows you to specify if a plugin is active or not e.g.:

// plugins_config.json

{
    "plugins": [
        {
            "name": "sample_plugin",
            "enabled": true
        },
        {
            "name": "another_plugin",
            "enabled": false
        }
    ]
}
Using the Plugo Plugin Manager

You can load your plugins with the load_plugins function by importing it into your project:

from plugo.services.plugin_manager import load_plugins

The load_plugins function takes the following parameters:

  • plugin_directory (Optional): The path to the directory containing plugin folders.
  • config_path (Optional): The path to the plugin configuration JSON file.
  • logger (Optional): A logging.Logger instance for logging.
  • **kwargs (Optional): Additional keyword arguments passed to each plugin's init_plugin function (e.g., app for Flask applications).
Extended Functionality
  • The Environment Variable (ENABLED_PLUGINS): Load plugins specified in a comma-separated list in the ENABLED_PLUGINS environment variable.
  • The Predefined PLUGINS List variable: Allows you to Load plugins defined in a PLUGINS list variable using ImportClassDetails and PluginConfig.
Defining Plugins with ImportClassDetails and PluginConfig

You can define plugins programmatically using ImportClassDetails and PluginConfig and PLUGINS.

from plugo.models.import_class import ImportClassDetails
from plugo.models.plugin_config import PluginConfig, PLUGINS

Data Classes

  • ImportClassDetails: Specifies the module path and class or function name to import.
  • PluginConfig: Holds the configuration for a plugin, including its name, import details, and status.
  • PLUGINS: A Singleton list, used to store PluginConfig instances for programmatic plugin loading.
Defining Plugins Programmatically

By using ImportClassDetails and PluginConfig, you have full control over how plugins are loaded in your application. This method allows you to specify plugins that might not be located in the default plugin directory or to programmatically activate or deactivate plugins based on certain conditions.

Example app.py:

# app.py

import os

from flask import Flask

from plugo.models.import_class import ImportClassDetails
from plugo.models.plugin_config import PluginConfig, PLUGINS
from plugo.services.consolidate_plugin_requirements import (
    consolidate_plugin_requirements,
)
from plugo.services.plugin_manager import load_plugins

app = Flask(__name__)

# Initialize your app configurations, database, etc.

# Paths (Optional if using plugin_directory and config_path)
plugin_directory = os.path.join(app.root_path, "plugins")
plugin_config_path = os.path.join(app.root_path, "plugins_config.json")

# Create a PluginConfig instance with the plugin's name, import details, and status
plugin_config = PluginConfig(
    plugin_name="test_env_plugin",
    # Create an ImportClassDetails instance specifying the module and class/function to import
    import_class_details=ImportClassDetails(
        module_path="plugo.examples.flask_base_plugins.plugins.test_env_plugin.plugin",
        module_class_name="init_plugin",
    ),
    status="active",
)

# Add the PluginConfig instance to the PLUGINS list
PLUGINS.append(plugin_config)

# Set Environment Variable for Plugins (Optional)
os.environ["ENABLED_PLUGINS"] = "SomeOtherPlugin"

# Load plugins based on the configuration
loaded_plugins = load_plugins(
    plugin_directory=plugin_directory,  # Optional
    config_path=plugin_config_path,  # Optional
    logger=None,  # Optional
    app=app,  # kwargs passed to init_plugin
)

# Create Dynamic requirements-plugins.txt for deployments
consolidate_plugin_requirements(
    plugin_directory=plugin_directory,
    loaded_plugins=loaded_plugins,
)


if __name__ == "__main__":
    app.run(debug=True)
Explanation
  • Import Statements: Import necessary modules and classes from plugo and Flask.
  • App Initialization: Create a Flask app instance.
  • Logging Setup: Configure logging for better visibility (optional). In our example we are using the default logger set up in the function.
  • Paths: Define plugin_directory and plugin_config_path (optional if not using directory or config file).
  • Define Programmatic Plugins: Use PluginConfig and ImportClassDetails to define plugins programmatically.
    • ImportClassDetails: Specify the module path and class/function name for the plugin.
    • PluginConfig: Create a configuration for the plugin, including its name, module and class details and status.
    • Add to PLUGINS: Append the PluginConfig instance to the PLUGINS list.
  • Environment Variable: Set ENABLED_PLUGINS to load plugins specified in the environment (optional assumed to be active if set and found in the plugin directory).
  • Load Plugins: Call load_plugins with the appropriate parameters.
    • If plugin_directory and config_path are not provided, the function relies on ENABLED_PLUGINS and PLUGINS.
  • Loaded Plugins: Print the set of loaded plugins for verification.
  • Run the App: Start the Flask application.
Consolidating Plugin Requirements

You can optionally consolidate custom requirements from plugins using the consolidate_plugin_requirements function:

from plugo.services.consolidate_plugin_requirements import consolidate_plugin_requirements

The intent of this function is to support deployments and allow only what is required to be installed into your deployment environment especially if you have multiple plugins for different clients. This function takes the following parameters:

  • plugin_directory (Required): The directory where plugins are stored.
  • loaded_plugins (Required): List of plugin names that were loaded (This is the output of the load_plugins function).
  • logger (Optional): Logger instance for logging messages.
  • output_file (Optional): The output file to write the consolidated requirements to. Defaults to requirements-plugins.txt
Create a Plugin in the Dependent Project

In your dependent project, define a new command and register it using the entry points in pyproject.toml.

Example Plugin Command (hello_world.py):

import click

@click.command()
def hello_world():
    """Say Hello, World!"""
    click.echo("Hello, World!")

Register the Plugin in pyproject.toml: Assuming my_project is you project and package name:

[tool.poetry.plugins."plugo.commands"]
"hello_world" = "my_project.hello_world:hello_world"

Reinstall the Project

poetry lock
poetry install

Verify the Extended CLI After installing both plugo and the dependent project:

plugo --help

which should show:

Usage: plugo [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  new-base-plugin
  new-api-plugin
  new-ui-plugin
  hello-world  Say Hello, World!

Development

Test

pytest
coverage run -m pytest
coverage report
coverage html
mypy --html-report mypy_report .
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --format=html --htmldir="flake8_report/basic" --exclude=venv
flake8 . --count --exit-zero --max-complexity=11 --max-line-length=127 --statistics --format=html --htmldir="flake8_report/complexity" --exclude=venv

BumpVer

With the CLI command bumpver, you can search for and update version strings in your project files. It has a flexible pattern syntax to support many version schemes (SemVer, CalVer or otherwise). Run BumbVer with:

bumpver update --major
bumpver update --minor
bumpver update --patch

Build

poetry build

Publish

poetry publish