1. Given the vectors:
$\vec{v} = \left( 1,0,7 \right)$
$\vec{w} = \left( 0,-1,2 \right)$
find the distance between them, $d \left( \vec{v}, \vec{w} \right)$
2. You are given the points $P: \left( 1, 0, -3 \right)$ and $Q: \left( −1, 0, -3 \right)$. The magnitude of the vector from $P$ to $Q$ is:
3. Select the correct statements pertaining to the dot product.
4. Calculate the norm $|| v ||$ of the vector $\vec{v} = \left( 1,-5,2,0,-3 \right)$ and select the correct answer.
5. Which of the vectors has the greatest norm?
$$\begin{bmatrix} 0 \cr 0 \cr 0 \cr 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 \cr 2 \cr -3 \end{bmatrix}$$
$$\begin{bmatrix} 2 \cr 5 \end{bmatrix}$$
$$\begin{bmatrix} 1 \cr 0 \cr -2 \cr 0 \cr -1 \end{bmatrix}$$
$$\begin{bmatrix} 2 \cr 2 \cr 2 \cr 2 \end{bmatrix}$$
6. Calculate the dot product $\vec{a} \cdot \vec{b}$ and select the correct answer.
$$\vec{a} = \begin{bmatrix} -1 \cr 5 \cr 2 \end{bmatrix}, \vec{b} = \begin{bmatrix} -3 \cr 6 \cr -4 \end{bmatrix}$$
$$\begin{bmatrix} 1 \cr 0 \cr 1 \end{bmatrix}$$
$$30$$
$$25$$
$$\begin{bmatrix} -3 \cr 30 \cr -8 \end{bmatrix}$$
7. Which of the following is the result of performing the multiplication $M_1 \cdot M_2$? Where $M_1$ and $M_2$ are given by:
$$M_1 = \begin{bmatrix} 2 & -1 \cr 3 & -3 \end{bmatrix}, M_2 = \begin{bmatrix} 5 & -2 \cr 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 10 & 3 \cr 15 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 10 & 15 \cr -3 & -4 \end{bmatrix}$$
$$\begin{bmatrix} 10 & -5 \cr 15 & -9 \end{bmatrix}$$
$$\begin{bmatrix} 10 & -3 & 1 \cr 15 & -4 & 0 \cr 1 & 0 & 1 \end{bmatrix}$$
8. Calculate the dot product $\vec{w} \cdot \vec{z}$ and select the correct answer.
$$\vec{w} = \begin{bmatrix} -9 \cr -1 \end{bmatrix}, \vec{z} = \begin{bmatrix} -3 \cr -5 \end{bmatrix}$$
$$32$$
$$\begin{bmatrix} -27 \cr -5 \end{bmatrix}$$
$$\begin{bmatrix} 27 \cr 5 \end{bmatrix}$$
$$35$$