Skip to content

Latest commit

 

History

History
41 lines (31 loc) · 1.94 KB

File metadata and controls

41 lines (31 loc) · 1.94 KB

1. Given the Single Layer Perceptron described in the lectures:

missing

What should be replaced in the question mark?

  • $w_1w_2 + x_1x_2 + b$
  • $w_1x_1 + w_2x_2 + b_1 + b_2$
  • $w_1x_1 + w_2x_2 + b$
  • $w_1x_2 + w_2x_1 + b$

2. For a Regression using a Single Layer Perceptron, select all that apply:

  • The Loss Function used is $L \left( y, \hat{y} \right) = -y \ln \left( \hat{y} \right) - \left( 1 - y \right) \ln \left( 1 - \hat{y} \right)$.
  • The Loss Function used is $L \left( y, \hat{y} \right) = \frac{1}{2} \left( y - \hat{y} \right)^2$.
  • To minimize the Loss Function, we consider $L \left( y, \hat{y} \right)$ as a function of $w_1, w_2$ and $b$.
  • To minimize the Loss Function, we consider $L \left( y, \hat{y} \right)$ as a function of $x_1$ and $x_2$.

3. Consider the problem of Classification using a Single Layer Perceptron as discussed in the lectures.

missing

In the figure above, $z$ and $\sigma \left( z \right)$ are, respectively:

  • $z = w_1x_1 + w_2x_2 + b$ and $\sigma \left( z \right) = \frac{1}{2} \left( z - \hat{z} \right)^2$
  • $z = \frac{1}{1 + e^{-z}}$ and $\sigma \left( z \right) = w_1x_1 + w_2x_2 + b$
  • $z = x_1 + x_2 + b$ and $\sigma \left( z \right) = \frac{1}{2} \left( z - \hat{z} \right)^2$
  • $z = w_1x_1 + w_2x_2 + b$ and $\sigma \left( z \right) = \frac{1}{1 + e^{-z}}$

4. In the 2, 2, 1 Neural Network described below

missing

How many parameters must be tuned to minimize the Loss Function?

  • $2$
  • $3$
  • $6$
  • $9$

5. About Backpropagation, check all that apply:

  • It is a way to obtain the input values for a given output of a neural network.
  • It is a method to update the parameters of a neural network.
  • It is the same as gradient descent.
  • It is a method that starts in the output layer and finishes in the input layer.